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Abstract  

Climate change is a feedback loop of inequality – both a cause and effect on a global scale. The 

impacts of which such as rising sea levels, increased incidents of natural disasters, and altered 

weather patterns disproportionately impact developing countries and vulnerable populations. 

Climate change is fundamentally caused by consumption – resource-intense lifestyles in rich 

Western countries. Higher education embraced its role as a leader in the response to climate change 

through sustainability declarations, such as the Climate Commitment and its carbon neutrality 

goal. But with a history of failed sustainability declarations, how do we know the Climate 

Commitment is effective and reduces energy consumption behavior? Using data from 119 higher 

education institutions in the US, this study builds on behavioral economic energy modelling to 

predict the likelihood an institution signs onto the Climate Commitment, and how energy usage 

per capita changes afterward. While the study finds that energy consumption decreases on Climate 

Commitment campuses between the baseline and performance years, the widespread distribution 

warrants further investigation into the matter.  
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Variable Summary Guide 

 

Variable Description 

a Area of campus (acres) 

aw Area of campus per capita (acres/person) 

C Carbon Neutrality (Dummy) 

DIFF pecpaw – ecbaw (MMBtu/person) 

DIFFN pecpaw – ecbaw < 0 (MMBtu/person) 

DIFFP pecpaw – ecbaw > 0 (MMBtu/person) 

eb Area of LEED certified buildings (sq. ft.) 

ebw Area of LEED certified buildings per capita (sq. ft./person) 

ecb Energy consumption on campus in the baseline year, not including transportation 

(MMBtu) 

ecbw Energy consumption on campus in the baseline year, not including transportation 

per capita (MMBtu/person) 

ecbaw Energy consumption on campus in the baseline year, not including transportation 

per capita when C = 1 (MMBtu/person) 

ecp Energy consumption on campus in the performance year, not including 

transportation (MMBtu) 

ecpw Energy consumption on campus in the performance year, not including 

transportation per capita (MMBtu/person) 

ecpaw Energy consumption on campus in the performance year, not including 

transportation per capita when C = 1 (MMBtu/person) 

pecpaw Predicted energy consumption on campus in the performance year, not including 

transportation per capita when C = 1 (MMBtu/person) 

en Endowment (USD) 

enw Endowment per capita (USD/person) 

ep Enrollment pressure (enrollment rate) 

𝑐𝑑𝑑 Cooling degree days 

fcdd f * cdd 

fcddw (f * cdd)/n 

hdd Heating degree days 

fhdd f * hdd 

fhddw (f * hdd)/n 

fe Feasibility (Dummy for renewable energy) 

f Area of buildings on campus (sq. ft.) 

fw Area of buildings per capita (sq. ft./person) 

l Leadership (Dummy for sustainability office) 

n People on campus (students, faculty and staff) 

rc Renewable energy generated on campus (MMBtu) 

rcw Renewable energy generated on campus per capita (MMBtu/person) 

ro Renewable energy generated off campus (MMBtu) 

row Renewable energy generated off campus per capita (MMBtu/person) 

sca Social capital variable A (Reverse Princeton Green College Rankings) 

scb Social capital variable B (Princeton Review Green College List) 



 vi 

t Time since joining Climate Commitment (years) 

𝑡2 t * t 

varC Variable when C = 1 

varNC Variable when C = 0 
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INTRODUCTION 

1.A Climate Change and Higher Education 

Climate change is everywhere: it’s in the news, on campus, and the hottest topic of 

conversation for any family gathering. The academic community agrees that global climate 

change is a major and unprecedented challenge for civilization. Climate change is an 

anthropogenic phenomenon wherein burned fossil fuels release Greenhouse Gases (GHGs) into 

the atmosphere, causing a rise in the average global surface temperature (Dow & Downing, 

2006, p. 37). Climate change is fundamentally due to consumption – the resource-intense 

lifestyles in typically richer and Western societies (Shove, 2014). The International Panel on 

Climate Change (IPCC) determined that the accumulation of GHGs in the atmosphere resulted 

from the growing use of energy and the expansion of the global economy during the 20th century, 

mostly by what are now considered developed countries (Fifth Assessment Report, 2014).  

Climate change is a feedback loop of inequality – both a cause and an effect on a global 

scale. While developed countries profit from the expanding global economy, changes such as 

rising sea levels, increasing incidents of natural disasters, and altered weather patterns 

disproportionately impact developing countries and vulnerable populations (Flannery, 2005, p. 

199). While even the ancient Greeks suspected that humans could change the local environment, 

academic institutions are influential in climate change research – they posit and prove the 

phenomenon, and continue to contribute to the discourse (Weart, 2008). As a pioneer of research, 

and developer of future professionals and leaders, higher education institutions are critical 

stakeholders in the response to climate change and the development of a more environmentally 

sustainable society (Dyer & Dyer, 2014, p. 111).  

Sustainability refers to a philosophy that emphasizes the connection between human 

society, the economy and the natural environment (Caradonna, 2014, p. 12). Many colleges first 
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embraced sustainability in the 1960’s by fostering environmental education. By the 1990’s, 

higher education institutions broadened their approach, and began to publicize sustainability 

declarations, which expressed commitments to intergenerational responsibility as, “universities 

bear profound responsibilities to increase the awareness, knowledge, technology and tools to 

create an environmentally sustainably future” (Corcoran et al, 2007, p. 8; University Leaders for 

a Sustainable Future, 1990, p. 1). One sustainability initiative announced in 2006 is the 

Presidents’ Climate Leadership Commitment (formerly known as ACUPCC - American College 

& University Presidents’ Climate Commitment; hereinto referred as the Climate Commitment).  

1.B Climate Commitment and Carbon Neutrality 

The Climate Commitment is a highly-publicized declaration designed to scale-up 

sustainability leadership within higher education and establish environmentally-conscious role 

models for American society. The Commitment represents the addition of sustainable practices 

within higher education, “the university can both engage students in understanding the 

institutional metabolism of materials and activities, and have them actively participate to 

minimize pollution and waste” (USLF, 1990 retrieved from Wright, p. 10). Climate Commitment 

institutions create environmental action plans, establish an institutional implementation structure 

responsible for sustainability commitments, and conduct GHG emissions inventories (Dyer & 

Dyer, 2017, p 112). An integral piece of the Climate Commitment is carbon neutrality, “carbon 

neutrality and resilience are extremely high priority areas of action for all institutions and we aim 

to lead the nation in these efforts” (“The Presidents’ Climate Leadership Commitments”).  

Carbon neutrality is a concept in which an organization does not have a net contribution 

of GHG emissions to the atmosphere through an equal release and sequestration of carbon 

dioxide. Achieving carbon neutrality involves calculating an organization’s total GHG 
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emissions, reducing fossil fuel consumption, implementing renewable energy, and balancing the 

remaining emissions through carbon offsets (Selman, 2010, p. 158).  

As a market-tool, carbon offsets represent the reduction or sequestration of GHG 

emissions elsewhere through projects such as reforestation or forest conservation. Organizations 

buy carbon offsets from these projects and use offsets to detract from their own GHG emissions 

(Trexler & Kosloff, 2006, p. 34). Many established institutions are connected to the grid and 

source their energy from utility companies, making it difficult to completely discontinue fossil 

fuel use. This dependence makes carbon offsets instrumental for achieving carbon neutrality 

(Selman, 2010). 

Another tool for achieving carbon neutrality are the multiple scopes of emissions in 

calculating organizational carbon footprints, established by the World Business Council for 

Sustainable Development and the World Resource Institute:  

- Scope 1: direct sources of emissions that are owned or controlled by an institution.  

- Scope 2: emissions associated with the generation of imported sources of energy, such as 

purchased electricity.  

- Scope 3: all other indirect sources of emissions that could result from the activities of an 

organization, but these sources are owned or controlled by another entity (Willson & 

Brown, 2008, p. 498).  

These distinctions help institutions determine strategic and actionable plans for reduction. By 

specifying between different emission sources, organizations can determine easy and cost-

effective methods for emissions reductions (I. Johnson, personal communication, October 29, 

2018). Scope 2 emissions – specifically purchased electricity – are paramount for reductions as 

they account for nearly half of all emissions on university campuses (Sinha, Schew, Sawat, 
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Kolwait & Strode 2010, p. 570) Scopes 1 and 2 are focal areas for emissions reductions in higher 

education, as the institution has direct power over those decisions. It is these areas that must be 

grappled with since Scope 3 is an indirect result of the institution and more difficult to reduce. 

These tools are essential in the trying to achieve carbon neutrality.  

1.C Implementation of Sustainability Declarations  

The 1990 Talloires Declaration was the first international declaration to focus on 

sustainability in higher education. Tallories stressed that universities should ‘practice what they 

preach’ by implementing sustainability on campus. A recent sustainability declaration, the 2016 

We Are Still In campaign, includes American cities, states, businesses and schools that will try to 

uphold the international Paris Climate Accord, despite the lack of federal governmental 

participation1. Higher education institutions have joined or declared goals focusing on 

sustainability in education, research, campus operations, and community outreach (USLF, 1990). 

Though declarations tackle sustainability issues through these different means, all sustainability 

declarations address one underlying theme: the unjustifiable levels of consumption in developed 

countries. 

Most sustainability declarations fail. Since sustainability declarations are non-binding and  

voluntary mechanisms, institutions are not held accountable for the goals that they set. 

Institutions struggle to set clear goals and/or appropriate implementation strategies to achieve 

their objectives (Grinsted, 2011, p. 29). Many universities will adopt a pre-established strategy 

within the network of a specific declaration, even if that strategy is inappropriate for that 

institution.  

                                                      
1 https://www.wearestillin.com/about 
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The 2012 Hallifax Declaration intended to provide long-term goals and action 

frameworks applicable to colleges and universities. However, analysis indicates that the Hallifax 

Declaration’s suggestions were irrelevant and largely ineffective on individual campuses. In 

addition, the declaration’s network provided little help to institutions that publicized their 

sustainability goals (Wright, 2004, p. 10).  

Although many sustainability declarations differ in terms of objectives and 

implementation strategies, they attempt to address the true cause of climate change – 

consumption (Wright, 2004). Like other declarations, the Climate Commitment provides 

reporting tools and guidance for its member institutions. However, this precedent of highly 

publicized yet unsuccessful sustainability declarations calls into question the effectiveness of the 

Climate Commitment and carbon neutrality goals.  

While evaluating the results of these declarations, it is necessary to consider the 

possibility of unintended consequences in signing onto and implementing highly publicized 

sustainability declarations. Which begs the question: as colleges and universities under the 

Climate Commitment begin to reduce fossil fuel use, implement renewable energy, and buy 

carbon offsets, does the institution use more energy per capita? This study aims to investigate if 

and how energy usage changes on higher education campuses after signing onto the Climate 

Commitment and declaring a carbon neutrality goal.  

1.D Purpose and Significance of Study  

 This study explores sustainability implementation on higher education campuses. 

Specifically, the paper sets out to understand why higher education institutions choose to join 

groups like the Climate Commitment, as well as if and how energy usage changes after joining. 
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The findings of this study are critical for sustainability in higher education, and can inform future 

implementation of highly publicized declarations.  

 This paper finds that on average, higher education institutions with carbon neutrality 

goals use less energy per capita in the performance year than the baseline year. This suggests that 

carbon neutrality goals, and previous implementation strategies are effective in reducing GHG 

emissions as well as energy consumption. However, there is a wide distribution: some 

institutions use less energy, and some institutions use more energy. The schools that use more 

energy after adopting a carbon neutrality goal tend to be smaller, with fewer total people on 

campus, and have larger endowments per person.  

This study suggests that while the overall trend of energy consumption on Climate 

Committed campuses is a decreasing one, individual institutions must examine their own unique 

energy consumptive behaviors and, if necessary, create strategies to tackle wasteful energy 

consumption.  
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LITERATURE REVIEW 

In the past, higher education has primarily focused on teaching aspects of sustainability, 

integrating the philosophy into its curriculum. Lozano et al. (2015) found that within 

sustainability, higher education schools neglected to actually implement practices on campus 

through actions to reduce consumption and emissions. However, in 2006 the higher education 

sector embraced their leadership position in addressing climate change by establishing the 

Climate Commitment, a long-term decision to achieve carbon neutrality (Sinha et al, 2010). 

Through this, institutions establish their own target date for achieving carbon neutrality and 

evaluate progress through greenhouse gas emissions inventories (Dyer & Dyer, 2017).  

2.A: Higher Education and the Climate Commitment 

Young students are more likely to have concern for environmental issues, and pressure their 

institutions to incorporate sustainability in the school’s identity. Heslop, Morian and Courineau 

(1981) found that consumers who express more concern for conservation are likely to be white, 

younger, educated, with higher incomes and socioeconomic statuses.  

In his investigations of moral philosophy, Haidt (2012) found that college students in the US 

are WEIRD (western, educated, industrialized, [globally] rich and democratic) compared to other 

communities around the world. WEIRD societies have narrow moral domains. This suggests that 

there is very little leeway for the “right” opinions and actions on campus (Haidt, 2012). Applying 

this to environmental issues, conservation behaviors are deemed “right” and wasteful behaviors 

are “wrong”.  

Cultural psychology suggests that “culture and psyche make each other up”, so that a school 

is developed and shaped by the students, while the students are developed and shaped by the 

school (Haidt, 2012, p. 113). Students want their institutions to embrace their moral values, such 
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as environmental concern. Jameleske et al (2015) found that that 76.2% of US college students 

believe that climate change is real, and expressed the need for a substantial coordinated response. 

Students want their schools to reflect their values through sizable actions (Jacob et al, 2019). 

Schools are willing to invest in these actions by voluntarily joining sustainability commitment 

groups.  

Higher education leaders attempting to address complex issues, such as climate change, 

are aware that multiple stakeholders need to be engaged in a cross disciplinary systems approach. 

Son (2016) found that organizations, like individuals, join groups to achieve common goals. The 

Climate Commitment group provides an opportunity for institutions to collaborate, “the 

ACUPCC [Climate Commitment] founders understood that individual institutional action is 

necessary, but not sufficient to address climate change and other global sustainability challenges. 

Collaboration is required both within and between sectors” (Dyer & Dyer, 2017, p. 113). 

Organizational groups, such as the Climate Commitment, are useful for communicating complex 

knowledge and promote diverse and innovative thinking between members (Tekansi & 

Chesmore, 2003). Higher education institutions join these associations because they foster 

creative thinking and collaboration among institutions, who are working toward a common goal. 

Many organizations are incentivized to join associations because of the services provided 

to members (Bennett, 2000). Groups provide high levels of structure and support to members 

while representing the collective interests of the whole (Battisti, 2015). Associations give 

member enterprises legitimacy with external parties, and provide expertise to members (Dalziel, 

2006; Spillane, Healey & Chong, 2010). Structured groups provide a sustainable network and 

increase accountability for institutions (Coburn, Choi & Mata, 2010). Like others, sustainability 

associations provide these services for higher education institutions. 
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Second Nature and AASHE, the two organizations that facilitate the Climate Commitment, 

play a unique role in promoting and implementing sustainability within the higher education 

sector. These organizations consult with Climate Commitment institutions, provide expertise, 

and create a transparent social network for colleges and universities to communicate through to 

tackle environmental issues. The Climate Commitment legitimizes institutional commitments to 

carbon neutrality, provides organization, support, and opportunities for networking and 

collaboration to members. By mandating annual GHG inventories, the Climate Commitment 

attempts to provide structure, ensure transparency, and hold institutions accountable for their 

carbon neutrality goals.  

2.B: Modelling Energy Consumption  

Much of the economic literature that models energy consumption uses a neoclassical 

approach at the household level. Control variables are limited to physical and extrinsic factors 

such as area of a house, number of rooms, number of family members, price of energy and other 

financial incentives (Van Raaij & Verhallen, 1983). This rational choice model assumes that 

individuals objectively weigh the costs and benefits of alternatives before choosing the optimal 

course of action (Frederiks, Stenner & Hobman, 2015). This neoclassical approach models for 

Homoeconomicus, a theoretical entity that resembles the textbook image of humans offered by 

economics, which assumes that people think and choose rationally and well (Thaler & Sustein, 

2009). Following the rational choice model, consumers will only perform energy conservation 

behaviors when they are economically advantageous (Costanzo, Archer, Aronsen & Pettigrew, 

1986). However, the academic community agrees that people do not behave like this in reality; 

there are other intrinsic factors that motivate behavior (Thaler and Sustein, 2009). Therefore, the 
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model of energy consumption should reflect this, and incorporate social-psychological processes 

(Costanzo et al, 1986).  

A purely attitudinal model of energy consumption assumes that conservation behavior 

follows from favorable attitudes towards sustainability (Constanzo et al, 1986). However, studies 

show that programs intending to promote sustainable behavior by disseminating information are 

ineffective. Blake (1999) theorizes that this is due to a Knowledge- and Value-Action Gap. In 

that an individual’s actions are not informed by their knowledge or values (Blake, 1999). This 

disconnect supports the notion that attitudes and actions do not have a strong, direct or consistent 

relationship (Costanzo et al, 1989). Ohler and Billger (2014) argue that in energy usage, 

consumers must choose between self-interests, motivated by production and consumption of 

private goods (ex: concern over comfort and electricity costs) and social-interests, motivated by 

common goods (ex: concern over clean air and climate change mitigation). Due to these 

competing interests, scholars have found that pro-environmental attitudes do not consistently 

lead to pro-environmental behaviors, especially in regards to energy conservation (Ohler and 

Billger, 2014).  

So if an individual’s attitude and beliefs do not impact their behavior, what does? Financial 

incentives? Setting specific intentions? The academic community has determined that 

communicating descriptive norms through social diffusion changes individual consumer 

behavior. Descriptive norms inform consumers about the prevalence of certain behaviors among 

their peers and provide suggestions about effective adaptive behavior to motivate change 

(Schubert, 2017; Frederiks et al, 2015). Schultz el al (2007) suggest that descriptive norms act as 

a standard from which others do not wish to deviate. Individuals evaluate their own performance 

by comparing themselves to others, and conform to the prevailing descriptive norm (Frederiks et 
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al, 2015). Social diffusion models effective behavior, and produces reinforcements and payoffs 

for that behavior (Costanzo et al, 1989). Social comparisons thus encourage a competition that 

rewards those who score best in light of that descriptive norm (Costanzo et al, 1989). 

However, descriptive norms act as a magnet of behavior, drawing from below and above the 

norm to the average, which causes a Boomerang Effect (Schultz et al, 2007). When given 

information about a gray behavior, such as energy consumption, people increase their own 

propensity for what they perceive to be the average for that behavior (Schubert, 2017). The 

Boomerang Effect suggests that when given information about energy consumption among their 

peers, an individual’s behavior will converge to that norm. So, individuals with high initial 

consumption would decrease their usage, and individuals with low initial consumption would 

increase their usage – both sides change their behavior to the average (Allcot, 2011).  

The limited modelling of energy consumption in the higher education sector follows a 

neoclassical approach. This methodology, similar to the rational behavior model for individual 

energy consumption, factors in physical and extrinsic explanatory variables for energy 

consumption. This method includes explanatory variables such as the gross internal area of 

residential and nonresidential buildings, heating degree days, and price of energy (Wadud et al, 

2019). This study is the first to explicitly apply individual energy usage behavior to higher 

education institutions to create a more realistic model of energy consumption on college 

campuses.  

Anyone who has ever joined a gym knows that membership does not directly lead to working 

out more often. Several studies have shown that signing onto a commitment does not actually 

lead to any sort of follow-through (Della Vigna & Malmendier, 2006). Bekessey et al. (2007) 

found that signing a sustainability declaration does not ensure that it is fully implemented. 
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Theoretically, a higher education institution could achieve carbon neutrality by implementing 

renewable energy, purchasing carbon offsets and utilizing energy efficiency technologies without 

changing their energy consumption behavior. This paper aims to fill a gap in the literature, by 

utilizing behavioral theory in a model of energy consumption to determine the effect of declared 

carbon neutrality goals on higher education campus energy usage.  
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THEORY AND MODEL 

This section discusses the economic theory employed in developing the following model. 

The model determines the likelihood a higher education institution joins the Climate 

Commitment, as well as the energy usage on campuses after joining that group. The Climate 

Commitment group is used to represent a network of institutions that have established carbon 

neutrality and climate resiliency goals. Drawing from Ohler and Billger’s (2014) study of 

conservation behaviors and residential energy consumption, this paper uses Heckman Two-Step 

Selection to model energy consumption at higher education campuses with carbon neutrality 

goals. The Heckman Model is utilized for estimating regression models that suffer from selection 

bias.  

Stage One is a probit equation based on a normal distribution. Stage One models the 

likelihood that an institution joins the Climate Commitment. This analysis is carried out for 

institutions with and without carbon neutrality goals, and is necessary to avoid selection bias. 

Selection bias is present in the sample as the higher education institutions who declare carbon 

neutrality goals are self-selecting rather than random. If left uncorrected, selection bias skews the 

model, as the coefficients for explanatory variables, which represent the relationships of 

explanatory variables with the dependent variable, would be incorrect. These skewed coefficients 

would not accurately represent the significance of each explanatory variable in relation to energy 

consumption on Climate Commitment campuses.   

Stage Two of this model calculates energy usage per capita on higher education 

campuses that have joined the Climate Commitment. The second stage utilizes the Inverse Mills 

Ratio, a statistical term calculated in Stage One, that can be added to a multiple regression model 

to remove sample selection (Woolridge, 2009).  
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The Inverse Mills Ratio is added as an explanatory variable in Stage Two, and adjusts the 

coefficients of other explanatory variables appropriately. Heckman utilized the Inverse Mills 

Ratio to correct for selection bias by treating selection bias as omitted-variable bias. Omitted 

variable bias occurs when a model fails to include one or more relevant explanatory variables. 

By adding the Inverse Mills Ratio (which represents a decreasing function of the probability that 

an institution is selected into the sample for Stage Two) as an explanatory variable, we seek to 

correct for censoring (Heckman, 1979). The results of Stage Two are informative for the self-

selecting sample through this treatment.   

3.A. Variable Section 

3.A.I Stage One: Probability of Declaring Carbon Neutral Goals  

The probability of a higher education institution declaring a carbon neutrality goal is 

represented by the probability that an institution joins the Climate Commitment. Given that there 

are a variety of factors that influence the likelihood that an institution declares a carbon 

neutrality goal, the probit is modeled as follows:  

𝑃𝑟𝑜𝑏 (𝐶 = 1|𝑍) = Φ(𝑍𝛾) 

 Where 𝐶 indicates the institution’s relationship to the Climate Commitment, 𝑍 represents 

a vector of explanatory variables, 𝛾 is a vector of unknown parameters, and Φ is the cumulative 

distribution function of a standard normal distribution. This probability is calculated into a value 

of 1 or 0: 1 represents an institution that has joined the Climate Commitment (and declared a 

carbon neutrality goal) and 0 represents an institution that has not joined the Climate 

Commitment (and does not have a declared carbon neutrality goal). The vector of explanatory 

variables can be expanded to: 

𝑍 = 𝑔 (𝑒𝑛, 𝑠𝑝, 𝑒𝑝, 𝑙, 𝑓𝑒, 𝑐𝑒, 𝑠𝑐𝑎, 𝑠𝑐𝑏) 
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This vector of explanatory variables suggests that the decision for a higher education 

institution to join the Climate Commitment and subsequently declare a carbon neutrality goal is 

dependent on multiple factors including the institution’s endowment (𝑒𝑛), student pressure (𝑠𝑝), 

enrollment pressure (𝑒𝑝), leadership (𝑙), feasibility (𝑓𝑒), cost of energy (𝑐𝑒) and two variables 

for social capital (𝑠𝑐𝑎 and 𝑠𝑐𝑏). Incorporating these explanatory variables into the probit, the 

expanded function is:  

𝑃𝑟𝑜𝑏 (𝐶 = 1|𝑔 (𝑒𝑛, 𝑠𝑝, 𝑒𝑝, 𝑙, 𝑓𝑒, 𝑐𝑒, 𝑠𝑐𝑎, 𝑠𝑐𝑏)) = Φ[𝑔 (𝑒𝑛, 𝑠𝑝, 𝑒𝑝, 𝑙, 𝑓𝑒, 𝑐𝑒, 𝑠𝑐𝑎, 𝑠𝑐𝑏)𝛾] 

 So that the probability an institution joins the Climate Commitment is based on the 

explanatory variables in vector 𝑍, unknown parameters (𝛾) and the cumulative distribution 

function (Φ). The cumulative distribution function is later used to calculate the Inverse Mills 

Ratio.  

3.A.II Stage Two: Energy Usage on Higher Education Campuses in Climate Commitment  

 Stage Two of the model calculates energy usage on higher education campuses that 

joined the Climate Commitment group – institutions that when modeled in Stage One, result in 1.  

Drawing from the precedent set by Heckman (1979), the model that represents energy usage per 

capita may be specified as: 

𝑒∗ = 𝐻𝛽 + 𝑢 

 Where 𝑒∗is the energy usage that is not observed if institutions do not join the Climate 

Commitment group, 𝐻 is a vector of explanatory variables and 𝑢 represents the unobserved 

determinants of energy usage. Drawing from Wadud, Royston and Selby (2019) the vector of 

explanatory variables for Stage Two can be expanded to:  

𝐻 = [ℎ (𝑒𝑏𝑤, 𝑓𝑤, 𝑎𝑤, 𝑟𝑐𝑤, 𝑟𝑜𝑤, 𝑡, 𝑡2, 𝑓ℎ𝑑𝑑𝑤, 𝑓𝑐𝑑𝑑𝑤)] 
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Vector 𝐻 is a function where 𝑒𝑏𝑤 is the energy efficiency of buildings on campus per 

capita, 𝑓𝑤 is the total area of building space in square feet per capita, 𝑎𝑤 is the area of campus 

in acres per capita, 𝑟𝑐𝑤 is renewable energy generated on campus per capita, 𝑟𝑜𝑤 represents 

renewable energy generated off-campus but utilized on campus per capita, 𝑡 is time in years 

since joining the Climate Commitment, 𝑡2 is a quadratic function of the time in years since an 

institution has joined the Climate Commitment, fℎ𝑑𝑑𝑤 is an interaction variable between the 

area of building space and the number of heating degree days for the school per capita, and 

𝑓𝑐𝑑𝑑𝑤 is an interaction variable between the area of building space and the number of cooling 

degree days for the school per capita. This paper evaluates energy usage per capita to ensure that 

increases in energy consumption cannot be attributed to factors such as a growing student body 

or institutional expansion.  

The expectation of energy usage is conditional to the institution’s status with the Climate 

Commitment, which is shown as the following: 

𝐸[𝑒|𝐻, 𝐶 = 1] =  𝐻𝛽 + 𝐸[𝑢|𝐻, 𝐶 = 1] 

Since the energy usage is conditional upon an institution’s relationship with the Carbon 

Commitment, the unobserved determinants of energy usage (𝑢) is conditional upon an 

institution’s Climate Commitment Status as well. Assuming that the error terms are jointly 

normal: 

𝐸 [𝑒|𝐻, 𝐶 = 1] = 𝐻𝛽 + 𝜌𝜎𝑢𝜆(𝑍𝛾) 

 Where 𝜌 represents the correlation between the unobserved determinants of the 

propensity to use energy (𝜀) and the unobserved determinants of energy usage (𝑢), 𝜎𝑢 is the 

standard deviation of 𝑢, and 𝜆 is the Inverse Mills Ratio calculated at 𝑍𝛾.  

The Inverse Mills Ratio is calculated as follows: 
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λ𝑖, =  𝜙(𝐶)/Φ(𝐶) 

The Inverse Mills Ratio, generated from Stage One, is the ratio of the probability density 

function (𝜙) to the cumulative distribution function (Φ). The Inverse Mills Ratio is incorporated 

as an explanatory variable in Stage Two to correct the coefficients of other explanatory variables. 

Fully expanded, the equation for calculating energy usage on campus is: 

𝐸 [𝑒|𝐻, 𝐶 = 1] = ℎ (𝑒𝑏𝑤, 𝑓𝑤, 𝑎𝑤, 𝑟𝑐𝑤, 𝑟𝑜𝑤, 𝑡, 𝑡2, 𝑓ℎ𝑑𝑑𝑤, 𝑓𝑐𝑑𝑑𝑤) +  𝜌𝜎𝑢𝜆(𝑍𝛾) 

 So that energy consumption on campuses that have joined the Climate Commitment are a 

function of the explanatory vector 𝐻, the correlation between the unobserved determinants of the 

propensity to use energy and the unobserved determinants of energy (𝜌), the standard deviation 

of the unobserved determinants of energy (𝜎𝑢), and the Inverse Mills Ratio (𝜆).  
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DATA & METHODOLOGY 

 This section discusses the data and methodology used in this econometric analysis. The 

data used in this analysis were compiled from the following sources: AASHE, Second Nature, 

Princeton Review Green College Rankings, Princeton Review Green College List, Princeton 

Review Complete Book of Colleges, and Weather Data Depot. Some additional data were 

collected from individual institution websites as well. This dataset contains observations for 119 

higher education institutions in the United States. Several variables and proxy variables were 

constructed and refined for the purpose of this analysis. This section will outline how the dataset 

was compiled, manipulated, tested and analyzed given several assumptions.  

4.A Institutions  

 This data set contains non-panel data. The schools included in this dataset are all 

members of and report to AASHE. The data was refined by deleting duplicates, schools located 

outside of the United States, and schools with incomplete data. Some institutions reported twice 

for the same performance year with different values. In this case, a third “institution” was 

created, and averaged data from the two unique responses. The first two entries were then 

removed from the dataset so as to not over-represent specific institutions. This dataset contains 

information for schools of all institution types ranging from Associates to Doctoral and Research 

programs. 73% of these schools are members of the Climate Commitment and have carbon 

neutrality goals. Table 4.1 breaks down the distribution of institution types, and their Climate 

Commitment status. As shown in Table 4.1, 46% of Climate Commitment institutions have 

Doctoral and Research programs. With the exception of Baccalaureate institutions, there is a 

fairly even distribution among institution types in terms of Climate Commitment status.  

  



 19 

Table 4.1 

Institution Type and Climate Commitment 

Carbon Neutrality  Associate Baccalaureate Doctoral Master Grand Total 

0 (No Climate 

Commitment) 
3 19 38 14 74 

1 (Climate 

Commitment) 
5 33 53 24 115 

Grand Total 8 52 91 38 189 

 

This dataset contains explanatory variables and data for the performance year. However, 

data for explanatory variables for the baseline year were not available. The baseline year 

represents the year that each institution began reporting to AASHE. Each institution began 

reporting at different points in time, so that the difference in years between performance year and 

baseline year are unique for each school.  

4.B Stage One Variables  

 The first stage of the Heckman model calculates the decision a higher education 

institution makes to join the Climate Commitment. As there is limited econometric modelling for 

this specific type of decision, the following explanatory variables were determined by the author, 

with the guidance of Professor Daniel Johnson.  

The explanatory variables employed in Stage One are: an institution’s endowment, the 

cost of energy, student pressure, enrollment pressure, leadership, feasibility, and social capital. 

Variables such as enrollment pressure, student pressure, leadership, feasibility and social capital 

do not have intuitive values. Proxies were constructed for these variables and are explained 

further in the section.  

The dataset does not have information for the cost of energy. This variable is included in 

the model as it may motivate schools to invest in technologies such as energy efficiency, 
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renewable energy and perhaps the Climate Commitment. However, data for this variable were 

not available, and could not be included in neither the dataset, nor the regression.  

An institution’s endowment represents a pool of money and financial assets that are 

invested and grow in principal to provide additional income for future investing or expenditures 

(Phung, 2017). The endowment (en) was included in this model as a means of expressing the 

school’s monetary resources which could be available for investing in sustainability. Table 4.2 

shows that the average endowment for an institution in this dataset is approximately $1.3 billion 

USD. Table 1 in Appendix A breaks down the endowment variable by Climate and Non-Climate 

institutions, and shows that the median endowment for a Non-Climate institution is larger than 

the median Climate endowment. 188 out of the 189 institutions in the dataset reported their 

endowment value. We then found and employed per capita endowment (ecw) to represent the 

wealth and potential financial assets for institutions to invest per person.  

 The enrollment pressure variable (ep) is included in this model as it represents the stress 

an institution may feel if it is unable to fill classrooms. ep is proxied by an institution’s 

enrollment rate, which is the percentage of admitted students that enroll at the institution 

collected from the Princeton Review’s Complete Guide to Colleges. The average and median 

enrollment rates are higher at Non-Climate institutions (Table 1, Appendix A).  

 The student pressure variable, sp, represents the influence of student advocacy on 

administrative decisions. sp is proxied by a dummy variable for active environmental action 

student groups: 1 represents an institution with an active group on campus, and 0 represents an 

institution without an active group. This data was compiled from the AASHE database, as well 

as individual institution websites. sp is included in the model, as environmental student groups 

may persuade the administration to join the Climate Commitment. As demonstrated in Table 4.3, 
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over 90% of institutions in the dataset have active sustainability student groups. As shown in 

Descriptive Statistics 3 of Appendix A, this is split evenly between Climate and Not Climate 

Institutions. 

 The leadership variable, l, represents the effect leadership has on the decision to join the 

Climate Commitment. l is proxied by a dummy variable, which represents if an institution has at 

least one sustainability office that includes more than one full-time employee. An institution is 

assigned the value of 1 if they meet this criteria, and assigned 0 if they do not. l is intended to 

represent if the institution has the leadership capabilities that are required to join the Climate 

Commitment and hopefully implement the carbon neutrality goal. Table 4.3 demonstrates that 

87% of institutions in the dataset have sustainability offices.  

 The feasibility variable (fe), like leadership, is included in the model to represent if an 

institution has the capabilities to join the Climate Commitment and make a carbon neutrality 

goal. fe is proxied by a dummy variable, which indicates if an institution owns renewable energy 

generators on or off campus. This is an appropriate proxy, as an institution that has already 

invested in renewable energy may be more likely to join the Climate Commitment than an 

institution that has not. Over 80% of institutions in this dataset have already invested in 

renewable energy.   

 Social capital represents what an institution would receive (services, publicity, etc.) from 

joining the Climate Commitment. In this model, social capital is proxied by two variables: sca 

and scb. These are appropriate proxy variables as they represent the recognition that schools 

receive when they join sustainability initiatives such as the Climate Commitment.  

 Social capital variable A, (sca) is proxied by the Princeton Review’s Top 50 Green 

College Ranking. The rankings are informed by institutional data and survey questions that cover 
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factors such as the health and sustainability of campus life, the preparation of employment for 

students in a green economy, and the environmental responsibility of school policies (“Top 50 

Green Colleges Methodology). The proxy variable was constructed by reverse ordering the 

college rankings and adding one to that value. One was added to differentiate between the last 

school on the list, and schools in the dataset that did not appear on that list. For example, the 

school that was ranked first of the Green College Rankings, was assigned a value of 51, while 

the school that was ranked 50th on the list was assigned a value of 1. Schools in the dataset that 

did not appear on the list were assigned values of 0. Most of these ranked schools are Climate 

Commitment institutions. Some of the higher ranked schools are not Climate Commitment 

Institutions (Table 1, Appendix A).  

 Social capital variable B, (scb) is proxied by a dummy variable for the Princeton 

Review’s List of Green Colleges. The list features 322 out of 2,000 schools evaluated. The 

schools were determined using the methodology above as well, and are listed in alphabetical 

order but not ranked. If institutions in the dataset are on the List of Green Colleges, they are 

assigned a value of 1, if they are not they are assigned a value of 0. Approximately 83% of 

institutions in this dataset appear on the list. 
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Table 4.2 

Stage One Continuous and Discrete Variables 

 

Variable Description Mean Median Std. Dev. Min Max 

en 
Dollar amount of 

endowment 
1.32e+9 2.68e+8 3.55e+9 9,899 2.64e+10 

ep Admission enrollment rate 0.3306 0.29 0.1843 0.11 0.95 

sca 
Reverse order Green 

College Ranking  
4.28 0 11.371 0 51 

 

Table 4.3 

Stage One Dummy Variables, Vector Z 

 

Variable Description Mean Std. Dev. 
Frequency (%) 

1 0 

sp 
Value = 1 if active group,  

0 if otherwise 
0.926 0.263 92.60 7.40 

l 
Value = 1 if sustainability staff,  

0 if otherwise 
0.862 0.345 86.20 13.80 

fe 
Value = 1 if own renewable energy, 

0 if otherwise 
0.809 0.394 80.90 19.10 

scb 
Value = 1 if on Green College List,  

0 if otherwise 
0.831 0.831 83.10 16.90 

 

4.C Stage Two Variables  

The second stage of the Heckman model calculates energy consumption for Climate 

Commitment institutions in the performance year. This stage of the model is informed by 

behavioral theory of individual energy consumption and neoclassical models of higher education 

energy usage.  

The model shows that energy consumption in the performance year for institutions with 

carbon neutrality goals includes vector H, a function of explanatory variables. Institutions 

reported data on energy consumption excluding transportation in the performance year, area of 

buildings in square feet, area of campus in acres, renewable energy generated on campus owned 

by the institution, and renewable energy generated off campus, utilized on campus and owned by 

the institution. These variables were then divided by the reported number of students, faculty and 
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staff (n), creating the explanatory variables used in the model which are measured per capita of 

each institution. Two interaction variables were created for the purpose of this model: fhddw and 

fcddw.  

Degree days (dd) are a measurement that quantifies the energy needed to heat or cool a 

building. Degree days are a measure of the outside temperature on a given day or period of days. 

This is then compared to a standard temperature, typically 65 F – the more extreme the outside 

temperature, the higher number of heating or cooling degree days (“Energy Units and 

Calculators Explained – Degree Days”, 2018). 

 The variable fhddw is an interaction variable between the area of buildings on campus 

and the number of heating degree days. Data for heating degree days was collected by entering 

an institution’s zip-code into the Weather Data Depot website. We decided to interact the 

number of heating degree days with the area of building space, as a high number of heating 

degree days results in higher energy usage for space heating. We then divided this expression by 

n, to express this interaction variable per capita.  

 The variable fcddw is an interaction variable between the area of buildings on campus 

and the number of cooling degree days. Data for cooling degree days was collected from 

Weather Data Depot as well. We decided to interact the number of cooling degree days with the 

area of building space, as a high number of cooling degree days results in higher energy usage 

for space cooling. We divided this expression by n to express the interaction as per capita.  

 The Boomerang Effect is incorporated into the model by adding a quadratic variable for 

time. The variable t represents the time in years since an institution has joined the Climate 

Commitment. Institutions that have not joined the Climate Commitment were assigned the value 

0 for this variable, as they have spent 0 years in the group. The Boomerang Effect suggests that 
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Climate Commitment institutions will decrease their usage initially, then gradually increase their 

energy consumption over the years.  

Table 4.4 

Stage Two Variables 

 

Variable Description Mean Std. Dev. Min Max 

ecbw 
Energy consumption per capita 

baseline year (MMBtu/person) 
42.31 28.67 0.631 151.05 

ecpw 

Energy consumption per capita 

performance year 

(MMBtu/person) 

40.082 26.070 2.483 140.49 

fw 
Area of buildings per capita 

(sq. ft/person) 
371.38 376.59 176.33 1,352.77 

ebw 

Area of LEED certified 

buildings per capita  

(sq. ft./person) 

18.09 32.14 0 378.02 

aw 
Area of campus per capita 

(acres/person) 
0.206 0.828 0.0004 9.564 

rcw 
Renewable energy on campus 

per capita (MMBtu/person) 
0.407 1.82 0 22.79 

row 
Renewable energy off campus 

per capita (MMBtu/person) 
0.272 1.282 0 11.09 

fhddw 
Area of buildings * heating 

degree days (sq ft *dd/person) 
2.01e+10 2.53e+10 1.60e+8 1.99e+11 

fcddw 
Area of buildings * cooling 

degree days (sq ft * dd/person) 
2.57e+10 2.29e+10 3.19e+7 1.48e+11 

t 
Time since joining the Climate 

Commitment (years) 
4.989 4.943 0 12 

𝑡2 Time (years) squared 49.201 55.484 0 144 

 

4.D: Correlation Testing  

 All variables used in this analysis were tested and evaluated using a Pearson pairwise 

correlation matrix (see Appendix B). Most of the variables show correlation coefficients less 

than 0.1 at the 99% confidence level. None of the correlation values are equivalent to 0.7 or 0.8, 

which is when models begin to exhibit multicollinearity problems. None of the values for Stage 

One of the model show signs of multicollinearity (shown in Matrix 1, Appendix B). Some of the 
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values for variables in Stage Two of the model approach multicollinearity, and for which we will 

explain.  

 The variables fw and fhddw are highly correlated with the dependent variable ecpw, with 

values of 0.629 and 0.502 respectively. This correlation is explanatory in nature, in that fw and 

fhddw are highly significant in explaining ecpw. The variables fw and fhddw are correlated in 

themselves, with a value of 0.7597. This is because fhddw is an interaction variable calculated by 

multiplying f and hdd and dividing the result by n. Matrix 2 also shows that t and 𝑡2are 

correlated with a value of 0.9848. This is unsurprising, as they are the same variable represented 

in a linear and quadratic form.  
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ECONOMETRIC RESULTS AND ANALYSIS 

 In this section, we examine the results of our econometric exploration of energy 

consumption behavior in higher education institutions with carbon neutrality goals. We first 

address the limitations of this paper, and subsequent alterations to the model that were needed in 

order to run our final analysis. We then look at each stage of the Heckman model individually. 

5.A: Limitations and Model Alterations 

 There are two known forms of selection bias present in the data. The group of institutions 

joining the Climate Commitment are self-selecting within the dataset, which we are able to 

correct for using Heckman 2-Step Selection. As a whole, the dataset is biased. We can assume 

that institutions reporting their information to AASHE, the primary source of data for this 

analysis, are more focused on sustainability than institutions who are not. This can be seen as 

over 80% of institutions in the dataset appear on the Green Colleges Lis, whereas only 16% of 

institutions evaluated were chosen. Therefore, we cannot directly apply this model to the higher 

education sector as a whole.  

 The first model run through Stata was the theoretically-based model developed in Section 

3. However, as shown in Model 1 of Appendix C, Stata was unable to generate and implement 

lambda, (𝜆, the Inverse Mills Ratio) as well as inferential statistics of the coefficient values 

within the probit model. We hypothesize that this is because the variables and data collected for 

the probit are mostly statistically insignificant. We acknowledge that this model may be suffering 

from omitted variable bias. However, in response to the difficulties with the Heckman command, 

we conducted the model in three steps: a probit model, generating the Inverse Mills Ratio, and a 

regression.  
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5.B: Stage One Probit:  

 The explanatory variables in the theoretical model were not statistically significant. Due 

to this, t-tests were run on all variables in the dataset with respect to C, the carbon neutrality 

dummy variable, to determine what within the dataset was statistically significant for the Stage 

One Probit. For the sake of transparency, the results of these t-tests can be found in Appendix D.  

The t-test is used to determine if there is a significant difference between the means of 

two groups. In this case, the t-test was used to test the difference in means of potential 

explanatory variables for the Stage One Probit. A significant difference is considered a t-value of 

approximately 1.8 or higher. The difference between the two groups suggests that the variable 

might help to explain why an institution would join the Climate Commitment group. For the t-

tests run, variables with a t-value that approached 1.8 or higher were included in the probit 

model. The t-tests tested all variables in the dataset. Some variables represent the same factor, 

but are measured differently, such as f and fw, which are the total measurement and the 

measurement per capita respectively. In these instances, we chose the variable that had the 

highest t-value of the two.  

 After the t-tests were conducted, we determined that variables f, ep, ecbw, en, l and fhdd 

were to be initially included in the Probit. From there, we narrowed the model by what was 

statistically significant and concluded that ep, ecbw and l were explanatory variables. This 

process is shown in Appendix D. Variables such as t and 𝑡2have high t-values in relation to C, 

however were not included. We chose not to include these variables as they represent time since 

joining the Climate Commitment. While there is a large difference between the means of these 

two groups when C =1 and C =0, this is an effect rather than a cause of joining the Climate 

Commitment.  
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As a pre-cautionary measure, an additional Pearson pairwise correlation matrix was 

created with these variables, which showed no signs of multicollinearity. This matrix can be 

found in Matrix 3, Appendix C. The following equation is derived from Table 5.1:  

𝑃𝑟𝑜𝑏(𝐶 = 1) =  −1.014(𝑒𝑝) − 0.00897(𝑒𝑐𝑏𝑤) +  0.5196(𝑙) + 0.55217 

This suggests that the probability that an institution joins the Climate Commitment (C=1) 

is negatively influenced by enrollment pressure and energy consumption per capita in the 

baseline year, and positively influenced by leadership. 

Table 5.1 

Probit Model Results 

Variable Coefficient z P > |z| 

ep -1.014 -1.99 0.046 

ecbw -0.009 -2.63 0.0009 

l 0.519 1.91 0.056 

__cons 0.552 1.69 0.092 

 

The probit suggests that an institution with a higher enrollment rate is less likely to join 

the Climate Commitment. Institutions with high enrollment rates may be seen as more desirable 

to incoming students. Schools with lower enrollment rates may join the Climate Commitment as 

a way of marketing to future students, and incentivizing them to apply and enroll in the 

institution.  

 The probit model shows that energy consumption per capita in the baseline year has a 

negative relationship with the probability that an institution joins the Climate Commitment. 

Higher education institutions with high values for energy consumption in the baseline year are 

less likely to join the Climate Commitment than institutions with low baseline energy 

consumption. Overall though, this has a small impact on the probability that an institutions joins.  

 The equation determines that leadership has a positive relationship with the probability of 

joining the Climate Commitment. The variable for leadership, l, represents if an institution has a 
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sustainability office. According to the model, institutions with sustainability staff are more likely 

to join the Climate Commitment.  

5.C Calculating Inverse Mills Ratio: 

 As can be seen in Model 1 of Appendix C, the Heckman command using Stata did not 

generate a lambda, (𝜆, Inverse Mills Ratio). We then used the above probit model to calculate the 

Inverse Mills Ratio. The following described process can be seen in Appendix C.  

After running the probit model in Stata, we obtained the linear predictors from the model 

with the command: 

“predict phat, xb” 

We then generated the variable mills (the Inverse Mills Ratio), using the command: 

“gen mills = exp(-.5*phat*phat)/(sqrt(2*_pi)*normprob(phat))”2 

This command generated a variable for the Inverse Mills Ratio, which was then 

implemented in our Stage Two Regression as an explanatory variable. 

5.D Stage Two Regression:  

 The theoretical model discussed in Section 3 for Stage Two produced a regression that 

accounted for only 61.37% of the variation in the dataset. This model implements the dependent 

variable, ecpaw, which represents energy consumption per capita in the performance year for 

Climate Commitment institutions. Through various attempts, and trial and error, we determined 

the model that best predicts ecpaw. Similar to the Stage One probit, an additional Pearson 

pairwise correlation matrix was made for the new explanatory variables in this regression. This 

matrix did not show evidence for any multicollinearity problems, and can be found in Matrix 4, 

                                                      
2 https://www.stata.com/support/faqs/statistics/mills-ratio/ 
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Appendix C. The model below explains over 72% of the variation in the data set, and is 

represented in Table 5.2.  

Table 5.2 

Regression Model Results 

Variable Coefficient t P > |t| 

fw 0.0667 4.54 0.000 

t -2.51 -1.01 0.315 

𝑡2 0.1978 1.07 0.285 

fhddw 7.57e-7 0.42 0.677 

fcddw 6.32e-6 0.43 0.670 

enw -1.74e-5 -1.14 0.259 

l 30.458 6.31 0.000 

aw -2.107 -1.52 0.131 

ebw 0.0978 1.46 0.148 

mills 84.41 9.19 0.000 

_cons -62.16 -5.84 0.000 

 

This model then gives way to the following equation:  

𝑒𝑐𝑝𝑎𝑤 = 0.0667(𝑓𝑤) + 0.198(𝑡2) − 2.5(𝑡) + 0.00000076(𝑓ℎ𝑑𝑑𝑤) +

 0.00000063(𝑓𝑐𝑑𝑑𝑤) −  0.0000174 (𝑒𝑛𝑤) + 30.36 (𝑙) −  2.11 (𝑎𝑤) +  0.978 (𝑒𝑏𝑤) +

 84.41 (𝑚𝑖𝑙𝑙𝑠) −  62.16  

 This regression shows that for every additional foot of building per capita, energy 

consumption per capita in the performance year increases by approximately 0.0667 

MMBtus/capita. As discussed in Section 1, purchased electricity is the biggest use of energy on 

campus, and the larger area of buildings leads to more lighting, heating and cooling throughout 

the year. Since energy consumption is measured in MMBtu/person, it is sound that the impact 

that an additional square foot of building/person, would have such a small, yet positive and 

statistically significant impact on energy consumption.  

 The interaction variables fhddw and fcddw have a very small and positive impact on 

energy consumption per capita in the performance year. Comparing these to variable fw above, 
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the extra energy needed to heat and cool a building in extreme weather contributes significantly 

less to energy consumption per capita, than another square foot of building space per person.   

 The model shows energy consumption per capita initially decreases after joining the 

Climate Commitment. So, after a certain period of time, the longer an institution has been in the 

Climate Commitment, the more energy they will use. Figure 5.1 shows how time impacts the 

predicted energy consumption for a Climate Commitment institution. All other factors held 

constant, the energy consumption per capita decreases between years 1-6, and begins to increase 

afterwards. The longest period of time that an institution could possibly be a signatory of the 

Climate Commitment was 12 years, which is why this graph stops at that point.    

Figure 5.1: 

Predicted Energy Consumption per Capita over Time  

 

 

 According to Table 5.2 and the subsequent model, enw has a small and negative impact 

on ecpaw. The variable enw represents the total amount of the endowment in USD divided by n. 

The model shows that institutions with larger endowments per capita, use less energy per capita. 

For every dollar per capita increase in enw, energy consumption decreases by 0.0000174 
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MMBtu/capita. This may be because institutions with larger endowments have more financial 

resources to invest in sustainability and technologies such as energy efficiency and renewable 

energy.   

 The model shows that leadership has a significant impact on energy consumption as well 

as Climate Commitment status. Remember, in the probit model a sustainability office increased 

the probability that an institution declared a carbon neutrality goal. However in this model, the 

presence of a sustainability office is shown to increase the energy consumption per capita in the 

performance year by 30.45 MMBtu/capita. This may be the amount of energy that the office 

physically consumes during the year. It may also be an effect that a sustainability staff has on 

student, staff and faculty usage. 

 The variable for campus area, aw, is shown to have a negative impact on energy 

consumption per capita. For every 1 acre per capita, the energy consumption decreases by 2.107 

MMBtu/capita. This may be for institutions that have less building area but larger campus area, 

such as institutions in rural areas.  

 According to Table 5.2 and the subsequent model, ebw has a small and positive impact 

on ecpaw. For an increased area of 1 square foot of LEED certified building per capita, energy 

consumption increases by approximately 0.0978 MMBtu/capita. Energy efficient buildings, such 

as LEED certified buildings, require less energy to produce the same amount of lighting, heating, 

cooling etc. Although LEED certified buildings are more energy efficient than others, they still 

demand energy for these activities, which is why we see this increase in energy consumption.  

Inverse Mills Ratio (mills): 

 This model suggests that the variable for the Inverse Mills Ratio, mills, has a very large 

and significant impact on energy consumption per capita in the performance year. The variable 
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mills was calculated earlier in the section, and was added as an explanatory variable for Stage 

Two to correct for selection bias. The variable mills does not actually have an impact on energy 

consumption, but adjusts the coefficients of other explanatory variables. 

5.E: Effect of Carbon Neutrality Goals on Energy Consumption 

 We used the above model to determine if and how a carbon neutrality goal changes 

energy consumption at higher education institutions. We used the regression to determine the 

variable pecpaw, which represents the predicted energy consumption in the performance year for 

Climate Commitment institutions, essentially 𝑒𝑐𝑝𝑎�̂�. We then generated the variable DIFF, 

which is calculated as the difference between ecbaw and pecpaw.  

𝐷𝐼𝐹𝐹 = 𝑝𝑒𝑐𝑝𝑎𝑤 − 𝑒𝑐𝑏𝑎𝑤 

This process of generating DIFF is documented in Appendix F. DIFF is the difference 

between energy consumption per capita in the baseline year, and predicted energy consumption 

per capita in the performance year for Climate Commitment institutions. We include the exact 

equation used in calculating DIFF, to show that negative values of DIFF represent a decrease in 

energy consumption, and positive values represent an increase in energy.  Table 5.3 demonstrates 

that Climate Commitment institutions, on average, decreased their energy consumption by 1.57 

MMBtu/capita. However, as we can see in Figure 5.2, there is range of values for DIFF. Table 

5.3 shows that DIFF ranges from an institution that decreased their energy consumption by over 

40 MMBtu/capita to an institution that increased their energy consumption by 28.8541 

MMBtu/capita. This indicates that while many institutions were predicted to decrease their 

energy consumption per capita between the baseline and performance year, some institutions 

were also predicted to increase their energy consumption.  
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Table 5.3 

Energy Consumption Baseline, Predicted Performance and Difference 

Variable Obs Mean Std. Dev. Min Max 

pecpaw 115 36.736 19.345 0.993 83.5 

ecbaw 115 38.303 25.112 5.038 109.322 

DIFF 115 -1.566 12.587 -40.985 28.854 

 

Figure 5.2  shows the distribution of schools based on their DIFF value. Institutions 

represented on the left side of the histogram decreased their energy consumption, and institutions  

on the right side of the figure increased their energy consumption. Of the 115 schools with 

carbon neutrality goals, 56% of the institutions were predicted to decrease their energy 

consumption while 44% were predicted to increase their energy consumption. We then examined 

these schools further.  

Two variables were created in this process: DIFFN  and DIFFP.  DIFFN represents the 

institutions with negative DIFF values, meaning that they decreased their energy consumption 

per capita from the baseline to the performance year. DIFFP represents institutions with positive 

DIFF values, so that they were predicted to increase their energy consumption per capita.   
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Figure 5.2 

DIFF Histogram 

 
 

Table 5.4 shows that among the 65 DIFFN institutions, the average school were modeled 

to decrease their energy consumption by 9.39 MMBtu/person.  While there is a wide range 

among these schools as well, a majority of the schools were predicted to reduce between 1-10 

MMBtu/capita. This can be seen in Figure 5.3, which shows the distribution of DIFFN schools 

by the predicted difference of energy consumption per capita between their baseline and 

performance years. Table 5.5 summarizes some characteristics of the DIFFN schools. Of the 65 

institutions, 0 were Associates, 17 were Baccalaureate, 13 were Masters and 34 had Doctoral and 

Research programs. The average size of these institutions was a total of 20,610 people including 

students, faculty and staff, and the average endowment per capita is $66,900/person.  
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Table 5.4 

DIFFN Institutions 

Variable Obs Mean Std. Dev. Min Mx 

DIFFN 65 -9.398 9.149 -40.984 -0.195 

nN 65 20,610.71 19,462.15 737 112,377 

enwN 65 66,900.61 117,320.8 178.76 661,416.7 

AssocN 0 0 0 0 0 

BacN 17 1 0 1 1 

MasN 13 1 0 1 1 

DRN 34 1 0 1 1 

 

Figure 5.3 

DIFFN Histogram 

 

Table 5.5 shows that 49 institutions with carbon neutrality goals increased their energy 

consumption per capita from the baseline to the performance year. On average, these institutions 

increased their consumption by 8.85 MMBtu/person, however there is a wide range of energy 

increases from 0.53 to 28.9 MMBtu/person. This distribution is shown in Figure 5.4, which 

shows that most institutions increased their energy consumption from 1-10 MMBtu/person. 

However, compared to Figure 5.3, the institutions who increased their energy consumption are 
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more evenly distributed. Of these 49 institutions, 5 are Associates, 16 are Baccalaureate, 10 are 

Masters and 18 are Doctoral and Research programs. The average size of DIFFP schools include 

16,939 people, which is smaller than average of DIFFN schools. We also found that the average 

enw of DIFFP schools was larger than DIFFN schools, with a value of $67,659/person.  

Table 5.5 

DIFFP Institutions 

Variable Obs Mean Std. Dev. Min Mx 

DIFFP 49 8.849 8.4133 0.0528 28.854 

nP 49 16,939.79 19,498.16 442 92,721 

enwP 49 67,659.88 109,267.6 121.486 467,260 

AssocP 5 1 0 1 1 

BacP 16 1 0 1 1 

MasP 10 1 0 1 1 

DRP 18 1 0 1 1 

 

Figure 5.4 

DIFFP Histogram 
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Comparing all the institutions, we find that college campuses with carbon neutrality goals 

that were modeled to increase their energy consumption per capita between the baseline and 

performance years (DIFFP institutions) were more wide-spread among institution types, had 

smaller bodies of students, faculty and staff on campus, and larger endowments per capita than 

DIFFN campuses.  

Colorado College has demonstrated its commitment to sustainability through multiple 

declarations. In 2009, President Tiefentaler signed onto the Climate Commitment with the 

objective of reaching carbon neutrality by 2020. More recently in 2018, the school joined the We 

Are Still In pledge3. Colorado College is one the 115 institutions in this dataset with a declared 

carbon neutrality goal. Colorado College is a DIFFP institution, meaning that the model 

predicted that the school would increase their energy consumption per capita between the 

baseline and performance years. However, Table 5.6 shows that in reality, Colorado College 

decreased energy consumption per capita by 16.374 MMBtu/person.  

Figure 5.5 compares Colorado College to similar institutions with carbon neutrality goals. 

Compared to schools such as Haverford College and Dickinson College, Colorado College has 

one of the smaller predicted energy consumption per capita increases. However, some of the 

schools chosen are DIFFN.  Table 5.6 outlines where Colorado College fits within DIFFP 

schools, and shows that Colorado College has a significantly smaller population and larger 

endowment per person.   

  

                                                      
3 http://reporting.secondnature.org/institution/detail!655##655 
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Table 5.6  

DIFFP Avg. v. Colorado College 

Variable DIFFP Avg.  Colorado College 

ecbw 27.856 65.904 

ecpw 27.577 49.53 

pecpw 36.413 68.239 

DIFF 8.849 2.335 

nP 16,939.79 3,208 

enwP 67,659.88 224,465.40 

 

 

Figure 5.5  

Colorado College and Similar Institutions 
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CONCLUSION 

 In conclusion, this examination has successfully evaluated the impact of carbon neutrality 

goals on energy consumption behavior in higher education. Our results suggest that certain 

factors impact the decision for an institution to join the Climate Commitment. In addition, our 

results suggest that there is a general trend in that Climate Commitment schools decrease their 

energy usage per capita. However, we implore that the exact impacts of carbon neutrality goals 

on campus energy usage are different for each specific institution.  

6.B Discussion: 

 The results of our Stage One probit show that schools are more likely to join the Climate 

Commitment if they have a sustainability office. This office offers the leadership, feasibility and 

conceptual competence necessary to join and hopefully implement sustainability commitments 

made. Along the same lines, schools with initially high energy consumption per capita are less 

likely to join the Climate Commitment. This may be because these schools are less sustainably 

minded to begin with, indicated by the high baseline consumption rate. Schools with low 

enrollment rates are more likely to join, which conveys that schools may use the Climate 

Commitment as a marketing tool to incentivize potential students to apply and enroll. The 

Climate Commitment could expand their group, and subsequent environmental impact, by 

targeting schools that fit these criteria. Some of these schools identified in the dataset are Berea 

College, Elon University, Loyola Marymount University, and our neighbors at University of 

Colorado at Colorado Springs.  

There are other factors that influence the decision to join the Climate Commitment which 

were not included in the Stage One probit model. However, these could inform the Climate 

Commitment in their institutional targeting as well.  
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 Stage Two of this model found that institutional energy consumption per capita was 

dependent on a myriad of explanatory variables, such as area of buildings, the presence of a 

sustainability office and area of campus. The results that this model predicted were then used to 

find that on average, schools with carbon neutrality goals will decrease their energy consumption 

per capita between the baseline and performance year.  

However, there is a wide range of responses to carbon neutrality goals. This study 

suggests that the significant factor may not be the declaration of the goals in themselves, but how 

those goals are implemented. Higher education institutions should be held accountable for the 

goals they set and how the strategies to achieve those goals are implemented. If higher education 

institutions are attempting to achieve carbon neutrality without addressing their energy 

consumption behavior, they could be wasting valuable resources, time, and ultimately, they will 

not achieve the goal they wish to.  

All of the Associates programs with carbon neutrality goals were predicted to increase 

their energy consumption. Schools that were predicted to increase their energy usage are smaller, 

and have larger endowments per capita. Some of these schools identified in the dataset are 

College of Lake County, Haverford College and Southern Oregon University. It is important to 

target and track schools with these characteristics to ensure that they successfully implement 

their carbon neutrality goals, without the unintended consequence of increasing their per capita 

energy consumption.  

6.C Implications and Future Studies: 

 Professor Jim Parco of Colorado College often says, “all models are bad, but some 

models are useful.” This model cannot and should not be implemented to the higher education 

sector as a whole. The two known forms of selection bias in the dataset prevents this model from 
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being useful to all of higher education in the United States. However, this model could be 

implemented for sustainability-focused higher education institutions, or to evaluate other 

sustainability declarations that involve energy consumption.  

This model could be improved with a dataset that included explanatory variables for the 

baseline year, a wider range of institutions, and more statistically significant independent 

variables for the Stage One probit. Future studies should look to compare how energy usage 

changes on campuses with carbon neutrality goals compared to campuses that do not have 

carbon neutrality goals.  

While this model may not be good (or useful), it could inspire other models that aim to 

critically and creatively evaluate sustainability and address the root of climate change – 

consumption.  
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APPENDIX A 

Descriptive Statistics 1 

Stage One Probit: 

 
Descriptive Statistics 2 

Stage Two Regression:  
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Descriptive Statistics 3 

Descriptive Statistics: Climate v. Not Climate Institutions  
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Appendix B: Pairwise Correlation Matrices 

Matrix 1: 

Pairwise Correlation Matrix – Stage One:  

 
Matrix 2: 

Pairwise Correlation Matrix – Stage Two:  

  

. 

         scb     1.0000 

                       

                    scb

         scb     0.0714   0.1139   0.1417  -0.0613   0.2702   0.1044   0.1702 

         sca     0.0854   0.0767   0.1066  -0.0873   0.0883   0.0165   1.0000 

          fe    -0.0026   0.0990   0.0171  -0.0943   0.1975   1.0000 

           l     0.1202   0.1067  -0.0543  -0.0220   1.0000 

          ep    -0.1429   0.2782  -0.1023   1.0000 

          sp    -0.0199   0.0361   1.0000 

          en    -0.1667   1.0000 

           C     1.0000 

                                                                             

                      C       en       sp       ep        l       fe      sca

. pwcorr C en sp ep l fe sca scb

. 

       fcddw    -0.0473   0.0522   1.0000 

       fhddw    -0.0607   1.0000 

          t2     1.0000 

                                         

                     t2    fhddw    fcddw

       fcddw     0.2984   0.1943   0.3898   0.0492  -0.0139   0.2095  -0.0469 

       fhddw     0.5018   0.1848   0.7597   0.2576   0.0748  -0.0097  -0.0663 

          t2    -0.0407  -0.0280  -0.0203  -0.0741  -0.0412   0.0115   0.9848 

           t    -0.0705  -0.0239  -0.0358  -0.0698  -0.0276   0.0185   1.0000 

         row     0.0096   0.0788   0.0112  -0.0284  -0.0194   1.0000 

         rcw     0.0318   0.0400   0.0611   0.0669   1.0000 

          aw     0.0300   0.4101   0.2595   1.0000 

          fw     0.6293   0.3610   1.0000 

         ebw     0.1765   1.0000 

        ecpw     1.0000 

                                                                             

                   ecpw      ebw       fw       aw      rcw      row        t

. pwcorr ecpw ebw fw aw rcw row t t2 fhddw fcddw
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Matrix 3: 

Pairwise Correlation Matrix – Regression Stage One: 

  
Matrix 4:  

Pairwise Correlation Matrix – Regression Stage Two: 

 

 
  

. 

           l     0.1202  -0.0220   0.1109   1.0000 

        ecbw    -0.1747  -0.0140   1.0000 

          ep    -0.1429   1.0000 

           C     1.0000 

                                                  

                      C       ep     ecbw        l

. pwcorr C ep ecbw l

. 

       mills    -0.4371   0.0659   0.1152   1.0000 

         ebw    -0.0812   0.4101   1.0000 

          aw    -0.0661   1.0000 

           l     1.0000 

                                                  

                      l       aw      ebw    mills

       mills     0.6124   0.4131  -0.1903  -0.1618   0.2993   0.2314   0.5637 

         ebw     0.1111   0.3610  -0.0239  -0.0280   0.1848   0.1943  -0.0109 

          aw     0.0217   0.2595  -0.0698  -0.0741   0.2576   0.0492   0.0157 

           l     0.0469  -0.1358   0.1487   0.1519  -0.0873  -0.1120   0.0071 

         enw     0.5091   0.4695  -0.0550  -0.0320   0.2399   0.2587   1.0000 

       fcddw     0.1854   0.3898  -0.0469  -0.0473   0.0522   1.0000 

       fhddw     0.4932   0.7597  -0.0663  -0.0607   1.0000 

          t2     0.1547  -0.0203   0.9848   1.0000 

           t     0.1505  -0.0358   1.0000 

          fw     0.6619   1.0000 

       ecpaw     1.0000 

                                                                             

                  ecpaw       fw        t       t2    fhddw    fcddw      enw

. pwcorr ecpaw fw t t2 fhddw fcddw enw l aw ebw mills
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Appendix C 

Model 1: 

Theoretical Heckman Model:  

 
 
  

. 

                                                                              

       sigma    16.449316

         rho      0.00000

                                                                              

      lambda            0  (constrained)

/mills        

                                                                              

       _cons    -6.051655          .        .       .            .           .

         scb    -7.75e-17          .        .       .            .           .

         sca     1.32e-17          .        .       .            .           .

          fe    -5.37e-16          .        .       .            .           .

           l    -3.46e-15          .        .       .            .           .

          ep     4.74e-15          .        .       .            .           .

          sp     1.71e-15          .        .       .            .           .

          en     2.89e-26          .        .       .            .           .

           C     12.14906          .        .       .            .           .

select        

                                                                              

       _cons     2.734646   8.632179     0.32   0.751    -14.18411    19.65341

       fcddw     9.15e-07   2.03e-06     0.45   0.653    -3.07e-06    4.90e-06

       fhddw     3.18e-06   2.28e-06     1.40   0.163    -1.29e-06    7.65e-06

          t2     .2500287    .247667     1.01   0.313    -.2353896    .7354471

           t    -2.668236   3.347502    -0.80   0.425    -9.229219    3.892747

         row     -.415746   1.069166    -0.39   0.697    -2.511273    1.679781

         rcw     .5261668   .7026504     0.75   0.454    -.8510026    1.903336

          aw    -2.511097   1.818562    -1.38   0.167    -6.075414     1.05322

          fw     .0751363   .0160366     4.69   0.000     .0437051    .1065675

         ebw     .1856762   .0901143     2.06   0.039     .0090555     .362297

ecpaw         

                                                                              

       ecpaw        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                Prob > chi2       =     0.0000

                                                Wald chi2(9)      =     103.06

                                                      Nonselected =         74

(regression model with sample selection)              Selected    =        114

Heckman selection model -- two-step estimates   Number of obs     =        188

. heckman ecpaw ebw fw aw rcw row t t2 fhddw fcddw, select(C en sp ep l fe sca scb) twostep
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Appendix D: 

T-Test Results for All Variables in Relation to “C”:  

Variable t 

f 1.29 

ep 1.97 

ecbw 2.43 

enw 2.02 

fw 1.27 

fhdd 1.69 

fcdd 0.80 

en 2.30 

ecb 2.00 

a -0.79 

l -1.67 

sp 0.27 

t -19.01 

rc -0.86 

ro -0.79 

fe 0.04 

sca -1.17 

scb -0.98 

hdd -0.02 

cdd -0.19 

aw 0.11 

rcw -0.80 

row -0.81 

𝑡2 -13.91 

ebw 0.18 

fhddw 0.83 

fcddw 0.48 
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Appendix E 

Probit 1 (Theoretical):  

 
Probit 2 (Informed by ttests): 

 
  

. 

                                                                              

       _cons     .3016587   .5343609     0.56   0.572    -.7456694    1.348987

         scb     .2237172   .2669123     0.84   0.402    -.2994213    .7468557

         sca     .0091566   .0092049     0.99   0.320    -.0088846    .0271979

          fe    -.1289896   .2488393    -0.52   0.604    -.6167056    .3587264

           l     .5264473   .2905353     1.81   0.070    -.0429915    1.095886

          ep    -.9256565   .5611022    -1.65   0.099    -2.025397    .1740835

          sp    -.2298642   .3936629    -0.58   0.559    -1.001429     .541701

          en    -6.78e-11   3.56e-11    -1.90   0.057    -1.38e-10    2.05e-12

                                                                              

           C        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -118.51046                     Pseudo R2         =     0.0596

                                                Prob > chi2       =     0.0201

                                                LR chi2(6)        =      15.03

Probit regression                               Number of obs     =        188

Iteration 4:   log likelihood = -118.51046  

Iteration 3:   log likelihood = -118.51046  

Iteration 2:   log likelihood = -118.51058  

Iteration 1:   log likelihood = -118.56969  

Iteration 0:   log likelihood = -126.02365  

. probit C en sp ep l fe sca scb

. 

                                                                              

       _cons     .4387906    .347865     1.26   0.207    -.2430122    1.120593

        fhdd    -5.50e-12   6.13e-12    -0.90   0.370    -1.75e-11    6.52e-12

           l     .6423663   .2829319     2.27   0.023       .08783    1.196903

          en    -2.69e-11   4.18e-11    -0.64   0.519    -1.09e-10    5.50e-11

        ecbw    -.0063241   .0040564    -1.56   0.119    -.0142744    .0016263

          ep    -1.090303   .5558309    -1.96   0.050    -2.179711   -.0008941

           f     8.96e-09   2.68e-08     0.33   0.738    -4.35e-08    6.14e-08

                                                                              

           C        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -117.55664                     Pseudo R2         =     0.0672

                                                Prob > chi2       =     0.0020

                                                LR chi2(4)        =      16.93

Probit regression                               Number of obs     =        188

Iteration 4:   log likelihood = -117.55664  

Iteration 3:   log likelihood = -117.55664  

Iteration 2:   log likelihood = -117.55669  

Iteration 1:   log likelihood =  -117.6147  

Iteration 0:   log likelihood = -126.02365  

. probit C f ep ecbw en l fhdd
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Probit 3 (minus f): 

 
Probit 4 (minus en):  

 
  

                                                                              

       _cons     .4538147   .3450667     1.32   0.188    -.2225037    1.130133

        fhdd    -4.03e-12   4.25e-12    -0.95   0.343    -1.23e-11    4.29e-12

           l     .6524896   .2811397     2.32   0.020     .1014659    1.203513

          en    -2.24e-11   3.89e-11    -0.57   0.566    -9.87e-11    5.40e-11

        ecbw     -.006396   .0040525    -1.58   0.115    -.0143387    .0015468

          ep    -1.097457   .5554895    -1.98   0.048    -2.186196   -.0087172

                                                                              

           C        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -117.61293                     Pseudo R2         =     0.0667

                                                Prob > chi2       =     0.0008

                                                LR chi2(3)        =      16.82

Probit regression                               Number of obs     =        188

Iteration 4:   log likelihood = -117.61293  

Iteration 3:   log likelihood = -117.61293  

Iteration 2:   log likelihood = -117.61295  

Iteration 1:   log likelihood =  -117.6623  

Iteration 0:   log likelihood = -126.02365  

.  probit C ep ecbw en l fhdd

. 

                                                                              

       _cons     .5333317   .3276607     1.63   0.104    -.1088714    1.175535

        fhdd    -4.55e-12   4.12e-12    -1.10   0.270    -1.26e-11    3.53e-12

           l     .5703574   .2750514     2.07   0.038     .0312666    1.109448

        ecbw    -.0076313   .0036154    -2.11   0.035    -.0147173   -.0005453

          ep    -.9810039   .5090905    -1.93   0.054    -1.978803    .0167952

                                                                              

           C        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood =  -119.1401                     Pseudo R2         =     0.0583

                                                Prob > chi2       =     0.0020

                                                LR chi2(3)        =      14.76

Probit regression                               Number of obs     =        189

Iteration 3:   log likelihood =  -119.1401  

Iteration 2:   log likelihood =  -119.1401  

Iteration 1:   log likelihood = -119.16491  

Iteration 0:   log likelihood = -126.52217  

.  probit C ep ecbw l fhdd
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Probit 5 (Final):  

 
 

  

. 

                                                                              

       _cons     .5521797   .3274702     1.69   0.092    -.0896501     1.19401

           l      .519619    .271375     1.91   0.056    -.0122663    1.051504

        ecbw    -.0089694   .0034152    -2.63   0.009    -.0156631   -.0022758

          ep    -1.014279   .5088895    -1.99   0.046    -2.011684   -.0168738

                                                                              

           C        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -119.76919                     Pseudo R2         =     0.0534

                                                Prob > chi2       =     0.0037

                                                LR chi2(3)        =      13.51

Probit regression                               Number of obs     =        189

Iteration 3:   log likelihood = -119.76919  

Iteration 2:   log likelihood = -119.76919  

Iteration 1:   log likelihood = -119.79363  

Iteration 0:   log likelihood = -126.52217  

.  probit C ep ecbw l
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Appendix F 

Stage Two Regression: 

 
Generating and Summarizing DIFF: 

 
 

 

                                                                              

       _cons    -62.15789   10.64023    -5.84   0.000    -83.25787   -41.05792

       mills     84.40717    9.18353     9.19   0.000     66.19589    102.6185

         ebw     .0978494   .0670717     1.46   0.148    -.0351562     .230855

          aw     -2.10722   1.383617    -1.52   0.131    -4.850986    .6365452

           l     30.45766    4.82588     6.31   0.000     20.88776    40.02756

         enw    -.0000174   .0000153    -1.14   0.259    -.0000477     .000013

       fcddw     6.32e-07   1.48e-06     0.43   0.670    -2.30e-06    3.56e-06

       fhddw     7.57e-07   1.81e-06     0.42   0.677    -2.84e-06    4.35e-06

          t2     .1978362   .1840728     1.07   0.285     -.167187    .5628595

           t    -2.511123   2.487863    -1.01   0.315    -7.444648    2.422402

          fw     .0666107   .0146835     4.54   0.000     .0374927    .0957287

                                                                              

       ecpaw        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     59061.779       114  518.085781   Root MSE        =    12.557

                                                   Adj R-squared   =    0.6957

    Residual    16398.5391       104  157.678261   R-squared       =    0.7223

       Model    42663.2399        10  4266.32399   Prob > F        =    0.0000

                                                   F(10, 104)      =     27.06

      Source         SS           df       MS      Number of obs   =       115

. regress ecpaw fw t t2 fhddw fcddw enw l aw ebw mills

        DIFF          115    -1.56622    12.58667  -40.98452    28.8541

       ecbaw          115    38.30313    25.11151   5.037631   109.3218

      pecpaw          115    36.73691    19.34526    .992769   83.50008

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max

. summarize pecpaw ecbaw DIFF

        DIFF          115    -1.56622    12.58667  -40.98452    28.8541

                                                                       

    Variable          Obs        Mean    Std. Dev.       Min        Max

. summarize DIFF

(74 missing values generated)

. gen DIFF = pecpaw - ecbaw

. drop DIFF


