Protectionism and Imperialism 1872-1914

A THESIS

Presented to

The Faculty of the Department of Economics and Business

The Colorado College

In Partial Fulfillment
of the Requirements for the Degree
Bachelor of Arts

by

Scott Rogowski

May 2009

Protectionism and Imperialism 1872-1914

Scott Rogowski

May, 2009

Economics

Abstract

The purpose of this study was to find out what effect tariff rates had on the territorial

growth of late 19th century European, American, and Japanese empires. Many, if not

most, historical studies of late 19th to early 20th century imperialism have explained it as a

cultural phenomenon. Others have hypothesized that the territorial growth owes some

explanation to protectionism. This study found that, given a three year lag, tariff rates can

explain a little more than 50% of the aggregate territorial growth rate with diminished

results when observing country-by-country.

Keywords: (Protectionism, Imperialism, Historical Economics)

ON MY HONOR, I HAVE NEITHER GIVEN NOR RECEIVED UNAUTHORIZED AID ON THIS THESIS

Scott Rogowski

Date

TABLE OF CONTENTS

Chapter	age
I. INTRODUCTION	1
Suitability of 1870-1914 for economic study	4
Competitiveness between powers	6
Increase in tariffs	7
II. THEORY	11
The impact of tariffs & the gravity model	12
The endowment effect & public choice	17
Transaction costs	20
Supplementary variables and the hypothesis	31
III. METHODS	37
Choice of empires	37
Territorial change	38
Tariffs	42
Average world tariff rates	43
Cost of Foreign Tariffs	44
GDP	45
Distances	45
Gaps in data	46
IV. DATA ANALYSIS	48
Broad hypothesis	49
Country-by-country hypothesis	56
V. CONCLUSION	58
APPENDIX I – TERRITORIAL DATES AND SIZES	
APPENDIX II – TARIFF CALCULATIONS	
APPENDIX III – DISTANCES BETWEEN CAPITALS	
APPENDIX IV – LINEAR COUNTRY BY COUNTRY REGRESSIONS	
APPENDIX V – LOGARITHMIC COUNTRY BY COUNTRY REGRESSIONS	
SOURCES CONSULTED	

LIST OF TABLES

1	Transaction Costs in 19th and 21st centuries	24
2	Costs and Benefits of Imperialism	28
3	World territorial change under different lags	50
4	Aggregate hypothesis	52
5	Logarithmic aggregate hypothesis	53
6	Great Britain hypothesis	54
7	Logarithmic Great Britain hypothesis	55
8	One variable country-by-country	57

LIST OF FIGURES

1	AVERAGE TARIFF RATES VS. TERRITORY GAIN SINCE 1860	3
2	LENGTH OF RAILWAY OPEN	5
3	AVERAGE GDP	10
4	TRADE ACROSS THE BRITISH CHANNEL	12
5	WORLD AVERAGE TARIFF WITH AND WITHOUT GERMANY	47

LIST OF EQUATIONS

1	GRAVITY MODEL ACCORDING TO ANDERSON (1979)	15
2	HYPOTHESIS	36
3	COST OF FOREIGN TARIFFS	45

CHAPTER I

INTRODUCTION

"Si vous n'étiez pas si acharnés protectionnistes vous ne nous trouveriez pas si gourmands de territoires"

"If you were not such persistent protectionists you would not find us so keen to annex territory."

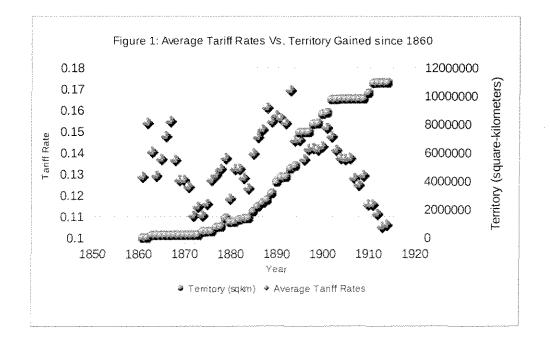
British Prime Minister Robert Cecil (3rd Marquess of Salisbury) to the French Ambassador – 1897¹

Contemporary historians often attribute the territorial conquests of the late 19th to early 20th centuries to several factors. As the Encyclopedia Britannica states, "Sometimes [the conquests] were to protect economic interests, as when the British occupied Egypt in 1882, but more often it was for strategic reasons or in pursuit of national prestige." Another popularly accepted explanation was the widespread belief in cultural supremacism best summarized by Rudyard Kipling's satirical 1899 poem, 'The White Man's Burden.' To some extent, these authors may be correct in their analysis. However,

¹ Platt, D. C. M. Finance, Trade, and Politics in British Foreign Policy 1815-1914 (Oxford; London; Clarendon P. 1968), 365

² Encyclopedia Britannica Online, International Relations (2009)

is that the end of the story? Popular modern economist Steven E. Landsburg once wrote, speaking on the differences between theory and reality, "Our job as economists is not to tell auctioneers how to run their business. It is to assume that they know how to run their business and to figure out why their strategies are the right ones." Considering, for a moment, auctioneers as prime ministers, it is then possible that Prime Minister Cecil was very rational in his pursuit of imperialism. If prime ministers are similar to CEOs, we might expect them to primarily base their decisions towards profit maximization for their shareholders (citizens). As a modern historian writes, "[The imperialist] was not immune to the political, emotional, ideological, patriotic, or even racial appeals which were so patently associated with imperial expansion. Nevertheless, if an economic connection can be established...it becomes much less plausible to put the full weight of explanation on these motives". Exactly as British prime minister Cecil alludes to, the protectionism seen in France and among all the powers was part of the explanation for the imperialist tendencies of the period.


The period from 1870 to 1914 has two relevant historical characteristics as shown by Figure 1. First, the rapid expansion of the European, American, and Japanese empires resulted in new territorial acquisitions equaling more than 16% of the world's land mass in during this short period.⁵ Second, was the increasing protectionism observed in most

³ Landsburg, Steven E. The Armchair Economist: Economics and Everyday Life (New York: Free Press, 1993), 178

⁴ Hobsbawm, E. J. The Age of Empire, 1875-1914 (New York: Scribner, 1975), 62

⁵ See Appendix I. This value assumes the world territorial size to be 134.94 million square kilometers not including Antartica. (source: Central Intelligence Agency, *World Factbook* (2009)). 'More than 15% of the world's remaining territory' because the size is only for the empires of Great Britain, France, Germany, Spain, Japan, and the United States.

world powers until around 1900 with tariff rates in France, the United States, and Russia more than doubling.⁶ With higher tariff rates, of course, comes higher barriers to trade. In order then to restore the benefits of free trade countries have a few options. The first option is to negotiate with nearby countries in order to secure trade deals and lower tariffs. The second option is to expand one's own 'free-trade-block' to make up for lost trade. In the modern world, the first option would probably be considered the rational option. However, at the end of the 19th century, faced with strong enemies at home and overseas territories which were easily colonized, the second option was, as this study shall argue, rational. The study backs this conclusion by finding that, statistically, from 1872 to 1914, there is a correlation and a causality between the rise in tariffs and the territorial conquest of 16% of the world's land.

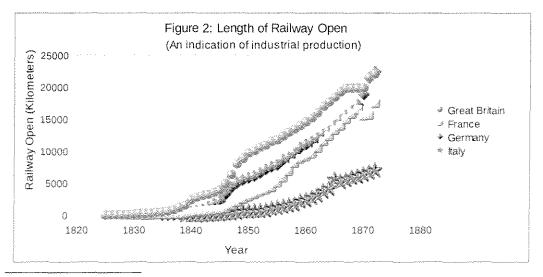
⁶ See Appendix II

Suitability of 1870-1914 for Economic Study

The ultimate goal of this study is to contribute to the economic literature on the dangers of protectionism by observing its effects in a particularly volatile period. The late colonial era, also popularly referred to as the era of 'new imperialism', is defined by this study as the period from the end of the Franco-Prussian war (1872) to the beginning of the First World War (1914). During these 43 years, the imperialists (most of Western Europe, the United States, and Japan), were in a fierce competitive battle over international power, stature, and access to resource markets.

This period was considered ripe for economic empirical study because it possessed the same three prerequisites that any modern economic empirical study must first obtain:

- 1. The period has available data.
- 2. The data is sufficiently detailed enough to establish statistical conclusions.
- 3. There is enough similarity between the goals and conditions of economic (political) actors to establish ceteris paribus.⁷


To expand upon the first prerequisite, rapidly industrializing states of the late nineteenth century found a need to expand their record keeping of fiscal statistics. Presumably, this would have happened in order to make better political and economic decisions. The most important fiscal statistic utilized by this study was historical tariff rates. While this exact statistic is often not found in available records, a simple method can be used to calculate

⁷ That is, for the purposes of theory, when all entities have roughly equal goals and abilities, they can be treated as a homogeneous group.

these rates. By definition, average tariff rates are equal to total customs revenue divided by total value of imported goods.⁸ For reasons which are beyond the scope of this study, government records prior to 1870 of either customs revenue or imports are sparse.

Similarly, during World War I, these records were either unreliable, and if reliable, could be considered outliers due to the conditions of war. Thus, 1870 to 1914 is nestled a period of continuous and defensible trade data.

The second reason for selecting this period was because of the continuity of territorial gains. In order to perform a yearly or multi-yearly regression, any and all '0' values should be minimized. In this case, '0' values are considered years or sets of years in which a country did not gain territory. Unlike much of history, the late 19th century saw enormous territorial gains made regularly by a few actors. In fact, during all 44 years, only 12 were observed as having no territorial gains made by any country. This continuity in expansion results in a more useful dataset.

⁸ See Methods: Tariffs section

⁹ See Appendix I and Methods: Territory section

Competitiveness Between the Powers

The final reasons for the selection of this period were the common goals thought to be shared by the political actors. In order to understand why, a brief history must be recounted. France's imperial army during the Napoleonic wars (1797-1815) was generally considered to be the first professional army (a large standing army which is well trained and regulated) in modern history. After fifteen years of near continuous conquest, Napoleon's army eventually met defeat leaving not only France but the entire continent weakened. However, managing to resist all invasion, Britain found its position strengthened by the war. Because of British successes and the disarray of most other European powers, the British Empire quickly became the default world superpower. This led to what historians now call 'Pax-Britannica' or British peace. Furthermore, Britain was the first country to industrialize. On the European continent, no other country could politically compete with the world's only industrialized superpower.

This all began to change with the nationalist movements in the mid 19th century, notably the Italian and German unifications. With these unifications, not only were two powerful states created, but also many disputes over their territories by other powers were resolved. Across most of the world's superpowers, industrialization began to replace traditional workshops with factories which caused economic output to explode (See Figure 2).

¹⁰ Pax-Brittanica is an alteration of the original Latin Pax-Romana. Encyclopedia Britannica Online, *International Relations* (2009)

¹¹ Encyclopedia Britannica Online, International Relations (2009)

¹² Encyclopedia Britannica Online, Nationalism (2009)

With economic output, came, of course, greater tax receipts and greater military strength. The end result was the revival of continental power in several European states. Many of the countries that could challenge British dominance thus began competing with each other and the British Empire for the benefits that come with political dominance over one's neighbors. Thus, the increasing power of the continental powers resulted in a quest for preeminence only violently resolved by World War I.

The Increase in Tariffs

Starting with the panic of 1873, the world suffered through a prolonged depression called, at the time, the Great Depression. Ever since the Great Depression of the 1930s, historians now refer to this as the Long Depression. Monetarists often attribute the Long Depression (and, in fact, every depression) to a reduction in the supply of currency. Specifically, this deflation was due to the rapid worldwide adoption of the gold standard following the adoption of France and Germany's after the Franco-Prussian war. This depression was not, however, like other depressions. That is, real GDP growth did not contract or even slow during this period (see Figure 3). Instead, as a contemporary writes, "A depression of prices, a depression of interest, and a depression of profits; there is that undoubtedly. I cannot see any reason for believing that there is any considerable

¹³ France's loss in the war and resultant reparations resulted in a chain of events leading to both France and Germany's adoption of the Gold Standard. Because both countries were previously such large silver economies, the remaining silver and bimetallic economies were forced to adopt the winning standard. Flandreau, Marc. "The French Crime of 1873: An Essay on the Emergence of the International Gold Standard, 1870-1880." *The Journal of Economic History* 56, no. 4 (Dec. 1996): 862-897.

¹⁴ For some countries, GDP growth did slow. According to the National Bureau of Economic Research, 65 months of contraction were experienced within the United Stations.

depression in any other respect."¹⁵ That is, the upper class of the period suffered while those who didn't own capital or property were mostly better off. From a modern historian, "The wail of distress did not come from the mass of the people, who were for the most part better off, but many from industrialists, merchants, and financiers, who felt the pinch of falling prices, profits, or interest rates, and who were best able to make their complaints heard."¹⁶

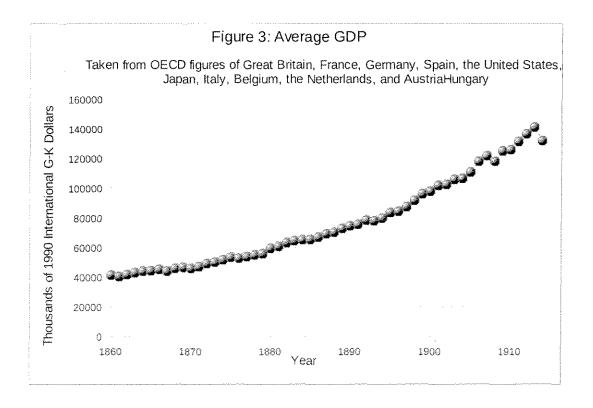
Contributing both to deflation and to negative sentiments felt, farmers across

Europe saw the prices of agricultural goods fall significantly. Ultimately, this is regarded as a byproduct of falling transportation costs allowing non-European farmers (Americans and Australians among others) to export their agricultural produce to Europe. As

Hobsbawm remarks, "In 1894, the price of wheat was only a little more than a third of what it had been in 1867, a splendid bonus for shoppers, but a disaster for the farmers, and farmworkers, who still formed between 40 and 50 percent of working males in the industrial countries"."

The discontent felt by farmers and owners of capital would have in itself been enough to merit drastic government action. But, adding further to the malaise were the feelings of the wage earners. "As a contemporary remarked, although the standard of living was rising, 'conditions did not seem to be improving', since money wages were reduced." The long depression event was evidently enough to force otherwise rational

¹⁵ Attributed to economist Alfred Marshall 1842-1924


Musson, A. E. "The Great Depression in Britain, 1873-1896: A Reappraisal." *The Journal of Economic History* 19, no. 2 (Jun. 1959): 199-228.

¹⁶ Ibid., 200

¹⁷ Hobsbawm, E. J. The Age of Empire, 62

¹⁸ Musson, The Great Depression in Britain, 201

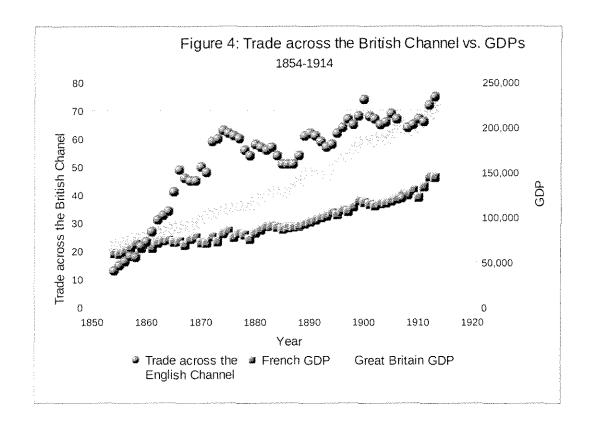
governments into a protectionist stance. Furthermore, this ideology was not limited only to agricultural products but increasingly the manufacturing and raw material industries were protected. As calculated in Appendix II and shown in Figure 1, average tariff rates did indeed rise dramatically among most of the major world powers. This, of course, likely further contributed to the depression and caused shortages of both foreign products and raw materials. This study will attempt to prove that this regime of increasing tariffs ultimately caused the world powers to pursue other methods of foreign trade.

¹⁹ Ibid., 222

²⁰ The 1888 presidential election in the United States was won by a staunchly protectionist candidate, Benjamin Harrison. (Source: Encyclopedia Britannica Online, *Benjamin Harris* (2009))

²¹ Musson The Great Depression in Britain, 227

CHAPTER II


THEORY

"There is no avoiding war; it can only be postponed to the advantage of others."

Niccolo Machiavelli. The Prince. 1513

The increase in tariffs by the major world powers observed from 1872 until 1914 resulted in a decrease in trade between these powers from levels which may be expected (see Figure 4). A decrease in trade, according to the theory of comparative advantage, would lead to a decrease in welfare for industries and consumers. This decrease in welfare, as with all recessions, would be seen as a major problem which required immediate steps toward resolution. Because of this, coupled with the close integration between industries and imperial governments, rational governments would need to do something to restore the lost welfare. Due to the conditions of the late nineteenth century, the rational option would have been to enlarge their economies by enlarging their empires (the tariff rates within empires, while existent, were generally much lower than those between empires).\(^1\)
Looking again at Figure 1 and taking into account a slight lag, some relationship between high tariffs and imperial expansion seems evident.

¹ Alesina, Alberto, and Enrico Spolaore. The Size of Nations (Cambridge, Mass.: MIT Press, 2003) 190

The impact of tariffs & the gravity model

The theory of comparative advantage has been well accepted since David Ricardo's *On the Principles of Political Economy and Taxation* (1817). Among other conclusions, the theory suggests that between countries, higher tariffs will result in a reduced welfare for the citizens of both countries.² This theory is meant to hold consistent across all economies throughout time. Presumably then, the late 19th century should have been no different. However, as shown by Figure 3, even when tariffs were at their highest during the 1890s, gross domestic product unexpectedly appeared to continue

² Ricardo, David. On the principles of political economy and taxation.. 1817

growing regularly. Of course, there were a few minor recessions in 1861, 1867, 1877, 1893, and 1908 but nothing substantial. In fact, according to the OECD figures used to create this figure, this period was marked by prolonged economic growth.

Many theories attempt to explain why their was such a dramatic disconnect between theory and empirical evidence. Hobsbawm offers this anecdote, "A distinguished American expert, surveying the world economy in 1889... observed that it had, since 1873, been marked by 'unprecedented disturbance and depression of trade" The statistics available do show a decrease in the level of trade between the powers. Of course, this is still not reflected in GDP because, as Alesina remarks, "Without the fall in transportation costs and the adoption of the gold standard which facilitated trade, the protectionist moves of the major powers would have created much larger effects on trade." The author, however, believes that the real effects of higher tariffs were not necessarily ones which could be found in statistics.

In the later part of the 19th century, as always, countries traded between each other the regular sets of goods. To take the commonly used economic example, the Scottish would have exchanged their wool for Spanish wine because of the Scottish comparative advantage in wool production and the Spanish comparative advantage in wine production. Between the European powers however, the economic-industrial developments began to necessitate the exchange of more exotic goods as well (exotic being defined as not readily

³ Hobsbawm, E. J. The Age of Empire, 34

⁴ Alesina, Alberto, and Enrico Spolaore. The Size of Nations. 189

available in Europe). Better shipping technology and malarial control resulted in many new consumer imports from Africa and Asia including tea, ivory, and coffee. An especially interesting example is Shea butter.

Shea butter was (and still is) a natural oil imported from West Africa beginning in the early 19th century. The oil is extracted from the Shea tree which only grows in the savanna directly south of the Sahara in Africa. Originally, it was cultivated for use as a cooking oil. Upon British discovery in Gambia, it was found to serve as a great moisturizer, anti-inflammatory agent, and mild sunscreen when used as a cosmetic. Widely popular in Europe, with increasing tariff rates, the exotic skin product became more expensive.

Not only though did consumer products suffer from tariff barriers. Also notable were the raw material shortages suffered by industrialists. The factors which went into industrial production were not limited to coal and iron, rather, "technological development now relied on raw materials which were to be found exclusively or profusely in remote places" Among these were rubber (found exclusively in the tropics), palm oil (for lubricating machinery and producing soap), cotton (to feed the spindles), and copper (a metal much more cheaply extracted in Central Africa than Europe). As of 1870, these resources were often mass produced in only one or two overseas colonies with other countries trading with the colonizer for the goods.

⁵ Hobsbawm, E. J. The Age of Empire, 63

Considering all of these qualitative facts, it is obvious that with rising tariffs, there was some impact on utility which cannot be measured. This may be for two reasons eluded to previously. One, the increase in tariffs cleanly coincided with an acceleration of production coinciding with further industrialization. This might not be too far fetched considering the late start Continental Europe, the United States, and Japan got compared to Great Britain. Perhaps also the reason that increases in tariffs were not reflected in GDP was because the boost in colonial trade happened fast enough to ward off the negative impacts. Either way, in order to perform a working regression, it is necessary to, quantify the impact of tariffs upon income.

The gravity model offers one such method. First proposed in 1954 by Walter Isard,⁶ the classical theory as clarified by Anderson states that the magnitude of bilateral trade flow between two countries will be determined by their economic sizes, their populations, the distance between the two, and an error term.⁷ This relationship is shown in Equation 1.

Equation 1:

Classical Gravity Model according to Anderson (1979)

 $M_{ij} = Y_i^{\alpha} * Y_j^{\beta} * N_i^{\alpha} * N_j^{\delta} * d_{ij}^{\epsilon} * U$

Where:

i: Home country

j: Foreign country

Y:Income

N: Population

U: Generic error term

⁶ Isard, Walter, and Merton J. Peck. "Location Theory and International and Interregional Trade Theory." The Quarterly Journal of Economics 68, no. 1 (Feb. 1954): 97-114.

⁷ Anderson, James E. "A Theoretical Foundation for the Gravity Equation." *The American Economic Review* 69, no. 1 (Mar. 1979): 106-116.

This equation is not a rule-of-thumb but instead a 'theoretical foundation'. The exponents on each term emphasize that the relative weights of each term (the importance of income vs. the importance of population) are unknown. From there, the gravity equation can be 'built' using different exponents calculated by the author. It is known that the distance term, d, represents a cost of doing trade (the cost of shipping). It is then expected to be inversely related to trade flows and have a negative exponent. Some authors have expanded this idea to include other variables, notably, tariff rates.⁸ As with distance, tariff rates can be considered a cost of doing trade and are thus also expected to be inversely related to trade flows.

Tariff rates on a whole have been empirically shown to be good measures of bilateral trade with one study concluding that, in the modern world, a 5% across-the-board drop in tariff rates would raise welfare by 1%. It is obviously difficult (if not impossible) to measure what might have happened to income if the protectionist regime of the 19th century did not occur. However, if we are to accept the precepts of basic trade theory coupled with the qualitative opinions of historians and contemporaries, the dramatic rise of tariffs seen in the late 19th century was not without consequence.

⁸ Eaton, Jonathan, and Samuel Kortum. "Technology, Geography, and Trade." *Econometrica* 70, no. 5 (Sep. 2002): 1741-1779.

⁹ Ibid., 1774

The Endowment Effect & Public Choice

With the suffering inflicted by the long depression coupled with increasing tariff rates, how must have the upper and lower classes reacted? The reader can assume from the previous section that if there was not widespread pain, there was at least some manner of adaptive pain felt. That is, cutting off cheap copper or Egyptian cotton to the industrialists would have resulted in them either modifying their production lines or accepting lower profits. Likewise, though not necessities to life, Shea butter, ivory, and tea were valued by the average first world citizen for the simple luxuries they provided. Furthermore, the trade of the above commodities likely provided an additional profit to merchants, the loss of which filtered out through the economy. Under rational economic conditions, this would be considered a small recession at best. National income would have declined slightly and perhaps one year of contraction would have been felt.

Considering, though, the idea of a recession out of a rational economic context, the situation changes dramatically. The current world recession (2007-present) and the recession before that (2001) caused widespread discontent across the world. Accordingly, the governments of the world are pumping trillions of dollars into the world economies. According to basic macroeconomic theory, these rescues, by definition, have reduced the savings and investment rates, hurting the long run capital accumulation of the world economy. Whether or not these rescues were proper economic policy is a matter of debate which will not be explored in this study. The purpose of the anecdote is instead to

point out two important points. First, people tend to react strongly to losses (or perceived losses) in income, wealth, or welfare. Second, depending on your interpretation, governments will often address recessions in an excessive manner.

Addressing the first point, the idea of a strong reaction to losses is by no means novel. The endowment effect states that there is a psychological tendency toward valuing what one believes he or she has ownership over more than what would be rationally expected. In other words, consider two people, one of whom is already in possession of 10 dollars and one who has the opportunity to gain 10 dollars. The person who already has the 10 dollars will work much harder to keep it than the person who does not have the 10 dollars will work to earn it. Losses are seen as much more devastating than gains are joyous. In fact, some have even found that the endowment effect results in a valuation of ones property over potential future property by a magnitude of two or more. Furthermore, the endowment effect has been demonstrated to simply be a manifestation of the psychological tendency known as loss aversion. This explains why people react so strongly to news of recessions which have cut GDP to levels of only a few years prior. For them, a reduction in income of \$1000 may be the exact opposite of an increase of \$2000. It also helps explain why a reduction in the importation of palm oil would be seen

¹⁰ Kahneman, Daniel, and Amos Tversky. "Prospect Theory: An Analysis of Decision Under Risk." *Econometrica* 47, no. 2 (Mar. 1979): 263-291.

 ¹¹ Kahneman, Daniel, Jack L. Knetsch, and Richard H. Thaler. "Experimental Tests of the Endowment Effect and the Coase Theorem." *The Journal of Political Economy* 98, no. 6 (Dec. 1990): 1325-1348,
 12 Ibid.

as calamitous to people of the 19th century. Although real production and real consumption were rising during most of the era, the reduction in trade led those affected to conclude that they were facing a serious problem.

Regardless of the type of government facing this situation, whether American democracy or German kingdom, the theory of public choice would dictate the choice of action taken by the governments. According to the theory as outlined by Buchanon and Tullock, ¹³ governments are simply agents of their constituencies. Since both the wealthy capitalists and the poor wage-earners were united in their dissatisfaction with their economic situation, the leaders of the countries had no choice but to react in some way. ¹⁴ In Great Britain, some clearly outlined their opinion of the governments purpose, "the logic of the conservative position after 1832 dictated the policy of accommodation with the business and commercial interests." ¹⁵ In the United States, a country theoretically 'by the people and for the people', the presumed reasons for action were different. In both cases, the citizens ultimately caused the government to react. The next section will explore why governments chose to do as they did.

¹³ Buchanan, James M., and Gordon Tullock. *The Calculus of Consent, Logical Foundations of Constitutional Democracy* (Ann Arbor: University of Michigan Press, 1962)

¹⁴ Ibid.

¹⁵ Blake, Robert. Disraeli (New York: St. Martin's Press, 1967; 1966) 758

Transaction Costs

Noble Prize winning economist R. H. Coase's 1937 study, "The Nature of the Firm", explained why it makes sense for organizations to exist. The theory is based around the idea of transaction costs. The market defined by Adam Smith assumes that the price mechanism (the invisible hand) would be able to govern all transactions between free individuals with different resources and abilities and assure a perfectly fair, immediate, outcome for all transactions. That is, under the simple model, it wouldn't be rational to work for an organization (or to hire employees). A perfectly competitive, perfect information labor market would allow freelancers to easily exchange money with one another for goods and services. However, this would require a tremendous amount of time and money spent finding the best independent contractors, negotiating on a price, then ensuring that the work is completed successfully. The cost of doing these things is often so high that it becomes prohibitively expensive to engage in trade. But, under organizations, these costs are significantly reduced and streamlined. The hiring process and wage negotiation occur infrequently and the work of employees is monitored regularly as a condition of maintaining their employment and wages. ¹⁶

Likewise, on an international scale, one person countries would make sense except for transaction costs. Instead of contracting out your defense, designing your own infrastructure, or conducting your own diplomacy, states will form for the mutual defense and prosperity of the people. The end result is the existence of governments to provide

¹⁶ Coase, R. H. "The Nature of the Firm." Economica 4, no. 16 (Nov. 1937): 386-405.

these services within their respective countries.¹⁷ Of course, within this international system, transaction costs between rival national governments are still absolutely applicable. Since governments have to regularly reach agreements with each other on issues such as trade, borders, water, or nuclear weapons control, these costs occur frequently and depending on the situation may become very high.

In 1979, Carl Dahlman expanded upon Coase's idea and defined the three types of transaction costs that economic entities face while attempting to conduct trades. These three types are search and information costs, bargaining and decision costs, and policing and enforcement costs. Search and information costs stem from the costs incurred by seeking out traders in a market and determining whether their products and services are of sufficient quality. Bargaining and decision costs stem from the costs incurred by traders deciding on prices and then determining among themselves whether they are acceptable and will result in a benefit to them. Finally, policing and enforcement costs refer to actions that are required to ensure that the trades occur as agreed upon and, if not, enforcing penalties.

To these three costs, this study will consider a forth cost which is not technically a transaction cost and is thus not expressed in any of Dahlman's transaction costs. This type of cost shall be referred to as an 'abettor cost', the cost incurred by a firm who aids a competitor. In the modern world, the best analogy may by the scenario of two software companies; both designing and marketing multiple products. The only assumption is that

¹⁷ Alesina, Alberto, and Enrico Spolaore. The Size of Nations.

¹⁸ Dahlman, Carl J. "The Problem of Externality." *Journal of Law and Economics* 22, no. 1 (Apr. 1979): 150

each company must market a product which is a perfect, or near perfect, substitute for the other companies product. We shall refer to this as the 'competitive product'. Now, consider an otherwise mutually advantageous trade not involving the competitive product. If this trade financially benefits company 1 more than company 2, company 1 could use the money toward improving or marketing their competitive product. If executed correctly, this would weaken company 2. Furthermore, if the competitive product formed a large part of their revenue, company 2 could risk going out of business.

In the international system, ignoring this 'abettor cost' has far higher consequences than in business. Aiding a rival power through the use of trade treaties, international partnerships, or military alliances would, in the short term, benefit both countries. However, if the rival country benefited more from a partnership than your own, the results could prove disastrous. The rival country could attack you country diplomatically, economically, or even militarily. This assumes, of course, that the countries remain rivals and one has something to gain from the other's demise. In a world of imperfect information, these are probably good assumptions to make.

Returning to the late 19th century, with the pain from increasing tariffs being felt across most of the world, governments needed to chose what to do to solve their situation. That is, exactly as happens today, the powers had to negotiate with each other in order to secure trade from one another. The types of costs faced by governments engaging in this diplomacy would be the same as Dahlman defined. There would be search and information costs, bargaining and decision costs, policing and enforcement costs, and as

the author has defined, 'abettor' costs. The only difference between the costs incurred in the late 19th century and the costs incurred today would have been how these costs were expressed (see Table 1).

Search and information costs in the international system are the costs associated with determining the needs of foreign governments and determining what they might to offer in exchange. In the 19th century, this would all be done while traveling back and forth, in either a ship or a carriage and dealing with high cultural and language barriers requiring a good deal of time and money. If a telegraph line happened to exist between the capitals, some of this cost may be cut down. Obviously, though, it is difficult to hammer out international agreements using only Morse code. Tariff reductions could then only be agreed upon slowly.

Bargaining and decision costs follow much the same idea, with consistent travel required during the negotiating process. Still, a larger manifestation of decision costs are the costs associated with pleasing a disillusioned citizenry. Since the tariffs of the late 19th century were put in place to satisfy the demands of affected workers, manufacturers, and industrialists, a reduction of tariffs (even if the deal was fair) might be seen as an assist for rival agriculture and industry. The governments must thus spend time either justifying the decision to their people or ensuring their posts by taking on another popular cause.

Policing and enforcement costs again contain these elevated travel costs but also embody another greater cost. One hundred years ago, international organizations like the UN, IMF, NAFTA, NATO, or the WTO were non-existent. There was therefore no international court to judge disputes in transactions between states. Without any international bodies to either monitor or enforce trade agreements, countries had to take it upon themselves to ensure that trade was being conducted fairly. While this may have been relatively easy for Great Britain, for its continental neighbors such as Belgium, enforcing trade agreements would have been near impossible.

Next, the abettor cost in the 19th century deserves special attention. For any student of history, it should be standard knowledge that conflict within Europe was common throughout the most of its history. This, of course, includes the period prior to 1872. In fact, the peace enjoyed by Western Europe since 1945 has been, by far, the longest period of peace in recorded history. Likewise, Japan and the United States were not immune to conflict. In the case of Japan, its consistent rivalries with China are notable. Similarly, the US had concluded its war with Mexico only 20 years prior. It should then be obvious that the competitiveness between the superpower countries in the 19th century was much greater than the competitiveness between countries seen today. The abettor cost, as defined by the author, states that the act of trading with ones rivals carries huge risks. The risks are due to the possibility that one country will benefit more

¹⁹ To better establish how competitive the era as a whole was, consider that in the 20 years prior to 1872, three major wars were waged in Europe, the Crimean war between Russia and France and Great Britain, the Austro-Prussian war, and the Franco-Prussian war. In the 20 years prior to this writing, no wars have been fought between any of the G8 nations.

than its rival in partnerships. In a period of imperfect information, it would be unclear to both countries whether their agreement would benefit one of them more than the other.

Judging by the destructiveness of World War I, it could easily be argued that abstaining from economic partnerships was the rational choice.

Many governments, faced with pressure from both the wage-earners and the wage-payers, were forced to do something concerning the high tariff rates. There are essentially two possibilities for governments facing this situation, they could restore economic wellbeing or they could create economic wellbeing. In more words, the leaders of the 19th century had a choice between either attempting to lower tariff barriers around them to restore what trade was lost, or, finding new sources for the goods they needed. Clearly, this is not a one or the other situation, and governments, modern or past, will attempt both possibilities in their search for trade. However, as certain costs are associated with both, rational governments will devote more of their attention to one than the other. It is important also to reiterate, because of the theory of public choice, rational governments with the ability to do something would be forced to do something by their citizenry. Doing nothing for them was not an option.

Considering Table 1, it is clear that the costs of negotiating in the 19th century were, by far, higher than in the 21st century. Of the four costs considered, the three transaction costs and the abettor costs, there were clear disadvantages to negotiating trade

agreements in the 19th century over negotiating in the 21st century. The advantages laid out make it clear that to simply, 'lower tariff barriers', while difficult today, would have been still more costly in the 19th century.

The second option, expand one's own trade, could manifest itself in two forms.

First, merchants of the country could make a protracted effort to peacefully increase their trade in places with low trade barriers. Otherwise, colonies could be acquired formally and defended as such. The apparent benefits of the first method of expanding trade are obvious. This method requires very little upfront capital, is morally justifiable, and, if done properly, will incur the same trade benefits as the second method. The second method though does have some innate advantages. Formally occupying a colony provides a strategic military base, cuts off trade to rival powers (and thus minimizes the abettor cost), allows one to develop the colonies resources, and as must be mentioned, is a rewarding stimulus for the nationalist ideology. As Hobsbawm states, "Imperialism encouraged the masses ... to identify themselves with the imperial state and nation, and thus endow that state with with justification and legitimacy." At the same time, it should not be forgotten that occupying a colony was not an easy task and was definitely not guaranteed to be successful (South Africa, Ethiopia, Afghanistan, and Cuba as examples, among others).

²⁰ Hobsbawm, E. J. The Age of Empire, 70

Other C os ts Abettor Costs	Policing & Enforcement Costs	ans action C os to Bargaining & Decision Costs	Search & information Costs	
Costs associated with aiding operated mass who may or maior the rot use their gains against one country	Costs associated with assuring hat trade is being conducted larly and dealing with problems to hat may arise if any	Costs associated with regoritating the terms of trade and deciding whether it is the cest choice.	Costs associated with finding potential partners of trace, betennining their legitimacy, ar earning what they know	Attempted transaction – a redu Definition
Presumably more peaceful 19th century considered a very the 19th century. No major considered a very the 19th century. No major contents with adding conflicts between superpown collectial mals who may or may one's neighbors are high. Word in the past 20 years. Better for use their gains against one's War Later proves them to be information allows for more country read.		Same travel costs apply. New costs occur trying to explain why trade barries are being lowered.	Traveling stowly wa carriage or sinip to foreign capitals with the help of a felegram machine of assuming that the line has been built	Attempted transaction — a reduction in taxiffs in exchange for a reduction in one's own taxiffs Definition 19" century costs 21" century costs
Presumably more peaceful than the 19th century. No major conflicts between superpowers to in the past 20 years. Better information allows for more equal trades.	Tave is cheaper than 19th century. The existence of Same travel costs apply. Must inhemational organizations police and enforce trade (WTO, EU, UN, IMF, etcetera) arrangements without the help of aid in the enforcement of trade inhemational organizations. agreements	Travel is cheaper than 19th century. Costs associated with justifying a reduction in tariff barriers exist but are presumed lower due to better education.	Traveling slowly via carriage or costs associated with finding is ship to breign capitals with the partners of trade, ledpoid a telegram machine. Quick fact finding with the help determining their legitimacy, and assuming that the line has been from modern inventions such as airning what they know built.	eduction in one's own tastis 21" certury costs
To centrally	19 centry		19° centsy	The costs are likely higher in the

Colonialism is often a development from peaceful trade to formal rule.²¹ As demonstrated by the Portuguese across their 15th century empire and later by the British in India, simply pursuing trade in distant lands works well for a while. As the trade becomes more involved though, traders may set up small enclaves to facilitate easier access to the markets.²² A permanent presence puts one under the regulations and whims of states and state-like entities around the enclave. As written by Landes, "the merchants...sought trade not territory as such...but they did not want to be robbed or bullied by native dealers or officials...so they called on their home government to help"²³. This quickly evolves into the nationalization of the merchant companies and, eventually, formal colonization.²⁴

By 1873, "The colonies were, after all, considered to be economic extensions of their 'home' countries "25. Though peaceful trade with foreign nations was doubtless continued, more and more, the first-world realized that formal occupation was inevitable. Some even began to blur the line between the two; ""Territorial expansion', said an official of the US State Department in 1900, 'is but the by-product of the expansion of commerce." For the period, then, expanding trade with non-traditional partners was seen as the same as an expansion of territory overseas. Furthermore, it was the only trade

²¹ Encyclopedia Britannica Online, Colonialism (2009)

²² For the Portuguese empire, the best examples may be Luanda, Goa, and Macau. For British India, Madras and Calcutta.

²³ Landes, David S. *The Wealth and Poverty of Nations : Why some are so Rich and some so Poor* (1st ed. New York: W.W. Norton, 1998) 426

²⁴ Parliament formally acquired British India from the merchants in 1858 following the Indian Uprising of 1857 Encyclopedia Britannica Online, East India Company (2009)

²⁵ Emmer, P. C., Olivier Pétré-Grenouilleau, and J. Roitman. A Deus Ex Machina Revisited : Atlantic Colonial Trade and European Economic Development (Leiden; Boston: Brill, 2006) 25

²⁶ Hobsbawm, E. J. The Age of Empire, 45

creation method that could be effectively pursued by the government. As the efforts today by the US government to encourage charity are seen as redundant or even wasteful to some, likewise, encouraging traders to go to places where they might be 'robbed or bullied by native dealers or officials', was ineffective. Instead, imperialism was seen as the only alternative to a peaceful reduction of trade barriers.

Table 2: Costs and Benefits of Imperialism

Costs	Description	Cost presumed lower in the 19 th or the 21 st century.
Cost - Acquisition	The actual process of acquiring power whether peacefully, by deception, or by violence.	19 th Century
Cost - International Opinion	The cost of dealing with those who believe that the acquisition was an immoral land grab	19 [™] Century
Cost - Internal Management	The cost of ensuring a peaceful interior and broadcasting authority	19 th Century
Cost - Development	The cost of building institutions, transportation, and commercial enterprises	21* Century
Cost - Transport to and from colonies	The cost of the constant trips required between a colonizer and its protracted empire	21st Century
Cost Defense	The cost of defending the territory from neighboring lands and other imperialists	21st Century
Cost - Moral	The personal cost associated with ruling over a people without mandate	19 th Century
Benefits		Benefits presumed higher in the 19th or 21st century
Benefit – Raw Materials	A pivotal point in the study. Unhindered access to products not found in a colonizing country was an extraordinary benefit.	19 th Century
Benefit Export Markets	A place to sell manufactured goods was important to industrialists suffering through the long depression.	19 th Century
Benefit - Revenue	Revenue, whether tax or excise, is always a benefit to governments.	21st Century
Benefit - Population	In a period of mass conscription, having a larger population could mean the difference between victory or defeat.	19th Century
Benefit - Defense	A worldwide defensive network is considered by some to be strategically important.	21 [™] Century

Table 2 shows the costs and the benefits associated with formal imperialism. Like Table 1, it outlines the differences in these costs between the 21st and the 19th centuries.

Unlike the Table 1, the cost differences between the two centuries are not entirely clear.

While the author believes, in the 19th century, most of the costs of acquiring colonies are lower, and most of the benefits higher, this was by no means a clear majority. For

instance, while the cost of acquiring colonies might be lower in the 19th century because of the greater inequality between the first-world and the rest, the cost of defending colonies may have been higher due to the competitive atmosphere.

There are, though, two costs of imperialism that the author believes were very low in the 19th century and much higher in the 21st. The first cost is that of international opinion. For the 21st century, any attempt to increase territorial size is met with suspicion if not outright military action. On the other hand, the period from 1872 to 1914 was ultimately named the era of 'New Imperialism' by modern historians. The name alone illustrates a more lenient attitude toward colonial acquisitions which had to be justified only marginally. The justification and moral defense costs of acquiring colonies were thus drastically lower in the 19th century. Second, the cost of managing the colonies in an era before self-determination was much lower than trying to manage independent nations as colonies in the modern era. Before the worldwide advent of strict territorial borders and the sacred sovereignty of states, people would have been much more likely to accept foreign rule since the concept of national rule was ill-developed. For many, in fact, their new colonial status was simply a change from one ruling foreign nation to another.²⁷ This essentially limited the popular revolutions which are common in occupied states today.

From the standpoint of rulers facing popular discontent with the long depression and the high tariff barriers worsening the situation, two solutions were apparent. The first would be to negotiate with neighboring countries to reduce trade barriers. The second

²⁷ Encyclopedia Britannica Online, Nationalism (2009)

would be to pursue formal imperialism with the ultimate goal of restoring lost trade and generating even more than before. In the modern period, a platform of the pursuit of formal imperialism may be seen as irrational or even laughable. It may even destroy political careers because of how dangerous the idea is. However, the 1870s, 80s, and 90s, had different conditions though which dictated different actions. As Howsbawm wrote, "The belief that the overproduction of the Great Depression could be solved by a vast export drive was widespread."28 He continued, "Tariff and expansion became the common demand of the ruling class"²⁹ and "They hoped to carve out for themselves territories which, by virtue of ownership, would give national business a monopoly position or at least a substantial advantage."³⁰ Political leaders agreed; "he [Disraeli] saw that jingoism³¹ might be a vote winner ... the tradition which he started was probably a bigger electoral asset in winning working-class support during the last quarter of the century than anything else."32 With the costs of negotiating tariff barriers high and the costs of imperialism low, the result was clear. By the end of the era, Great Britain, France, Germany, Portugal, and Spain all had carved out colonies in the Savannah allowing for cheap importation of Shea Butter among other benefits. As any basic economics textbook would conclude, imperialism was the rational option.

²⁸ Hobsbawm The Age of Empire 66

²⁹ Hobsbawm The Age of Empire 73

³⁰ Hobsbawm The Age of Empire 66-67

³¹ As defined by the Oxford Dictionary (2009)

Jingo - One who brags of his country's preparedness for fight, and generally advocates or favours a
bellicose policy in dealing with foreign powers; a blustering or blatant 'patriot'; patriotism in the form
of aggressive foreign policy

³² Blake Disraeli 760

Supplemental Variables and the Hypothesis

The necessity of imperialism was clear to the wage earners, the upper-class, and the governments of the period. Imperialism represents a desire to conquer new territory. What has not yet been explained is how this translates into real territorial growth. In order to run a scientific regression, as many variables as possible must be accounted for. The author believes that the success of attempted territorial expansions (or literally any human action) can ultimately be reduced to two variables. First, there must be a desire to expand. This has been partially (but not fully) explained by the impact of tariff rates. Second, the ability to actually achieve and manage territorial conquests must be accounted for. The overall set of equations developed is shown in Equation 2.

Beginning with the 'desire' variable, the impact of tariff rates has already been discussed at length. Also discussed was the use of the gravity model to quantify the impact of tariff rates an impact on income. What has not yet been discussed is how the gravity model will be applied specifically to this study. Anderson's classical method (Equation 1) outlines 4 variables used to calculate bilateral trade flows, population, GDP, distance, and an error term. To this, we can safely add the tariff coefficient. Anderson's method though does not provide estimates for the weight of variables. Instead, the gravity equation is something to be 'built' via statistical analysis. Because the weights applied to each statistic are not static and instead change regularly, 33 using modern estimates of the gravity equation cannot be done. Also, building our own estimate using

³³ Jeffrey H. Bergstrand, The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence 475

methods developed would be impossible because, by doing so, we would have to lump together the inter-empire trade flows with the intra-empire trade flows. Because the study connects a reduction in inter-empire trade flows to what is essentially an increase in intra-empire flows, using these variables to build a regression would be redundant at best and self-confirming at worst.

What can be done is to build a gravity equation using modern estimates and a few logical assumptions. Modern researchers have found that GDP usually has an exponent of around .8 while distance usually has an exponent of around .7.34 Because it can be assumed that distance mattered more in the 19th century than the 20th, for simplicity, it can be assumed that the two variables carry equal weight. The impact of tariff rates vs. distance is more complex still. In order to simplify the model, tariff rates have also been given equal weight to distance. Therefore, essentially disregarding all weighting, the gravity equation used, aptly named cost of foreign tariffs, is shown in Equation 2. While the author acknowledges that this simplification is an unrealistic model, he does believe it is logical. Assuming that GDP over distance represented bilateral trade flows in a world without tariff rates, including tariff rates if expressed as a percentage simply reduces bilateral trade flows by a factor equal to the increased cost of trade. Summing this equation across as many countries as possible provides the statistic. Then, by dividing this equation by the GDP of the home country, one can develop an index which better explains the real cost of foreign tariffs over time. This variable then represents a sort of misery term which would contribute to the desire to colonize felt by governments.

³⁴ Ibid., 475

As the discipline of history will point out, there may be hundreds of reasons, not correlated to tariff rates, for a country to pursue territorial expansion. Because this study does not seek to be a meta-analysis of imperialism, those shall not be considered here. Instead, only one other 'desire' variable will be considered only because it has already been mentioned. As the European continent was progressing through the 19th century, nationalism and its derivatives were affecting all modern nations. Most drastically, this resulted in the unifications of Italy and Germany. It also later fed into the fascist movements of the early 20th century. This nationalism was often expressed in what some have termed 'ultra-nationalism' which sometimes took on cultural supremacist and racist tones. Ultimately, ultra-nationalism was what Kipling was alluding to in his poem, 'The White Man's Burden'. Because this was a cultural movement, one cannot predict with ease its effect on territorial expansion or even what variables could be used to explain its existence. One only knows that its effect was significant, positive, and different for every country. Thus, a constant will be included in the regression to account for this effect and any other historical trends not captured by tariff rates.

From the other side is the ability variable. Most simply, the ability variable attempts to measure the resources a country has free to pursue their imperialism. It also must measure their ability to effectively use these excess resources (the stability and power of a government). This variable could be expressed as any number of statistics which are all likely correlated with each other. The easiest way might be to use the GDP of a country. This, however, does not explain situations like the large GDP of 19th century

³⁵ Encyclopedia Britannica Online, Nationalism (2009)

China or the small GDP of 19th century Belgium considering their relative roles in imperialism. That is, while a GDP may be large, this does not mean that a government is stable or powerful enough to effectively apply it to territorial expansion. Another possible ability variable might be population. This would be a measure of military strength. Again, however, this would not explain the entire story. Measures of industrialization (railroad miles) could help to explain industrialization and wealth at the same time. Finally, GDP per capita and railroads per capita could be utilized as a better measure of overall wealth of the country. Because it would be difficult to chose one ability term, regressions will be run with all ability terms.

The other part of the ability term considered in this study was the world territory not claimed by any of the six countries. While this might seem at first to be redundant, there is a very good reason for the inclusion of this variable. Because of the principle of increasing marginal costs and decreasing returns to scale, each piece of territory conquered represents more cost and less benefit to the sponsor country. In other words, there is a reason that South Africa was claimed long before the Sahara. There is a certain difference in quality between the land in the two regions. Presumably, as rational agents, governments would have devoted more of their resources towards the acquisition of the most valuable, most uninhabited places and comparatively less towards others. Therefore, as the amount of unclaimed territory goes down, the ability to acquire new territory similarly goes down.

In order to cover still more bases, the theory has been divided into two broad tests. Regressions will be run on both the aggregate broad hypothesis and the country-by-country narrow hypothesis. The broad hypothesis, instead of including effective-export markets, instead tests imperialism as a world wide phenomenon and considers average world tariff rates. Also included is the cultural drive constant, the ability variable (summed over six countries), and the standard error term. The country-by-country hypothesis describes how individual territorial gains are made. The effective-export-market iteration of the gravity model is used is used in addition, again, to a constant cultural drive term, the ability variable (for only the one country), and the standard error term. In both cases, it is changes which are tested rather than aggregate values.

Equation 2: Hypothesis

Basic Theory:

 $Imperial Territory = Desire + Ability + \varepsilon$

Where:

Desire = Cultural Drive + Tariff Rates

Ability

= Territory Left + Either GDP, Population or Industrialization

Broad Hypothesis:

 Δ WorldImperialTerritory

 $=\beta_0+\beta_1*Average\ World\ Tariff\ Rate+\beta_2*Territory\ Left+\beta_3*Ability\ Measure_{six\ countries}$

Country by Country Hypothesis:

 Δ ImperialTerritory

 $=\beta_0+\beta_1*Cost\ of\ Foreign\ Tariffs+\beta_2*Territory\ Left+\beta_3*Ability\ Measure_{single country}+\epsilon_1$

Where:

Cost of Foreign Tariffs =
$$\sum_{j}^{n} \left[\frac{GDP_{j} * AverageTariff_{j}}{Distance_{ij}} \right] / GDP_{i}$$

subscript i(i) represents the home country subscript j(i) represents a foreign country i is the number of countries

And:

 β_0 , β_1 , and β_2 are all expected to be positive coefficients ϵ represents the error coefficient

Chapter III

Methods

Choice of Empires

As of 1870, the largest countries as defined by estimates of GDP were, in order, China, Great Britain, the United States, Russia, Germany, France, Italy, Japan, the Ottoman Empire, Spain, Belgium, the Netherlands, and Austria-Hungary. It can then be assumed that these 13 countries were the most powerful in the world. Furthermore, of these, all could be considered imperial powers in the sense that they controlled other nations via empire or hegemony. However, there are problems with simply using data on the imperial expansion of these countries. First of these reasons, the territorial expansion or loss for Italy, the Ottoman Empire, Belgium, the Netherlands, and Austria-Hungary was simply too small and/or infrequent to statistically analyze. For China, Russia, and the Ottoman Empire, gains and losses were made but were not well-defined enough to satisfy the author. For example, though Russia continued its expansion southward into Central

¹ Figures are calculated in international 1990 Geary-Khamis dollars Maddison, Angus. Statistics on World Population, GDP and Per Capita GDP, 1-2006 AD (Online database, last updated October 2008)

As defined by the Oxford English Dictionary (2009):
 Empire – An aggregate of subject territories ruled over by a sovereign state.
 Hegemony -The leadership or predominant authority of one state of a confederacy or a union over others.

Asia during the period, they did not annex distinguishable pieces of land but instead slowly absorbed their frequent conquests. Thus, six countries which gained or lost significant amounts of definable territory, Great Britain, France, Germany, Spain, the United States, and Japan were chosen to be studied.

<u>Territorial Change - The Dependent Variable</u>

One of the largest challenges to the economic analysis of history is attempting to quantify abstract concepts. As of 1872, the question of ownership over territory or governance over a people was much less clear than it is now in the modern world where nearly every piece of land on earth is considered part of a single state. In 1872, overseas colonies were often, in theory, governed by locals who had close ties to one or another imperialist government.³ In practice, there were often power struggles between the colonialists and the indigenous peoples whom they claimed to represent. Due to the principle of *uti possidetis* and the intense competition at the time, countries rushed to occupy and formally claim (as annexations, protectorates, etcetera) as much territory as possible.⁴ As might be expected, their claims were often made without full control of the interior which was sometimes established only much later. Because of the uncertainty over the ownership and sizes of territories, a general and exhaustive territorial history of the world

has never been compiled to the author's knowledge.

³ Encyclopedia Britannica Online, International Relations (2009)

⁴ Uti possidetis is latin for 'as you possess'. The principle requires states to actively control all territory they claim to possess.

Of course, in order to pursue this study, the author had to make some concessions and accept that it was not possible to be exact in establishing the size and ownership of colonies over time. Therefore, the author's best estimates [found in Appendix I] were based on the following guidelines:

- The main source for territorial acquisition dates and nations was Olson's
 Historical Dictionary of European Imperialism. This reference was the best
 source found for historical dates of acquisitions after a thorough search conducted
 by the author within the limited scope of this study.
- 2. If an exact size of a historical territory could not be established due to an uncertainty over borders, the size of the successive corresponding modern state(s) or province(s) was used. For example, the French territory of Upper Volta was the historical predecessor to modern Burkina Faso. Because this administrative division was at first claimed by the French as a collection of tribes, ⁵⁶ the exact territorial size was uncertain. Later, of course, lines were officially drawn by the French, leading directly to Burkina Faso, whose modern size was the one cited for this study.
- The sole source for modern territorial sizes (and historical when available), was the Encyclopedia Britannica Online.

The idea of fixed border was a relatively new one for the world. The idea (along with the state system) was only established in Europe by the Peace of Westfallia (1648). For many nations throughout the rest of the world, the idea of having rigorously defined borders was foreign.

⁶ The tribal administrations were called cercles by the French. Encyclopedia Britannica Online, *Burkina Faso* (2009)

- 4. In the case of condominiums (joint governance) or competing legitimate claims, the territorial size is divided into equal parts. The best example of both possibilities may be Vanuatu. In the late 1880s (cited by Olson as 1888) Great Britain and France both staked competing claims on the island chain. In 1906, they agreed to jointly govern. Therefore, from 1888 until 1914, Vanuatu's territory was divided equally between France and Great Britain.
- 5. The dominions of the British Empire as of 1870 (Canada, Australia, and New Zealand) were not considered part of the British Empire because of their nominal independence from the parliament.⁷ They were only part of the Empire in name. The territory of the dominions were thus not included in the initial territorial size of the British Empire nor were the territorial gains or losses of the dominions taken into account.
- 6. The growth of the territory of South Africa, which was only granted dominion status in 1910, was not treated by this study like the empire's older dominions of Canada, Australia, and New Zealand. Instead, the territory was attributed to the British Empire even after it achieved nominal independence in 1910. This was done because dropping the territory from the empire as it obtained dominion

⁷ Concerning the dominions: "They are autonomous Communities within the British Empire, equal in status, in no way subordinate one to another in any aspect of their domestic or external affairs, though united by a common allegiance to the Crown, and freely associated as members of the British Commonwealth of Nations." Balfour Declaration of 1926

status in 1910 would imply that the British had somehow lost a tremendous amount of imperial territory due to an outside force when in reality it was due to a simple political progression.

7. Any further conflicts not answered by any previous rules were decided based on the author's personal interpretation of the specific situation using relevant historical interpretations.

Using raw territorial gains and losses per year, to preform a regression would have been ideal for this study. However, two glaring issues would have resulted. First, over the 42 years and across the six empires, a meager 45 out of 252 observations were made in which an imperial power experienced a territorial gain or loss in one year. Obviously, this overwhelming number of 'zero' observations would have resulted in a poor regression. Therefore, the territorial gain and loss data was expressed as the total amount of territory gained or lost over the prior five years. When this is done, the number of non-zero observations increases to a more useful 116 out of 252. Furthermore, the author believes that spreading the changes over five years is a better method. As previously noted, this study struggled with how to determine the sizes of territories and under what circumstances to change their 'ownership' status. By lagging the data, the author believes he has created a more accurate tallying method.

The remaining problem with using unaltered acquisition and loss magnitudes in regressions would have been the overemphasis of gains made by already large empires and the underemphasis of gains made by smaller empires. That is, the gain of Kenya by

the British Empire would have been seen as a greater accomplishment than the gain of Korea by Japan simply because Kenya is a slightly larger territory. The author believes it is a safe assumption that the gain of Korea increased the prominence of the Japanese Empire much more than the gain of Kenya increased the prominence of the British Empire. To remedy this, percentage changes in empire sizes were applied rather than simple magnitude increases. Combining this with the five year method, the dependent variable can be expressed as the total five year percentage change in the size of an empire.

<u>Tariffs</u>

Mean tariff rate statistics were not available for the 19th century for the same reasons that governments do not publish their own mean tariff rates today. Notably, most countries maintain different tariff rates for different commodities and choose to calculate and collect these tariffs in multiple ways. For example, some countries chose to value goods and collect tariffs at their ports. Others chose to collect lump sums based upon volumes of goods imported. However, two important pieces of data were recorded by the governments. The first was total import value, the estimate of the total cost of imported goods. The second was government customs revenue, the amount collected by the government for import/export activities. By definition, an average tariff rate would be exactly the value of customs tax collected divided by total import value. This then serves as a good method for tariff estimation.

Average World Tariff Rates

While exactly six countries are represented by the regressions, average world tariff rates were not calculated as the average tariff of these six countries. Rather, four more countries, Italy, Belgium, the Netherlands, and Austria-Hungary were averaged into the world tariff rates. This was done in order to better express what countries across the world were facing in terms of trade barriers. It was also especially important to increase the sample size because Great Britain demonstrated a reluctance to raise their tariff rates as high as other imperial powers. The reason for the exclusion of the other largest economies, China, Russia, and the Ottoman Empire, was simply because the OECD did not, at the time of this writing, estimate year by year Gross Domestic Products for these three states. GDP figures are necessary to calculate the weighted average tariff rate variable described in the next section.

Weighted Average Tariffs

In order to better capture still what costs were really being experienced by merchants, it was necessary to weight the tariffs of, for example Great Britain higher than those of Belgium. Thus, the final representation of the world average tariff rate was weighted by Gross Domestic Products. The average tariff rate calculated is then best thought of as an expression of the resistance of world trade.

⁸ These four countries were selected over others because of their economic size, proximity to Western Europe, and available monetary records.

⁹ See Appendix II

¹⁰ Maddison, Angus. Statistics on World Population, GDP and Per Capita GDP, 1-2006 AD (Last Updated October 2008)

Cost of Foreign Tariffs

The cost of foreign tariffs equation mentioned in the hypothesis section of this study (Equation 2) and shown again in Equation 3, is used to calculate the cost of foreign tariffs variable. However, like the average world tariff rate calculation, the cost of foreign tariffs is again calculated by taking into account the tariff rates of Italy, Belgium, the Netherlands, and Austria-Hungary. Thus, to calculate the cost of foreign tariffs, one starts with the foreign GDP. Then, this is multiplied by the foreign average tariff and divided by the capital-to-capital distance. What results is essentially the size of a foreign economy reduced by the factors of resistance to international trade (tariffs and distance). The sum of the nine foreign countries is then divided by the GDP of the home country. This serves to equal out the variable over time and ensure that it remains useful as an explanatory variable in a linear regression. The final variable is shown in Equation 3.

Equation 3: Cost of Foreign Tariffs

Cost of Foreign Tariffs =
$$\sum_{j}^{n} \left[\frac{GDP_{j} * Average Tariff_{j}}{Distance_{ij}} \right] / GDP_{i}$$

subscript $i(_{i})$ represents the home country

subscript $j(_{j})$ represents a foreign country

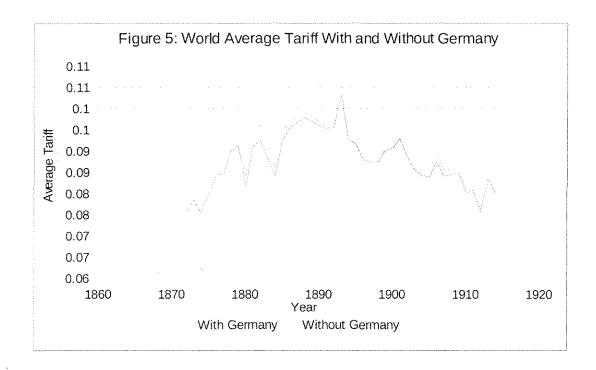
n is the number of countries

GDP – Utilized as an independent variable and to calculate cost of foreign tariffs

The GDP figures from 1870 to 1913 for the six countries considered has been taken from Angus Maddison's online database. Maddison's GDP data is denominated in millions of 1990 International Geary-Khamis Dollars. To the author's knowledge, this dataset is the only one sufficiently developed to offer the required figures for the required time period.

Distances - Used to calculate cost of foreign tariffs

Assuming a linear relationship between shipping distance and shipping cost, the gravity model can be used to estimate relative magnitudes of international trade. The distances between countries found in Appendix III represent capital-to-capital geodesic distances drawn from the CEPII (Research Center in International Economics) dataset. Using capital-to-capital distance makes sense because, during this period capitals not only tended to contain the most people but also tended to be near modern weighted centers of population and economic activity. Furthermore, the capitals likely experienced much, if not most, foreign trade. Thus, a distance measurement from one capital to another results in a good estimation of the shipping distance from one country to another.


Gaps in Data

¹¹ Angus Maddison is an emeritus professor of economics at the University of Groningen. Part of his work is the calculation of historical GDP and Population Statistics for the OECD (Organization for Economic Cooperation and Development).

Maddison, Angus. Statistics on World Population, GDP and Per Capita GDP, 1-2006 AD (Last Updated October 2008)

¹² The Geary-Khamis dollar is a hypothetical unit of currency with the same purchasing power as 1990 US dollar. It is a calculated with purchasing power parity and the price of commodities as inputs. Maddison, Angus, and Organisation for Economic Co-operation and Development. The World Economy: A Millennial Perspective. Paris, France: Development Centre of the Organisation for Economic Co-operation and Development:2001.

Thus far, throughout this study, the 'new imperial period has been referred to as being from the end of the Franco-Prussian war to the beginning of World War I. It has may have been implied that all necessary data for the years of 1872 through 1914 has been collected. This is not the case. The year of 1914 has not been used in the regression. Presumably, because of the start of World War I in 1914, the data became markedly more erratic. In the authors opinion, this was enough to justify its emittance. The year of 1872 however showed no significant erratic behavior due to war and thus was included. There were then exactly 42 years worth of observations made. Also notable, no import statistics could be found for Germany before 1880. This does ultimately affect the effective-export-market equation though most likely in a minor way. Essentially, for all countries but Germany, the magnitude of the total effective-export-market is expressed as an average of eight countries from 1872 to 1879 and an average of nine countries from 1880 to 1914. Ultimately, this should be worrisome except for its minor impact as shown graphically (see Figure 5). The effect should therefore be negligible.

CHAPTER IV

DATA ANALYSIS

The ultimate goal of this particular study was to establish, if significant, how important tariff rates were to the territorial gains of imperial countries. Under the model, territorial gains are simplified as square kilometers regardless of the quality of the territory. The hypothesis developed in this study (Equation 2) would predict that tariff rates have a positive correlation with territorial growth. Several other variables were also mentioned as potentially explanatory. The measures of ability (GDP, population, railroads open, GDP per capita, and railroads per capita) were hypothesized to be the 'how' variables for countries who desired to pursue imperialism. The amount of territory remaining was seen as important because the marginal cost of acquiring territory was expected to increase as the amount of territory not colonized decreased. Also included was a constant term which represented a territorial drive. All three sets of supplementary variables were expected to be significant and positive.

The data analysis chapter has been divided into two sections. The first section tested the 'broad hypothesis' with six-country aggregate percentage change in territorial size being a factor of average tariff rates, unclaimed territory, an ability variable, and a constant. The second section tested the 'country-by-country' hypothesis in which individual imperial percentage changes are similarly a factor of the cost of foreign tariffs, unclaimed territory, an ability variable, and a constant.

Both linear and logarithmic regressions were performed in order to capture as much information as possible. All regressions were performed in a robust manner. The significance level was always set at 5%. When the R-squared is referenced, it refers to the adjusted R-squared unless otherwise stated.

Broad Hypothesis

The first analysis performed compared average tariff rates and world territorial expansion. More specifically, the goal was to determine the lag time between a tariff rate level and the subsequent change in territorial size. This relationship was first seen in Figure 1 (chapter 1). The regression results are presented in Table 3. Although all lag times are significant, the highest R-squared of .5063 occurs when using a three year lag time. Of course, the real lag time between a tariff rate and the completion of imperial policy probably varies significantly over countries and time. However, because the lag time can

be graphically seen to be within this range and the real lag time likely varies significantly over time and country, a three year lag time was subsequently utilized for the rest of the analysis.

Table 3: World territorial change under different lags

	No Lag	1 year lag	2 year lag	3 year lag	4 year lag	5 year lag
Coefficient on Weighted Average Tariff	0.8398	0.8496	0.8577	0.8673	0.8735	0.8817
Standard Error	0.1417	0.1423	0.1421	0.1448	0.1477	0.1517
Observations	42	41	40	39	38	37
R-squared	0.5015	0.5056	0.5060	0.5063	0.5020	0.4980

From this initial result, the aggregate hypothesis was tested under all five ability measures with and without the constant variable. The results are shown in Table 4.

Several points are interesting. First, it is obvious that the constant variable contributes nearly nothing to the regression as the R-squared is nearly cut in half when it is included. Second, as expected under the hypothesis, all of the 'ability' variables improved the R-squared in a significant and roughly equal way. The surprise was that, all variables other than the average tariff came out with negative coefficients. Because this makes no sense to the model and because most of the explanatory power still comes out of the average tariff, there is no other choice but to disregard these variables.

Taking the natural log of all variables results in much the same result (Table 5) except for the role of territory left. In this regression, unclaimed territory is shown to be both positive and significant as expected under the hypothesis. The R-squared for the weighted average tariff and unclaimed territory was .8509. This was the best rational R-

squared found in the entire data analysis. As for all the other variables, the same conclusions as ordinary linear regression applied. The ability variables are all negative or non-significant and the constants again prove to be more deleterious than helpful.

Table 4: Aggregate Hypothesis

V4 V 71	1	2	3	4	5	6	7	8	9	10	. 11	12	13
Weighted average tariff	0.86727	1.20663	2.26830	4.67847	4.81227	5.30224	4.83831	5.31932	3.93456	4.08083	4,52138	3.94235	4.56218
	0.14479	0.66613	0.58558	1.39801	1.44111	1.60816	1.42542	1.74672	1.40940	1.46238	1.50249	1.52307	1.51320
Unclaimed Territory (millions of square km)		-7.000E-10		-0.00395	-0.00051	-0.00499	-0.00207	-0.00355	0.02951	0.02157	0.01372	0.02552	0.01460
		1.200E-9		0.00163	0.00117	0.00199	0.00125	0.00181	0.01991	0.01305	0.00828	0.01756	0.00629
Total GDP			-2.522E-7	-3.335E-7					2.327E-7				
			8,860E-8	1.109E-7					3.473E-7				
Total population					-1.867E-6					6.440E-7			
					6.205E-7					1.600E-6			
Total open railroads in km						-6.698E-7					-9.000E-8		
						2.201E-7					2.822E-7		
Total GDP per capita							-0.13705					0.07405	
							0.04414					0.13698	
Total open railroads per capita								-0.23813					-0.02744
								0.08428					0.07658
Constant									-2.43249	-1.94447	-1.30534	-2.21857	-1.36077
							,	J	1.45327	1,15686	0.60778	1.40279	0.50665
Adjusted R-squared	0.506	0.508	0.638	0.638	0.640	0.628	0.640	0.602	0,339	0.336	0.335	0.337	0.335

Table 5: Logarithmic Aggregate Hypothesis (39 obs)

	1	. 2	3	4	5	6	7	8	9	10	11	12	13
In(Weighted average tariff)	1.3654	1.7366	3.7073	6.5451	6.3795	7.0408	6.6871	6.9475	3.4527	3.2745	3.2371	3.9232	3,3045
	0.0936	1.0584	1.0220	1.5387	1.5041	1.7865	1.5665	1.9583	1.6418	1.6299	1.5300	1.7218	1.4888
In(Territory remaining)			0.2710	2.0823	3.3613	1.7944	0.8295	0.6870	31.4157	32.5493	21.4644	27.6593	18.5880
			0.1241	0.7388	1.2772	0.6915	0.2461	0.2412	9.2305	9.2446	6.1028	10.0635	5.5812
In(Total GDP)		0.0576		-1.9873					3.9088				
		0.1729		0.8132					1.7545				
In(Total population)					-4.0222					9.8580			
					1.6701					3.9570			
In(Total open railroads)						-1.6038					1.9263		
						0.7362					0.7458		
In(Total GDP per Capita)							-3.9024					5.3770	
							1.5758					3.5242	
In(Total railroads per capita)								-2.2913					2.3185
, , , , , ,								1.2254					0.9214
Constant									-612.5560	-703.3630	-406.3420	496.9650	-330.7120
									188.0760	212,1510	116.5000	185,5130	100.2520
R-squared	0.8439	0.8442	0.8509	0.8875	0.8866	0.8761	0.8880	0.8665	0.4060	0.4212	0.4086	0.3916	0.4044

Table 6: Great Britain Hypothesis

	1	2	3_	4	5	6	7	8	9	10	11	12	13
Great Britain cost of foreign tariffs	0.34	0.1104	0.9240	0.8058	0.8506	0.9392	0.7490	0.7809	0.6296	1.1227	0.2579	0.5682	-0.6327
	0.06	0.1339	0.3514	0.3543	0.3266	0.3808	0.3630	0.3745	0.5790	0.6905	0.8208	0.4672	0.5378
Unclaimed territory (millions of square km)		0.0015		0.0031	0.0078	0.0076	0.0063	0.0216	0.0229	-0.0133	0.0386	0.0276	0.0051
		0.0009		0.0011	0.0023	0.0024	0.0025	0.0094	0.0363	0.0442	0.0337	0.0188	0.0087
Great Britain GDP			-1.53E-006	-2.459E-6					0.0000				
			9.12E-007	1.047E-6					0.0000				
Great Britain population					-1.806E-5					0.0000			
					6.367E-6					0.0001			
Great Britain open railroad (km)						-2.557E-5					0.0000		
						9.710E-6					0.0001		
Great Britain GDP per capita							-0.1397					0.0469	
							0.0683					0.2223	
Great Britain open railroad per capita								-2.1111					9,4996
								0.9860					3.9155
Constant									-1.5661	2.1531	-3.1982	-2.0274	-6.8598
			, -						2.8990	4,4956	3.3917	1.9113	2.3761
Adjusted R-squared	0.4540	0.4722	0.4926	0.5528	0.5613	0.5502	0.5443	0.5229	0.1871	0.1990	0.1917	0.1885	0.2942

Table 7: Logarithmic Hypothesis Great Britain (36 obs)

	1	2	3	4	5	6	7	8	9	10	11	12
In(Great Britain cost of foreign tariffs)	2.3788	0.2255	2.4411	2.3773	2.6790	2.3416	-2.2316	1.1999	6.1050	4.6171	0.9778	-0.0566
	0.2268	0.4218	0.6711	0.6194	0.6851	0.7700	0.7747	1.3785	2.4200	2.7379	0.8804	1.8623
In(Unclaimed territory in millions of sqkm)		-0.5543	8.0801	11.2493	11.5722	2.2690	3.5972	23.9446	-31,1394	-1.2084	26.9921	11.5481
		0.1336	2.2297	2.6895	2.8279	0.9548	0.8828	2.5136	36.0394	17.2614	8.3800	7.2294
In(Great Britain GDP)			-2.8319					-14.6586				
			0.7391					5.0766				
In(Great Britain population)				-4.4550					-27.6789			
				1.0205					20.3487			
In(Great Britain railroads open)					-4.6952					-15.5431		
					1.1000					14.3896		
In(Great Britain GDP per capita)						-7.0689					6.7214	
						2.4818					5.4120	
In(Great Britain railroads per capita)							62.1428					30.4243
							13.3987					27.0258
Constant								-130.7830	512.6530	165.8970	-122.9280	-40.9471
			,					-121.2150	-331,0060	-220.0220	-41.9132	-35.8425
R-squared	0.7306	0.7892	0.8602	0.8678	0.8665	0.8416	0.8622	0.3475	0.4189	0.3645	0.3708	0.3631

Country by Country Hypothesis

Being the largest empire of all time and the principle empire of the period, the British

Empire was utilized for setting precedents for all the other countries (see Table 6). The

set of regressions were mostly the same as those performed on the aggregate hypothesis.

Of course, instead of average tariff, the cost of foreign tariffs variable was used along

with the supplementary variables. Beginning with the linear regressions, again, much the
same results as the broad hypothesis are seen. First, the constant does not seem to hold an
important enough role to even be considered as part of the regression. Second, all of the
ability coefficients are again negative. So, as before, under linear regression, the tariff
rates (expressed as cost of foreign tariffs) seems to be the only variable which has a
predictive role.

Using the framework developed under the analysis of Great Britain, linear regressions for the remaining five empires are shown in detail in Appendix IV. In these regressions, the constant variable has been completely disregarded to simplify the tables. The logistic regressions are shown in Table 7 for Great Britain and Appendix V for the remaining five. For the logistic regressions, it is important not to take the astronomical R-squares as completely rational. The logistic regressions of every country are suspect because of the sample size used. In a logistic regression, every negative or zero value must be dropped because the logarithm for values less than or equal to zero is undefined. For countries like Spain, the United States, or Japan, this has a huge effect. Out of the 42

years, only seven logarithmic observations were made. Because of the nature of robust logarithmic regressions, the number of observations are not reflected in the adjusted R-squared. Most of the country by country logarithmic regressions can then be disregarded.

Observing the detailed country-by-country linear regressions, it is clear that the same conclusions drawn can be drawn again. Again, only the tariff (cost of foreign tariff) variables are significant. To simply this finding, linear regressions utilizing only the cost of foreign tariffs variable are shown in Table 8. As might be expected because of the continuousness of British imperial expansion, no country demonstrates as good of a compliance with hypothesis as Great Britain does. All countries with the exception of Spain however did show some compliance with the hypothesis.

Table 8: One variable country by country hypothesis

	Great Britain	France	Germany	Spain_	United States	Japan
Cost of Foreign Tariffs	0.3430	0.2344	2.7173	0.0086	0.2033	0.5240
	0.0628	0.0467	1.1139	0.0256	0.0867	0.1415
R-squared	0.4540	0.4137	0.1478	0.0035	0.1390	0.2766

Spain's poor significance and R-squared does make statistical sense. Although Spain was technically considered an imperial power, the country was a net loser from 1872 to 1914 and was ultimately thrown in to provide for exactly this sort of questioning of the theory. Observing the detailed Spanish linear regression, it does not seem that any variables developed in this study can explain why Spain gained and lost the territory that it did when it did. The only conclusion that can be drawn is that the hypothesis developed works well for the successful imperial powers but less so for other countries.

CHAPTER V

CONCLUSION

Between 1872 and 1914, 22.6 million square kilometers or more than 16% of the Earth's surface was conquered by the countries of Great Britain, France, Germany, Spain, the United States, and Japan.¹ This brought a total of 43% of the globe under the control of these six governments.² If we also consider the next five most prolific empires of Russia, Italy, the Netherlands, Portugal, and Belgium, 67% of the world's landmass is accounted for in 1914 by only 11 governments.³ At the same time, this historical period witnessed to an end of the free trade regimes developed during the mid 19th century and a return to increasing protectionism. This paper attempted to correlate and explain the two.

¹ See Appendix I. Again, world territorial size is assumed to be 134.94 million (source: Central Intelligence Agency, *World Factbook* (2009))

² See Appendix I. Total is 17,990,405 additional square kilometers of controlled empire (This includes the home countries) and another 17,994,570 square kilometers for the dominions of the British Empire (Canada, Australia, and New Zealand) Location Theory and International and Interregional Trade Theory) totaling 58,634,202.

³ Assuming modern day territorial sizes of Russian Empire, Italy, Libya, Eritrea, Somalia, Netherlands, Indonesia, Portugal, Angola, Mozambique, Belgium, and the Democratic Republic of the Congo totaling 31,693,127 square kilometers

It is clear that there is a significant correlation between tariff rates and imperial expansion in the 19th century.⁴ To explain this correlation, one must view an increase in foreign and domestic tariff rates as being the cause of a direct loss of income for the citizens of these countries. In order to regain this lost income, the theories set forth suggest that countries pursue imperial expansion over trade diplomacy as the most rational course of action.

From the regressions run, the hypothesis was all but confirmed. That is, it was shown that certain tariff rate levels could predict, after a three year lag, about half of imperial expansion from 1872 to 1914. While the supplementary explanatory variables did not prove significant, this did not alter the main point of this study. Of course, the regressions run do not inevitably imply that the theory developed explained this. As is always the case, correlation does not imply causation. Correlation furthermore doesn't prove any sort of relationship. It is simply a statement of a relationship between numbers. To establish a logical relationship then, one must look to the contemporaries of the period to get some idea of what was happening. Prime Minister Cecil's statement to the French ambassador, "If you were not such persistent protectionists you would not find us so keen to annex territory," might lead us to believe that high tariff rates result directly in increasing colonization.

In an era in which colonization is, more or less, non-existent, one might wonder how the conclusions drawn in this study apply to modern economics. In fact, the author believes that the conclusions drawn are essential to understanding some modern trends.

⁴ See Figure 1.

For example, the phenomena of trade blocks (EU, NAFTA, South American, East Asian, etcetera) which are arbitrarily defined by geographic and cultural borders might be the same thing as 19th century imperialism under different methods. Whether these might lead to a more united or a more divided world is a matter of debate. One thing however is certain. Protectionism, while often politically convenient, has far reaching consequences, whether in the 19th century or in the modern day.

APPENDIX I – TERRITORIAL DATES AND SIZES

(For methodology, see methods section)

	Type (1 gain.	2					4				
Year	1055)	isos	Terntory	Size	Total Territory	GBR Territory	FRA Temtory	DEU Territory	ESP Territory	JPN Terntory	USA Territory
			Already in the possession of		-						-
<1860			one of the six countries		17990408	4982479	3237619			377873	8080464
1860	1	ESP	Ini (Merocco)	1502	17991907	7 4982479	3237619	257021	956451	377873	8080464
1862	2	ESP	British Honduras (Belize)	22966	1796894:	4982479	3237619	367021	933485	377873	8080464
1862	1	GER	British Honduras (Belize)	22960	17991907	5005445	3237619	357021	933485	377873	8080464
1863		FRA	Cambodia	181039	18172942	2 5006445	3418654	357021	933485	377873	8080464
1867		USA	Alaska	663268	18836210	5005445	3418654	357021	933485	377873	8743732
1867	2	RUS	Alaska	663268			3418664		933485	377873	
1874		GBR	Gold Coast (Ghana)	238535			3418654				
1874		GBR	Fig	18274			3418654				
1875		GER	Perak	21006			3418664				
1877		GBR	Transvaai	283918			3418654				
2371	•	~~~	Portuguese Guinea (Guinea	1,000 4.0	3010-1011		0.12440.	44.00		0.1014	Gr. Gran
1879	1	PRT	Bissau)	36544	18771219	5567178	3418654	357021	933485	377873	8743732
1880		FRA	Congo-Gabon	609745			4028399				
1880		GBR	Transveri	283916			4028399				
1880		FRA	Tahiti and dependencies	1049			4029444	357021			
1881		FRA	Tunisia	163610			4193054				
1881	1	GBR	Sabah (Northern Borned)	76115			4193054				
1882		FRA	New Hebrides (Vanuatu)	12189			4205243				
1882	1	GBR	1/2 Egypt	501225			4205243			377873	
1882		FRA	Vietnam	331690			4536933				
1884	1	DEU	German New Guinea	249500						377873	
1884	1	GBR	Southeast New Guinea	213340			4536933			377873	
1884	1	DEU	Cameroon	475422	21121182	6073940	4536933	1081943	933485	377873	8743732
	_		German Southwest Africa		***********		vectarn.	4545515	202404		00.40000
1884	1	DEU	(Namibia)	835100			4536933			377873	
1884	1	DEU	Togolsad	295320			4636933			377873	
1885	1	ESP	Cape July	32898			4536933			377873	
1885	1	CBR	Bechuanaland (Botswana)	600370			4535933			377873	
1885	1	ESP	Rio de Oro	184000			4536933			377873	8743732
1885	1	BEL	Congo	2344858	26413728		4536933	2212363		377873	8743732
1885	1	ESP	Carolines	13000	25426728		4536933	2212363		377873	
1886	1	FRA	Comoros Islands	2235	25428963	6674310	4539168	2212363	1163383	377873	8743732
1886	1	GBR	Kenya	582646	26011609	7256956	4539168	2212363	1163383	377873	8743732
1886	1	DEU	Rwanda	26379	26037988	7256956	4539168	2238742	1163383	377873	8742732
1886	1	GBR	Burna	676678	26714566	7933534	4539168	2238742	1163383	377873	8743732
1886	1	GBR	Jubaland (Southern somalis)	87000	26801566	8020534	4539168	2238742	1163383	377873	8743732
1886	1	DEU	Tanzania	945090	27746656	8020534	4539168	3183832	1163383	377873	8743732
1886	1	DEU	Marshali islands	181	27746837	8020534	4539168	3184013	1153383	377873	8743732
1886	1	DEU	Burundi	27816	27774653	8020534	4539166	3211829	1163383	377873	8743732
1887	1	FRA	Wallis Islands	775	27775428	8020534	4539943	3211829	1163383	377873	8743732
1888	1	688	Brunei -	5765	27781193	8026299	4539943	3211829	1163383	377873	8743732
1886	1	GBR	Cook Islands	240	27781433	8026639	4539943	3211829	1163383	377873	8743732
1888	1	DEU:	Nauru	21	27781454		4539943	3211850		377873	6743732
1888	2	FRA	.5 New Hebides	5094.5	27775360		4533849	3211850	1163383	377873	8743732
1888	. 1	GBR	Zimbabwe	390757	23156117		4533849	3211890		377873	8743732
1888	î	GER	Zamnia	752618	28918735		4533849	3211850		377873	8743732
1888	1	GBR	.5 New Helpides	6094.5	28924829		4533849	3211850	1163383	377873	8743732
1889	1	DEU	1/3 Samos	1010	28925839		4533849	3212860	1163383	377873	8743732
		USA		1010	28926849		4533849	3212860	1163383	377873	8744742
1869	3		1/3 Samos								
1889	1	GBR	Tokelau Islands	10	28926859		4533849	3212860	1153383	377873	8744742
1889	1	GBR	1/3 Samoa	1010	28927869		4533849	3212860	1163383	377873	8744742
1890	1		Zanzibar	1651	28929520		4533649	3212860	1163363	377873	8744742
1890	1	ML.	Eritrea	117600	29047120	9178680	4633849	3212860	1163383	377873	8744742

		e= 10 ee	Gazaland (Gaza Province of	77/17/10	01/400/087	2000		0000000	******	m recognised	
1891	1	GBR	Mozambique)	75709	29122829	9254389	4533849	3212260	1163383	377873	8744742
1891	1	GBR	British Central Africa Protectorate (Malawi)	118484	29241313	9372873	4533849	3212860	1163383	377873	8744742
1001		17474	Zumbe Region (Tete	120-0-4	£0642420	36.2.2.7	72420-9		210000	41,410	0144346
1891	1	PRT	Mozamisque)	100724	29342037	9372873	4533849	3212860	1163383	377873	8744742
1892	1	FRA	Dahomey (Behib)	112622	29454659	9372873	4646471	3212860	1163383	377873	8744742
1892	1	FRA	Senegai	196723	29651382	9372873	4343194	3212860	1163383	377873	8744742
1892	1	FRA	Mati	1240192	30691574	9372873	6083386	3212860	1163383	377873	8744742
			Gilbert and Ellice (Tuveiu)								
1892	1	GER	istands	302	30891876	9373175	6083386	3212860	1163383	377873	8744742
1893	1	FRA	Laos	238800	31130676	9373175	6322186	3212860	1163383	377873	8744742
1894	1	G8R	Liganda	326040	31466716	9699215	6322186	3212360	1163383	377873	8744742
4 DOC		GØR	Federated Malay States -	50565	31507281	9749780	6322186	3212860	1163383	377873	8744742
1895	1	JPN	Perak	145900	31653181	9749780	6322186	3212860	1163383	523773	8744742
1895 1895	1	JPN JPN	Laureng Pescudores	141	31653322	9749780	6322186	3212860	1169389	523914	8744742
1895	1	JPN	Taiwas	35801	31689123	9749780	6322186	3212860	1163383	559715	8744742
1896	1	FRA	Upper Volta (Burkina Faso)	274000	31963123	9749780	6996186	3212860	1163383	559715	8744742
1896	1	GBR	Sierra Leone	71740	32034863	9821520	6596186	3212860	1163383	559715	8744742
1896	1	FRA	Madagascar	587041	32621904	9821520	7183227	3212860	1163383	559715	8744742
1898	1	USA	Hawaii	28311	32650216	9821520	7183227	3212860	1163383	559715	8773053
1898	1	USA	Philipines	300000	32950215	9821520	7183227	3212860	1163383	559715	9073053
1898	1	USA	Guam	541	32950756	9821520	7183227	3212860	1163383	559715	9073594
1898	ž	ESP	Philipines	300000	32650756	9821520	7183227	3212860	863383	559715	9073594
1898	1	USA	Cuba	11861	32662617	9821520	7183227	3212860	863383	559715	9085455
1898	1	USA	Wake Island	7	32662624	9821520	7183227	3212860	863383	559715	9085462
1896	1	USA	Puedo Rico	9104	32671728	9821520	7183227	3212860	863383	559715	9094566
1898	2	ESP	Guan	541	32671187	9821520	7183227	3212860	862842	559715	9094566
1898	2	ESP	Cutia	11861	32659326	9821520	7183227	3212860	850981	589715	9094566
1898	2	ESP	Puerte Rico	9164	32650222	9821520	7183227	3212860	841877	559715	9094566
1898	1	FRA	Gurrea	245857	32896079	9821520	7429084	3212860	841877	569715	9094566
1898	2	ESP	Wake Island	7	32896072	9821520	7429084	3212860	841870	559715	9094566
1899	2	GBR	1/3 Samoa	1010	32895062	9820510	7429084	3212860	841870	559715	9094566
1899	2	USA	1/3 Samoa	1010	32894052	9820510	7429084	3212860	841870	559715	9093556
1899	1	FRA	Central African Republic	622984	23517036	9820510	8052068	3212860	841870	559715	9093556
1899	1	USA	American Samoa	200	33517236	9820510	8052068	3212860	841870	559715	9093756
1899	1	D€U	German Samoa	2830	33520066	9820610	8052068	3215690	84187D	559715	9093756
1899	2	DEU	1/3 Samoa	1010	33519056	9820510	8052068	3214680	841870	559715	9093756
1899	1	DEU	Northern Marianas	477	33519533	9820510	8052068	3215157	84187G	559715	9093756
1899	1	DEU	Carolines	13000	33532533	9820510	8052068	3228157	841870	559715	9093756
1899	1	GBR	.5 Sudan	1252906 5	34785440	11073416	8052068	3228157	841870	559715	9093756
1899	1	DEU	Marshall islands	181	34785621	11073416	8052068	3228338	841870	559715	9093756
1900	1	GBR	Northern Soloman Islands	9300	34794921	11082716	8052068	3228338	841870	559715	9093756
1900	1	GBR	Nice and Tonga	1008	34795929	11083724	8052068	3228338	641870	559715	9093756
1900	1	GBR	Ocean island	6.5 9300	34795935	11083731	8052068 8052068	3228338 3219638	841870	859715	9093756
1900 1901	2	OE'U GBR	Northern Soloman Islands	923768	34786635 35710403	11083731		3219038 3219638	841870	559715 559715	9093758
1901	1	OBK	Nigena .S South Africa not already	923768	23110403	12007499	8052068	3%19038	841870	209/10	9093756
1902	1	GBR	Obsessed	1022660	36?33063	13030189	8052068	3219038	841870	589718	9093756
1902	2	USA	Cuba	11861	36721202	13030159	8052068	3219038	841870	559715	9081895
1903	1	USA	Panama Canai Zone	1432	36722634	13030159	8052068	3219036	841870	559715	9083327
1904	2	RUS	5 Sakhalin	39000	36683634	13030159	8052068	3219038	841870	559715	9093327
1904	1	JPN.	5 Sakhalin	39000	36722634	13030159	8052068	3219038	841870	598715	9083327
1964	1	JPN	Korea	223170	36945804	13030169	8052068	3219038	841870	821885	9083327
1909	1	GBR	Unledensted Malay States	60793	37006597	13090952	B052068	3219038	841870	821885	9083327
1910	1	GBR	Shutan	47000	37053597	13137952	8052068	3219038	841870	821885	9083327
1931	1	ITI.	Libya	1759541	38813136	13137952	8052068	3219038	841870	821885	9083327
			Spanish Sahara (Western	-							-
1912	1	ESP	Sahara)	349719	39162857	13137952	8052068	3219038	1191569	821865	9083327
1912	1	FRA	French Morocco (+95%)	423747.5	39586605	13137952	8475815	3219038	1191589	821685	9083327
1912	1	FRA	Mauritania	1030700	40617305	13137952	9506515	3219038	1191589	821885	9083327
1912	1	ESP	Spanish Morocco (~5%)	22327.5	40639632	13137952	9506515	3219038	1213917	821885	9083327

APPENDIX II - TARIFF CALCULATIONS

(Customs and Imports are drawn from Mitchell's International historical statistics)

CRES FRA DESS E.SP 1996 Train to the control of the	Trans Colouradion	,5°N; Fignif Calculation
Total Control of the	Destons Riskins Tarife	Cupagerray industs familia
Vess # Countries sequent facts Countries request Countries (countries imports facts Countries (countries imports facts Countries (countries imports facts) (countries imports	5.4 260 0.3	
1864 52 317 R23 138 Z4Q 0.05 92 458 0.15	40 293 01	
1980 De 2006 GILL 1831 2199 GOT SS 464 GT	A9 192 0.2	
1864 23 245 B304 187 2436 G47	69 247 62	
1860 N2 275 C 088 1.54 2552 O 05 56 568 O 3	162 316 9.3 85 242 6.3	
1888 21 273 568 125 262 6.66 57 472 0.13 1888 72 76 6.67 123 2784 0.64 53 426 9.14	85 247 63 279 436 94	
	176 401 04	
2000 100 100 100 100 100 100 100 100 100	164 HG 54	
1980 72 286 0.67 1.70 3305 0.04 44 448 0.3 1880 22 296 0.07 74 3323 0.03 51 386 0.33	180 424 04	
1877 70 567 617 82 2867 663 52 599 613	196 460 6.4	3 5200 33,743 9,63
1271 26 131 6 00 106 106 106 106 105 56 456 6 12	206 534 6.3	
1677 21 365 COM 110 2570 COM 95 53 800 CM	236 652 0.3	
1679 20 371 6302 163 3655 6465 127 627 414 645	188 655 0.2	
782 779 370 0.000 127 380% 0.04 204 504 67 536 5.78	163 575 G.Z	
1879 20 374 000 182 3537 0.00 151 72 478 5.10	157 540 0.2 248 469 6.3	
1874 20 375 6.60 203 5680 0.100 125 63 529 0.301 687 589 0.00 120 120 120 120 120 120 120 120 120 1	248 469 6.3 131 466 6.2	
1471 20 304 004 100 000	136 453 5.2	
	137 461 6	
1879 18 363 0.05 237 4506 0.06 135 131 322 0.73 1884 19 323 0.65 762 3533 0.05 252 2834 0.66 11c 6.24 6.73	12k? 6a60 0:20	
1862 19 307 005 285 4863 0.06 161 2867 0.06 121 5/4 6.22	198 664 6	
1960 20 ALI 6 86 200 4522 6 00 587 3096 6 00 145 707 6 21	220 738 61	
1960 23 627 U-302 300 680a 0.00 197 5221 0.00 130 836 C.25	216 734 6-2	
1884 24 80 504 29 604 607 80 1236 608 123 701 614	195 620 6.25	
1460 20 371 0.05 294 4068 0.05 236 2523 0.07 126 695 0.18	181 665 G.	
1880 90 350 0.00 500 4200 0.00 232 287N 0.00 133 726 0.10	193 653 B: 217 709 6:3	
1887 70 582 1164 025 026 064 25 3106 004 134 690 0.24 	257 709 6.3 216 739 6.	
1,000	224 763 6.2	
1869년 20 43일 G-05월 551 4337 0-06월 250 4025 0-06월 127 4228 0-13 1889년 20 421 0-05월 556 4437 0-133월 358 4167 0-099 134 645 0-134	230 810 02	
1881 70 425 020 385 4768 0108 270 4121 CCS 124 742 638	Z26 B63 G-25	
1960 20 430 0.05 430 4160 U.S 360 4010 U.S 544 U.S	177 647 6.2	
189 20 465 022 433 3864 621 337 3862 668 188 615 0.24	203 ##6 G2	
1884 20 408 0.00 406 3000 0.12 363 3042 0.00 127 764 0.17	132 568 D.:	
1886 73 417 618 567 1720 G1 565 4129 G19 113 707 G19	1S2 7S2 0	
1896 Zi 442 0.05 107 3790 DIN 434 4307 0.5 122 867 U.S	10.0 809 U.S 177 796 U.S	
159년 22 451 이상 소26 9856 0.2월 441 4851 0.0여 53 902 0.1 588년 21 67 0.0년 470 6472 0.11 575 9076 0.0억 104 5076 0.2억	177 796 0-2 150 647 0-2	
	296 728 0.3	
1000	233 28 5 0.2	
1900 27 521 0.05 415 4088 0.09 466 5789 0.06 198 198 1995 0.24 2906 33 53 604 85 4390 0.34 486 5421 0.08 198 1344 0.25	236 856 0.25	
1902 25 528 0 07 305 4394 0 08 492 6635 0 08 146 1085 0.13	254 931 0.31	
1997 34 545 6.00 4.02 4862 6.66 506 6003 0.06 544 13.76 0.12	254 1050 0.2	
1900a 36 551 507 400 4502 608 450 5354 0.08 141 13.75 D.13	261 1019 0.24	
1500\$ 36 566 0.00\$ 426 4779 0.00\$ 656 7129 0.00\$ 164 1205 0.14\$	262 1345 0.23	
1990 33 608 0.665 478 5627 D.08 557 8022 0.07 189 1939 0.16	900 1271 0.2	
2907 32 696 0.09 509 5223 0.00 645 6745 0.07 190 1947 0.14	3020 1488 0.33	
100m 21 550 0.05 482 5660 0.07 542 7660 0.07 157 1015 0.12 complete to 600 0.07 157 1015 0.12	256 1228 5.2 301 1326 0.2	
	301 1-325 0-2 364 1567 6-2	
	314 1579 51	
1992) 34 680 0.03 758 6566 0.1 754 9863 0.00 177 1219 0.14 1822 33 745 0.64 88 633 0.68 756 1063 0.01 121 1249 0.14	311 1706 033	
2517 35 768 5 64 778 6421 6 67 677 10792 6 68 221 6 107	319 \$454 0.2	n 74000 796000 6.00
1856 36 667 0.66 803 1902 8.05 662 190 1905 0.66	292 1924 9.19	\$ 4450 671000 507

APPENDIX III – DISTANCES BETWEEN CAPITALS

(Distances are taken from CEPII online dataset)

Distances be	etween Capitals									
	GBR	FRA	DEU	ESP	USA	JPN	ITL	BEL	NLD	АШ
GBR .	C	342.95	495.36	1263.38	5901.34	9574.24	1438.43	323.78	360.32	1238.2
FRA	342.95	i 0	880.19	1054.66	6169.15	5838.16	1109.9	262.38	427.92	1035.14
DEU	495.36	880.19	0	1873.13	6717.54	8927.67	1187.3	653.14	577.86	523.94
ESP	1263.38	1054.66	1873.13	0	6092	10777.42	1366.76	1316.64	1481.37	1812
USA	5901.34	6169.15	6717.54	6092	0	10918.79	7224.74	6222.86	6196.85	7129.67
JPN .	9574.24	5838.16	8927.67	10777.42	10918.79	0	9869.28	9463.26	9303.38	9141.06
ΠL	1438.43	1109.9	1187.3	1366.76	7224.74	9869.28				
BEL	323.78	262.38	653.14	1316.64	6222.86	9463.26				
NLD	360.32	427.92	577.86	1481.37	6196.85	9303.38				
AUT	1238.2	1035.14	523.94	1812	7129.67	9141.06				

APPENDIX IV – LINEAR COUNTRY-BY-COUNTRY REGRESSIONS

France Hypothesis								
France cost of foreign tariffs	0.2344	-0.0511	3 0.2140	4 0.3627	5 0.4756	6 -0.7451	7 0.2239	-0.8051
	0.0467	0.1765	0.3910	0.3708	0.4916	0.5390	0.3729	0.5388
Unclaimed territory (millions square kilometers)		0.0026 0.0016	0.0030 0.0016		0.0126 0.0081	0.0038 0.0018	0.0034 0.0017	0.0035 0.0017
France GDP			0.0000	0.0000				
France population			0.0000	0.0000	0.0000			
France open railroad (kilometers)					0.0000	0.0000		
France GDP per capita						0.0000	-0.0822	
France open railroad per capita							0.0908	0.4572
Adjusted R-squared	0.4137	0.4430	0.4513	0.4153	0.4645	0.4607	0.4534	0.3234 0.4643
,,		*******		51,125	0.1014	0,750.	21,001	5. 10 10
Germany Hypothesis								
	1 2 7 7 7 0	2 2 2 2 2	3 3 4 0073	4	5	6	7	8
Germany cost of foreign tariffs	2.7173 1.1139	10.6523 7.7093	14.9671 9.1412	8.6047 3.2385	15.9580 9.4288	19.4075 10.3699	15.6932 9.2244	23.3538 11.5746
Unclaimed territory (millions square kilometers)		-0.0444	-0.0361		-0.0145	-0.0538	-0.0159	-0.0444
Germany GDP		0.0402	0.0442 0.0000	0.0000	0.0428	0.0469	0.0435	0.0462
Germany population			0.0000	0.0000	-0.0001			
Germany open railroad (kilometers)					0.0000	-0.0001		
Germany GDP per capita						0.0000	-1.4366	
							0.5498	
Germany open railroad per capita								-5.2676 2.1653
Adjusted R-squared	0.1478	0.1571	0.2475	0.2414	0.2369	0.2387	0.2617	0.2337
Spain Hypothesis								
	1	2	3	4	5	6	7	8
Spain cost of foreign tariffs	0.0086 0.0256	-0.0883 0.0737	-0.4794 0.1371	-0.3966 0.1269	-0.5028 0.1833	-0.5727 0.3068	-0.4108 0.1169	-0.5135 0.3310
Unclaimed territory (millions square kilometers)		0.0018	-0.0044		-0.0122	0.0028	-0.0091	0.0016
Spain GDP		0.0011	0.0025 0.0000	0.0000	0.0067	0.0011	0.0040	0.0012
Spain population			0.0000	0.0000	0.0001			
Spain open railroad (kilometers)					0.0000	0.0000		
Spain GDP per capita						0,0000	0.6212	
Spain open railroad per capita							0.2129	0.8371
								0.6960
Adjusted R-squared	0.0035	0.0409	0.3108	0.2265	0.2216	0.1254	0.2983	0.0886

United Stat	es Hvi	oothesis
-------------	--------	----------

United States Hypothesis					y	_	***	
	1	2	3	4	5	- 6	7	
United States cost of foreign tariffs	0.2033	1.1001	1.4692	0.1507	1.3913	1.2307	1.4353	1.0205
	0.0867	0.6212	0.7609	0.0975	0.7279	0.6802	0.7432	0.6200
Unclaimed territory (millions square kilometers)		-0.0004	-0.0006		-0.0007	-0.0005	-0.0007	-0.0005
		0.0002	0.0003		0.0003	0.0003	0.0003	0.0003
United States GDP			0.0000	0.0000				
			0.0000	0.0000				
United States population					0.0000			
, ,					0.0000			
United States open railroad (kilometers)						0.0000		
, ,						0.0000		
United States GDP per capita							0.0029	
							0.0014	
United States open railroad per capita								0.0035
								0.0016
Adjusted R-squared	0.1390	0.1791	0.2190	0.1420	0.2362	0.2280	0.2116	0.2141
Japan Hypothesis								
	1	2	3	4	5	6	7	8
Japan Hypothesis Japan cost of foreign tariffs	0.5240	2 1.7671	3 0.8209	4 -0.2814	5 0.6092	6 0,4660	7 0.7 <u>21</u> 8	8 0.2288
Japan cost of foreign tariffs		2 1.7671 0.7057	3 0.8209 0.9603	4	5 0.6092 0.9721	6 0,4660 0,8026	7 0.7218 0.9666	8 0.2288 0.8075
	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037	4 -0.2814	5 0.6092 0.9721 - 0.0066	6 0,4660 0,8026 -0,0010	7 0.7218 0.9666 -0.0049	0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers)	0.5240	2 1.7671 0.7057	3 0.8209 0.9603 -0.0037 0.0025	4 -0.2814 0.4267	5 0.6092 0.9721	6 0,4660 0,8026	7 0.7218 0.9666	0.2288 0.8075 -0.0004
Japan cost of foreign tariffs	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066	6 0,4660 0,8026 -0,0010	7 0.7218 0.9666 -0.0049	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025	4 -0.2814 0.4267	5 0.6092 0.9721 -0.0066 0.0028	6 0,4660 0,8026 -0,0010	7 0.7218 0.9666 -0.0049	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers)	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010	7 0.7218 0.9666 -0.0049	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 -0.0066 0.0028	6 0,4660 0,8026 -0.0010 0.0027	7 0.7218 0.9666 -0.0049	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010 0,0027	7 0.7218 0.9666 -0.0049	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population Japan open railroad (kilometers)	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0.0010 0.0027	7 0.7218 0.9666 -0.0049 0.0024	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010 0,0027	7 0.7218 0.9666 - 0.0049 0.0024	8 0.2288 0.8075 -0.0004
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population Japan open railroad (kilometers) Japan GDP per capita	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010 0,0027	7 0.7218 0.9666 -0.0049 0.0024	8 0.2288 0.8075 -0.0004 0.0028
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population Japan open railroad (kilometers)	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010 0,0027	7 0.7218 0.9666 - 0.0049 0.0024	8 0.2288 0.8075 -0.0004 0.0028
Japan cost of foreign tariffs Unclaimed territory (millions square kilometers) Japan GDP Japan population Japan open railroad (kilometers) Japan GDP per capita	0.5240	2 1.7671 0.7057 -0.0048	3 0.8209 0.9603 -0.0037 0.0025 0.0000	4 -0.2814 0.4267	5 0.6092 0.9721 - 0.0066 0.0028	6 0,4660 0,8026 -0,0010 0,0027	7 0.7218 0.9666 - 0.0049 0.0024	8 0.2288 0.8075 -0.0004 0.0028

APPENDIX V – LOGARITHMIC COUNTRY-BY-COUNTRY HYPOTHESIS

Logarithmic Hypothesis France (22 obs)	1	2	3	Δ	5	6	7	8
In(France cost of foreign tariffs)	2.8752	1.6964	1.6648	3,8067	3.4422	6.5552	3.9792	9.5002
In(Unclaimed territory in millions of sqkm)	0.5137	1.8454 -0.1789	1.7300	2.0687 3.8832	2.0823 6.2329	3.5103 5.9626	2.0319 0.7492	5.8689 0.6511
In(France GDP)		0.2237	-0.0667 0.0742	0.7116 -1.3590 2.1127	3.2260	2.5624	0.5333	0.6401
In(France population)			0.0742	4.114.	-2.4183 1.2164			
In(France railroads open)					2	-2.1847		
In(France GDP per capita)						0.8603	-2.7473 1.5496	
In(France railroads per capita)							1.5.750	-5.1955 2.7863
R-squared	0.6493	0.6538	0.6549	0.6658	0.6648	0.6766	0.6656	0.6844
Logarithmic Hypothesis Germany (15 obs)	1	2	3	4	5	6	7	8
In(Germany cost of foreign tariffs)	3.2183	16.9466	3,4025	-42,8083	-42.4971	-39.3651	-39.9965	-22.0198
In(Unclaimed territory in millions of sqkm)	1.0934	12.9633 3.2409	20.4130	14,3947 39.6134	15.3400 73.1552	13.8451 50.2097	13.1975 -2.0263	10.3296 -8.2020
		3.1733	5 04 CC	2.7580	12.0338	6.5470	2.3185	2.7768
In(Germany GDP)			0.0155 1.7350	-18.0402 5.3757				
In(Germany population)					-32.4693 5.6147			
In(Germany railroads open)					3.0141	-23.6004		
In(Germany GDP per capita)						3.4759	-38.4346	
In(Germany railroads per capita)							5.5715	-70.1711
				·····				9.5026
R-squared	0.3755	0.4095	0.3755	0.7873	0.7365	0.8050	0.8272	0,8787
Logarithmic Hypothesis Spain (7 obs)	+	2	3	4	5	6	7	a
In(Spain cost of foreign tariffs)	-1.3256	1.4312	1.6331	0.1464	-0.0647	-0.2567	0.6219	-0.3716
In(Unclaimed territory in millions of sqkm)	2.2488	0.3048 -0.3156	0.3502	0.0579 -2.2686	0.1135 - 3.0824	0.2750 -1.8846	0.0937 -0.6079	0.5637 -0.0612
In(Spain GDP)		0.0128	-0.1274	0.0287 0.7900	0.1313	0.1913	0.0279	0.0710
			0.0059	0.0702				
In(Spain population)					1.1813 0.0566			
In(Spain railroads open)						0.7169 0.0878		
In(Spain GDP per capita)						U1 490 1 165	2.2470 0.2238	
in(Spain ratiroads per capita)							V.ZZ30	1.6566 0.4770
R-squared	0.0266	0.9900	0.9865	0.9999	0.9999	0.9994	0.9994	0.9978

-					
Logarithmic	Hypothesis	United	States	(11	obs)

Loganthmic Hypothesis United States (11 ou	1	2	3	4	5	6	7	i
In(United States cost of foreign tariffs)	1.7796	-5.3676	6.0702	39.4031	28.3127	19.5400	81.3073	-4.1771
agorated cames back or servige across	0.2580	8.8258	13.3703	12.2649	11.5945	12.1863	22.9487	9.8850
In(Unclaimed territory in millions of sqkm)		-6.1547		-31.1368	-43.4347	-35.8488	32.4181	-8.8445
(0		7.5266		3.3689	6.1439	8.5308	11.3501	9.5742
In(United States GDP)			1.2369	21.2702				
(************************************			3.8657	5.5646				
In(United States population)					24.7575			
					4.0555			
In(United States railroads open)						16.9539		
						4.2249		
In(United States GDP per capita)							116.4300	
							28.5825	
In(United States railroads per capita)								10.9500
								20.9240
R-squared Logarithmic Hypothesis Japan (10 obs)	0.8257	0.8435	0.8270	0.9384	0.9328	0.9083	0.9432	
·	1 0.5342	2 -0.1768	3 -0.0684	-0.0648	5 -0.0413	6 -0.0360	7 -0.1268	0.8459 8 -0.0338
Logarithmic Hypothesis Japan (10 obs) In(Japan cost of foreign tariffs)	1	2 - 0.1768 0.0276	3	4 -0.0648 0.0081	5 -0.0413 0.0139	6 -0.0360 0.0114	7 -0.1268 0.0155	8 -0.0338 0.0110
Logarithmic Hypothesis Japan (10 obs) In(Japan cost of foreign tariffs)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684	-0.0648 0.0081 0.0063	5 -0.0413 0.0139 0.1065	6 -0.0360 0.0114 -0.1095	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm)	1 0.5342	2 - 0.1768 0.0276	3 -0.0684 0.0048	-0.0648 0.0081 0.0063 0.0037	5 -0.0413 0.0139	6 -0.0360 0.0114	7 -0.1268 0.0155	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065	6 -0.0360 0.0114 -0.1095	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	-0.0648 0.0081 0.0063 0.0037	5 -0.0413 0.0139 0.1065 0.0184	6 -0.0360 0.0114 -0.1095	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	6 -0.0360 0.0114 -0.1095	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP) In(Japan population)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP) In(Japan population) In(Japan railroads open)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178 0.0054	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP) In(Japan population)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178 0.0054	8 -0.0338 0.0110 -0.2243
Logarithmic Hypothesis Japan (10 obs) In(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP) In(Japan population) In(Japan railroads open) In(Japan GDP per capita)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178 0.0054	8 -0.0338 0.0110 -0.2243 0.0032
Logarithmic Hypothesis Japan (10 obs) in(Japan cost of foreign tariffs) In(Unclaimed territory in millions of sqkm) In(Japan GDP) In(Japan population) In(Japan railroads open)	1 0.5342	2 -0.1768 0.0276 -0.2403	3 -0.0684 0.0048	4 -0.0648 0.0081 0.0063 0.0037 -0.0798	5 -0.0413 0.0139 0.1065 0.0184	-0.0360 0.0114 -0.1095 0.0057	7 -0.1268 0.0155 -0.2178 0.0054	8 -0.0338 0.0110 -0.2243

SOURCES CONSULTED

- Alesina, Alberto, and Enrico Spolaore. 2003. *The size of nations*. Cambridge, Mass: MIT Press.
- Anderson, James E. 1979. A Theoretical Foundation for the Gravity Equation. *The American Economic Review* 69, no. 1 (Mar.): 106-116.
- Bergstrand, Jeffrey H. 1985. The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence. *The review of economics and statistics* 67, no. 3 (Aug.): 474-481.
- Blake, Robert. 1967; 1966. Disraeli. New York: St. Martin's Press.
- Britannica online, 1994.
- Buchanan, James M., and Gordon Tullock. 1962. *The calculus of consent, logical foundations of constitutional democracy*. Ann Arbor: University of Michigan Press.
- CIA 2009. World Fact Book.
- Coase, R. H. 1960. The Problem of Social Cost. *Journal of Law and Economics* 3 (Oct.) : 1-44.
- Coase, R. H. 1937. The Nature of the Firm. *Economica* 4, no. 16 (Nov.): 386-405.
- Dahlman, Carl J. 1979. The Problem of Externality. *Journal of Law and Economics* 22, no. 1 (Apr.): 141-162.
- Eaton, Jonathan, Samuel Kortum. 2002. Technology, Geography, and Trade. *Econometrica* 70, no. 5 (Sep.): 1741-1779.
- Emmer, P. C., Olivier Pétré-Grenouilleau, and J. Roitman. 2006. *A deus ex machina revisited :Atlantic colonial trade and european economic development*. Leiden; Boston: Brill.
- Ferguson, Niall, Moritz Schularick. 2006. The Empire Effect: The Determinants of Country Risk in the First Age of Globalization, 1800-1913. *Journal of Economic History* 66, no. 2 (06): 283-312.
- Flandreau, Marc. 1996. The French Crime of 1873: An Essay on the Emergence of the International Gold Standard, 1870-1880. *The Journal of Economic History* 56, no. 4 (Dec.): 862-897.

- Harris, Chauncy D. 1954. The Market as a Factor in the Localization of Industry in the United States. *Annals of the Association of American Geographers* 44, no. 4 (Dec.) : 315-348.
- Hobsbawm, E. J. 1975. *The age of capital*, 1848-1875. New York: Scribner.
- Hobsbawm, E. J. The age of empire, 1875-1914. New York: Pantheon Books.
- Isard, Walter, Merton J. Peck. 1954. Location Theory and International and Interregional Trade Theory. *The Quarterly Journal of Economics* 68, no. 1 (Feb.): 97-114.
- Kahneman, Daniel, Jack L. Knetsch, and Richard H. Thaler. 1990. Experimental Tests of the Endowment Effect and the Coase Theorem. *The Journal of Political Economy* 98, no. 6 (Dec.): 1325-1348.
- Kahneman, Daniel, Amos Tversky. 1979. Prospect Theory: An Analysis of Decision under Risk. *Econometrica* 47, no. 2 (Mar.) : 263-291.
- Landes, David S. 1998. The wealth and poverty of nations: Why some are so rich and some so poor. New York: W.W. Norton.
- Landsburg, Steven E. 1993. *The armchair economist: Economics and everyday life.* New York: Free Press.
- Maddison, Angus, and Organisation for Economic Co-operation and Development. 2001. *The world economy : A millennial perspective.* Paris, France : Development Centre of the Organisation for Economic Co-operation and Development: .
- Mitchell, B. R. 2003. *International historical statistics : Europe*, 1750-2000. New York: Palgrave Macmillan.
- Mitchell, B. R. 2003. *International historical statistics : Africa, Asia & Oceania,* 1750-2000. New York: Palgrave Macmillan.
- Mitchell, B. R. 2003. *International historical statistics : The Americas*, 1750- 2000. New York: Palgrave Macmillan.
- Musson, A. E. 1959. The Great Depression in Britain, 1873-1896: A Reappraisal. *The Journal of Economic History* 19, no. 2 (Jun.): 199-228.
- Olson, James S., and Robert Shadle. 1991. Historical dictionary of European imperialism. New York: Greenwood Press.
- Platt, D. C. M. 1968. Finance, trade, and politics in British foreign policy 1815-1914. Oxford; London; Clarendon P.