Files

Abstract

Acinetobacter baylyi ADP1 is a gram-negative soil bacterium that exhibits competence and twitching motility. DNA uptake is achieved via the Type IV Pilus competence machine and twitching is performed by Type IV pili. Homologues of Type IV pili proteins are involved in transformation in a variety of bacteria. The similarities between proteins involved in DNA uptake, Type IV pilus systems and type II protein secretion systems suggests that they belong to evolutionary related systems containing cell envelope spanning structures with conserved architecture and core components. As many competence proteins of ADP1 are related to structural subunits and biogensis proteins of Type IV pili, a key question is whether Type IV pili of ADP1 are directly involved in DNA uptake and binding. Or, do the pilin-like components of the transformation system make up a completely different structure? Many bacteria can perform natural transformation; however, our knowledge regarding the structures and mechanisms needed for DNA uptake is scarce. Thus, our research involved determining which genes are needed for competence, which are used for twitching motility and which are possibly involved in both functions in ADP1. In order to test each protein’s role, tdk-kan knock out mutants were created and the mutants were compared to the wild type. An existing library of proteins predicted to encode various parts of the Type IV pilus with knock out genes was used. Our results showed that the majority of tested genes are needed for both competence and twitching, suggesting a physiological relationship. Specifically, mutants with a greater twitching ability were also more competent.

Details

PDF

Statistics

from
to
Export
Download Full History