Files

Abstract

Community interactions form the foundation of ecosystems, but their complexity makes predicting species responses to new pressures a difficult challenge. For example, if climate change forces the upward range shift of one species in a system, closely interacting species will either suffer or excel under the new community compositions. This study explores the interactions between two closely related monkeyflowers (Mimulus tilingii var. caespitosus and Mimulus guttatus) and their shared pollinators in order to understand potential responses to future climate changes or species loss. We arranged plants in three community composition treatments (heterospecific, conspecific, and no neighbors) to understand how plant fitness and pollinator visitation are affected by neighboring plants. Specifically, does plant fitness decrease due to pollen limitation or heterospecific pollen deposition under any community treatment? Furthermore, how does environmental data illustrate the system's response to climate variation at different temporal scales? In our experiment, M. tilingii produced fewer seeds under the conspecific community composition and pollinator exclusion treatments (both p<.001), likely due to intraspecific resource competition and pollen-limitation. Rather than impeding plant fitness, it appears heterospecific interactions may actually stabilize M. tilingii populations. Plants and pollinators also responded positively to higher temperatures and lower cloud cover, indicating sensitivity to climate. Thus, changes in plant or pollinator species abundances, or climate could severely impact the dynamics or viability of the system.

Details

PDF

Statistics

from
to
Export
Download Full History