Files

Abstract

We aimed to find what kinds of microclimates were created by an abrupt treeline and relate those microclimates to the spatial structure of the treeline itself. We specifically wanted to understand how airflow is directly related to air temperature upslope of treeline. To do this, we took data from an abrupt treeline on Pike's Peak in the Front Range of the Colorado Rocky Mountain Range. Our data was taken in September of 2016, which is representative of the tail-end of the growing season for trees. The wind speed and direction appeared to have a strong relationship with the air temperature, as the daytime uphill anabatic airflow created eddy zones of slow-moving air that were able to warm up from sensible heat dissipated at the ground surface., The nighttime downhill katabatic winds accumulated pockets of slow-moving cold air. This study helped us understand that sheltering with respect to treelines is not the result of single and independent trees, but rather the result of the entire treeline as complete three-dimensional structure. This is important because the effects of sheltering at treeline will vary from location to location based on the shape of the entire spatial structure of the ecotone.

Details

PDF

Statistics

from
to
Export
Download Full History