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Abstract

The Cantor middle-thirds set is an interesting set that possesses various, sometimes surprising math-
ematical properties. It can be presented through ternary representation and obtained through an
iterative process. This paper will discuss selected topological properties of the Cantor set, as well as
its connection to fractal geometry. It will then discuss the existence of the Cantor set in a variety of
artistic contexts.

1 Introduction

Georg Cantor (1845-1918) was a German mathematician and the creator of transfinite set theory (Dauben
1). Cantor’s work was often regarded as controversial, partially because of the use of infinity in his
mathematics (Dauben 1). He was also the first to publish the traditional middle-thirds set, which we
refer to as the Cantor set. Though the Cantor set was an abstract concept at the time of its publication
in 1883, Cantor explored many of its deep mathematical qualities. The Cantor set is a fractal and can be
achieved through use of dynamical systems. The problem of the dynamics of iteration and fractals was
briefly explored in the early 19th century, but it was not until the use of computers that it was developed
in more depth (Mandelbrot 23). Here, we will discuss some of the topological properties of the Cantor
set. We will consider the Cantor set as both a one-dimensional and two-dimensional dynamical system.
Lastly, we will discuss the Cantor set as a fractal.

Benoit Mandelbrot developed fractal geometry in the 1970’s. He referred to his math as a new “geometric
language” (Mandelbrot 21). People were slow to accept the new mathematical concept of fractals, but
eventually Mandelbrot published a paper about his findings (Mandelbrot 22). Mandelbrot considered
fractals to be artistic objects. Here, we will discuss the connection between the Cantor set fractal and
art. We can find resemblance to fractals, particularly the Cantor set, in many artistic contexts. We will
focus on its presence in architecture and Chinese art. These connections to art make a fascinating topic
in mathematics applicable in a non-scientific context.

1.1 The Cantor Middle-Thirds Set

The traditional Cantor middle-thirds set is constructed through an iterative process. Beginning with

the closed set [0, 1], the open middle third

(
1

3
,

2

3

)
is removed. Two closed sets remain. The middle

third is then removed from each of these sets, namely the intervals

(
1

9
,

2

9

)
and

(
7

9
,

8

9

)
. This process is

repeated infinitely many times, and the set that remains is the Cantor middle-thirds set. More formally,
consider the sets I0, I1, I2..., where

I0 = I = [0, 1]

I1 = I\
(

1

3
,

2

3

)
I2 = I1\

(
1

9
,

2

9

)⋃(
7

9
,

8

9

)
...

We define the Cantor set to be C =

∞⋂
k=0

Ik, or the intersection of I0, I1, I2... We can illustrate C by

depicting each iteration of removing middle-thirds on a separate line (Figure 1).
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Figure 1: Typical representation of the Cantor Set, Tex Stack Exchange.

After the first iteration, the Cantor set consists of two disjoint intervals of length 1/3. After the second
iteration, the Cantor set consists of 4 disjoint intervals of length 1/9. At the kth iteration, the Cantor
set consists of 2k intervals of length 1/3k.

Proof. Proceeding by induction, we consider I0 = [0, 1]:

1

30
=

1

1
= 1.

At this iteration, C has 20 = 1 interval. Now, assume that the set Ik has 2k disjoint intervals of length
1/3k. If we remove the middle third from an interval, each subinterval will be one-third the length of
the original interval:

1

3k
· 1

3
=

1

3k+1
.

Also, the 2k intervals are all split into two intervals:

2k · 2 = 2k+1.

By induction, Ik consists of 2k disjoint intervals of length 1/3k.

We have described the classic middle-thirds Cantor set. However, note that any set that is constructed
by an iterative process of removal of some constant portion of the set can be considered a Cantor set.

2 Topological Properties

2.1 Ternary Representation

The Cantor middle-thirds set can be expressed through ternary representations. Recall that a geometric

series

∞∑
i=0

ai = 1 + a + a2 + a3... converges absolutely to
1

1− a
if |a| < 1. Consider the series

∞∑
i=1

si
3i

.

Suppose that each si is either 0, 1 or 2. Then the series

∞∑
i=1

si
3i

is dominated by the convergent geometric

series

∞∑
i=1

2

3i
= 1. Thus, by the Comparison Test,

∞∑
i=1

si
3i

converges and 0 ≤
∞∑
i=1

si
3i
≤ 1.

Ternary Expansion We call 0.s1s2s3... the ternary expansion of x if x =

∞∑
i=1

si
3i

, where each si is either

0, 1 or 2.

We claim that every x ∈ [0, 1] has a ternary expansion. Let s1 be the largest among 0, 1, 2 for which

x ≥ s1
3

. Then, pick the largest s2 for which x− s1
3
≥ s2

32
. Proceed inductively to get the largest sn for

which x −
n−1∑
i=1

si
3i
≥ sn

3n
. Then note that x −

n−1∑
i=1

si
3i
≤ 1

3n
and so, we see that the infinite series

∞∑
i=1

si
3i
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will converge to x.

We claim that each point x of the Cantor set can be represented as a ternary expansion 0.s1s2s3... where
each si is 0 or 2. If x has a ternary expansion for which some si = 1, then x lies in a middle third
interval that has been removed. This is because x would be past the left third interval, but it would
not yet reach the right third interval. For example, if s1 = 1, x 6=1/3 will be greater than 1/3=.1, but
it will not yet reach 2/3=.2, placing it in a middle third. This idea can be applied to any si. Thus, no
Cantor set element ternary expansion contains a 1, excluding the endpoints, which may have a 1 as the
right-most digit of their ternary expansion. In this case, x has an alternative expansion that contains no
1’s. For example, the ternary representation for 1/3 is .1 and is equivalent to the representation .0222....
So, we can consider the Cantor set to be the set of real numbers in the unit interval [0, 1] with ternary
representations containing only 0’s and 2’s.

Similarly, we can represent any x in [0, 1] by a binary expansion

∞∑
i=1

si
2i

consisting of 0’s and 1’s. We will

use this expansion in the next section.

2.2 Uncountable

When we consider the construction of the Cantor set, it seems like we “throw out” most points of the
unit interval. Intuitively, we would think that C should be a small set. The fact that the Cantor set is
actually uncountable is one of the surprising topological properties of the set. We will prove this here:

Proof. If x is in the Cantor set, it has a unique ternary expansion using only 0’s and 2’s. By changing
every 2 in the expansion of x to a 1, the ternary expansions of the Cantor set can be mapped to binary
expansions, which have a one-to-one correspondence with the unit interval. This can also be done in
the opposite direction to map binary expansions to ternary expansions. The only exceptions to this
correspondence are the binary expansions ending in infinitely many 0’s or 1’s and the ternary expansions
ending in infinitely many 0’s or 2’s. However, these exceptions are countable because there are finitely
many ways to begin a binary representation before ending in an infinite string of 0’s or 1’s, and there are
finitely many ways to begin a ternary representation before ending in an infinite string of 0’s or 2’s. Thus,
there is a one-to-one correspondence between the binary and ternary exceptions. Since each real number
in [0, 1] can be represented as a binary expansion, the Cantor set has a one-to-one correspondence with
the unit interval. Now, [0, 1] is uncountable, and so the Cantor set is uncountable.

2.3 Closed, Perfect, and Compact

Here, we will discuss why the Cantor set is closed, perfect, and compact. By construction, each Ik is

closed because it is the complement of an open set. Thus,

∞⋂
k=0

Ik is closed because the intersection of

closed sets is also closed. Therefore, the Cantor set is a closed set. We will now see that the Cantor set
is perfect.

Isolated Point Point x in set S is an isolated point if ε-ball B(x, ε) surrounding x does not contain
another point in S.

Perfect Set S is perfect if it contains no isolated points.

We claim that the Cantor set is perfect.

Proof. Consider x ∈ C. For any ε, we have the open ball B(x, ε). We can choose k so that
1

3k
< ε. Let

Ik be the union of 2k disjoint intervals of length 1/3k. Then, x ∈ Ik. Let x be in subinterval s ∈ Ik,
and then s ⊆ B(x, ε). In the k + 1 iteration, s is split into subintervals a and b. Let x be in a. By
self-similarity, we know that there must be points of C in b. Thus, there are points of C in B(x, ε)
not equal to x, and x is not an isolated point. Therefore, no point in C is an isolated point, and C is
perfect.

Now, recall that the unit interval [0, 1] is closed and bounded. Thus, it is compact by the Heine-Borel
Theorem (Ross 90). We see that the Cantor set is compact because every closed subset of a compact
space is compact (Willard 119). We have now shown that the Cantor set is closed, perfect, and compact.
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2.4 Totally Disconnected

We also can prove that the Cantor set is totally disconnected.

Totally Disconnected A set is totally disconnected if it contains no subintervals.

This is another non-intuitive property of the Cantor set. We have already proved that C is perfect, or
has no isolated points. We would then expect the Cantor set to contain subintervals. Here, we will prove
this to be false.

Proof. Consider a, b ∈ C. Recall that Ik consists of finitely many disjoint intervals of length 1/3k. We

can find k where
1

3k
< |b−a|. So, if the distance between a and b is more than 1/3k, a and b must belong

to different subintervals of Ik. By the construction of Ik, there must be an interval in (a, b) that is not

in Ik. Thus, there exists z /∈ Ik with a < z < b. Therefore, Ik does not contain (a, b). Since C =

∞⋂
k=0

In,

C does not contain any interval (a, b). Thus, C is totally disconnected.

Each of the previously discussed topological properties relate to an important theorem (Willard 217):
the Cantor set is the only totally disconnected, perfect, compact metric space (up to homeomorphism).
This is an interesting theorem that requires more complicated topology than we have discussed, so we
will not prove it here.

3 Cantor Set as a Dynamical System

We have discussed the traditional construction of the Cantor set and some of its topological properties.
We can also reach the Cantor set through the use of dynamical systems. We will explore two different
ways this can be achieved.

3.1 Iterated Function System

The Cantor set can be produced by the iteration of a function system.

Consider the two linear functions (Devaney, 192) from R2 → R2:

A0

(
x

y

)
=

1

3

(
x

y

)

A1

(
x

y

)
=

1

3

(
x− 1

y

)
+

(
1

0

)
.

We claim that if x is an element of the Cantor set, then this iterated function system will send the point
(x, y) to another point of the form (c, y1) where c is in the Cantor set. In other words, this system fixes
the Cantor set. Recall that the Cantor set consists of all points in the interval [0, 1] with ternary expan-
sions containing only 0’s and 2’s. We see that A0 shrinks the x-coordinate by 1/3, and its corresponding
ternary representation by .1. For example, consider x = .0022022 ∈ C. A0 would shrink x by .1 to
.00022022. This ternary representation consists of only 0’s and 2’s, so it is still contained in the Cantor
set. A1 shrinks the x-coordinate by 1/3 and shifts it by 2/3, or by its ternary representation of .2. For
example, A1 would shift x = .0022022 to .20022022. This ternary representation also consists of only
0’s and 2’s, so it is still contained in the Cantor set. So, we see that the system of equations A0, A1

takes points of the Cantor set back into the Cantor set. These functions, no matter the order they are
performed, leave the Cantor set fixed.

The Cantor set is called the attractor of this iterated function system. This means that any point in the
plane with any y-coordinate will eventually be “pulled into” the Cantor set when this function system is
applied. That is, after enough iterations, every point in the plane will converge to a point (c, 0) where c
is in the Cantor set. To see this, we consider any number of iterations of A0 and A1 in a random order.
We can represent this random sequence of choice of A0 or A1 by a sequence (s1s2s3...sn) where each si
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is either 0 or 2 representing the application of A0 and A1 respectively. Now let x ∈ R, and let xn be the
result of the applied sequence of A0 and A1. We see that:

xn = x · 1

3n
+

s1
3k−1

+
s2

3k−2
+ ...+

sn
3k−n

.

When we take the limit of xn as n→∞, we see that the first term x/3k approaches 0. The remainder of

this expression is of the form

∞∑
i=1

si
3i

with each si equal to 0 or 2, which we know means it is an element

of the Cantor set. The y-coordinate will be sent to 0. Thus, we see that any point in the plane will
converge to a point (c, 0), where c is in the Cantor set, after enough iterations of A0 and A1 in a random
order.

3.2 Iterated Tent Function

We can also produce the Cantor set by a different dynamical system. To illustrate this, we consider the
Tent Function:

T (x) =

{
3x ifx ≤ 1/2

3− 3x ifx > 1/2

We claim that by iterating this function, the points that are not sent to infinity are exactly the Cantor set.

If x < 0, then T (x) < 0. At the next iteration of the Tent Function, T 2(x) = 9x < T (x). At the third
iteration, T 3(x) = 27x < T 2(x). We see that as n→∞, T (n) → −∞ for x < 0.

Figure 2: Tent Function, map of point x < 0

Graphically, we trace a point from the tent map to the line y = x. We begin with a graph of the tent
function and the function y = x. At an x value outside of our interval [0, 1], we map from y = x to the
tent function. At that y value, we map back to y = x. Then, from that x value, we map back to the
tent function. By repeating this process, we see that the point we have been mapping goes to negative
infinity. Figure 2 depicts this process for x < 0.

Figure 3: Tent Function, map of point x > 1
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If we choose x > 1, after the first iteration T (x) < 0. Recall that as n → ∞, T (n)(x) → −∞ for x < 0.
Therefore, for x > 1, x is sent to −∞, as depicted in Figure 3. Thus, we find that for x /∈ [0, 1], x is sent
to negative infinity by iterating the Tent Function.

Figure 4: Tent Function, map of point 1
3 < x < 2

3

By this same process, we also see that if x ∈
(

1

3
,

2

3

)
, then x is sent to infinity (Figure 4). For example,

T (1/2)=3/2. We saw above that this is eventually sent to −∞ because x > 1.

In fact, any point in a middle third will be sent to −∞. For example, if x ∈
(

1

9
,

2

9

)
, then it is sent to(

1

3
,

2

3

)
in one iteration of the Tent Function, which we discussed above. This is supported algebraically:

if 1/9 < 2/9 then 1/3 < T (x) = 3x <2/3. This is true for any x in a middle third interval.

Any point that is in the Cantor set, with the exception of the endpoints, will be sent back to itself after
enough iterations of the Tent Function. We will not provide a formal argument for this, but we will
explore an example. Consider 3/13, which is not an endpoint. Now, we will see that 3/13 is sent back
to itself after three iterations of the Tent Function:

T

(
3

13

)
= 3

(
3

13

)
=

9

13

T 2

(
3

13

)
= 3− 3

(
9

13

)
=

12

13

T 3

(
3

13

)
= 3− 3

(
12

13

)
=

3

13

The ternary representation of 3/13 is .02002..., which confirms that it is in the Cantor set.

We also see that at the x values 0 and 3/4, there is no line to be mapped graphically. These points are
where the tent function and x = y intersect, and are called fixed points. This is supported algebraically:

3(0) = 0

3− 3

(
3

4

)
=

3

4
.

If we consider the endpoints of the Cantor set intervals, we find that they eventually are attracted to
the fixed point 0. These are called eventual fixed points. For example, endpoint 1/3 is attracted to the
fixed point 0 after the second iteration of the Tent Function:

T

(
1

3

)
= 3

(
1

3

)
= 1

T 2

(
1

3

)
= 3− 3(1) = 0

We will now prove that each endpoint is an eventual fixed point and is sent to 0:
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Proof. All endpoints of the Cantor set are of the form

n∑
k

sk
3k

because they must be rational. Recall that

the endpoints can contain a 1 in the right-most digit place, but these can be rewritten in terms of 2’s.
That is, sn = 1 is possible if x is an endpoint. If s1 = 0 then T (x) = 3x. This shifts the left-most ternary
digit left by 1. If s1 = 2, then T (x) = 3− 3x = 3− 2.s2s3...sn = 3− (2 + .s2s3...sn) = 1− .s2s3...sn. We
see that T (1 − .s2s3...sn) = T (.s2s3...sn) because T (x) is symmetrical about the line x = 1/2. We can
repeat this process until we reach sn. If sn = 0 or 2, then we repeat one last time, and we reach 0. If
sn = 1, we apply T (x) again and reach 1, which is sent to 0 by another iteration of T (x). Thus, We see
that the endpoints are eventually sent to the fixed point 0.

Here, we see an example of this process. Consider the endpoint 7/9=.21.

3(.21) = 2.1

T (.21) = 3− 2.1 = 3− (2 + .1) = 1− .1

T (1− .1) = T (.1) = 1

T (1) = 3− 3(1) = 0

We see that the endpoints are eventually sent to the fixed point 0. The endpoints are not sent to in-
finity, which means they are part of the Cantor set. This correlates with our analysis of their ternary
representations in Section 2.1.

Iterating the Tent Function sends all points of C back to themselves or to a fixed point. Thus, we see
that iterating the Tent Function fixes exactly the Cantor set.

3.3 The Cantor Set is a Fractal

The classic Cantor middle-thirds set is a mathematical object called a fractal.

Fractal A fractal is a subset of Rn that exhibits self-similarity on all scales and has fractal dimension.
A fractal does not necessarily have topological dimension.

Informally, self-similarity means that we can apply a rescaling function to the set and the image of the
set will look the same. Benoit Mandelbrot provided an informal definition of a fractal: “Fractals are
geometric shapes that are equally complex in their details as in their overall form. That is, if a piece
of a fractal is suitably magnified to become of the same size as the whole, it should look like the whole,
either exactly, or perhaps only after a slight limited deformation” (Mandelbrot 22). We can see that the
Cantor set is self-similar by examining C at a different scale. Recall that I1 consists of two intervals of
length 1/3. If we magnify one of these subintervals by 3 and continue the process of removing the middle
third, we see that we have an exact copy of the full-scale Cantor set.

3.4 Fractal Dimension

We will now discuss the difference between fractal and topological dimension.The type of dimension that
we are most familiar with is topological dimension. A point is of dimension 0, a line is one-dimensional,
a square is two-dimensional, and a cube is three-dimensional. Logically, we understand these dimensions
as the number of “linearly independent” directions we can move along an object (Devaney 185). For
example, we can move along the length and width of a square, so we understand it to be two-dimensional.
We define topological dimension here:

Topological Dimension k An open set S has topological dimension k if each point in S has an arbi-
trarily small neighborhood homeomorphic to Rk (Devaney 186).

For example, an open square has topological dimension 2 because the points in a square have arbitrarily
small neighborhoods that are two-dimensional.

Notice this applies when k = 0. In that case, every point in the set has a neighborhood that is homeo-
morphic to a zero-dimensional object, such as a point. For example, a discrete set has dimension 0.
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It remains to show that the Cantor set has fractal dimension. Finding the dimension of the Cantor set
is more complicated then finding the dimension of simpler objects. We proved that C contains no subin-
tervals. This implies that the Cantor set contains no point with a neighborhood that is homeomorphic
to R1. Thus, the Cantor set is not one-dimensional. However, C is also perfect and contains no isolated
points, so it does not have dimension 0. Therefore, the Cantor set has dimension in between 0 and 1.
We can think of the Cantor set as somewhere in the middle of unconnected isolated points and pieces of
straight lines (Peak, Frame 92). At every scale, C appears to be linear stretches, though we know that
each of these stretches is broken up at the next iteration (Peak, Frame 92). To consider the dimension
of the Cantor set, we must define a new type of dimension: fractal dimension. First, we must note that
only sets that are affinely self-similar have a well-defined fractal dimension (Devaney 186).

Affine Self-similar A set S is called affine self-similar if S can be subdivided into k congruent subsets,
each of which may be magnified by a constant factor M to yield a whole set S (Devaney 187).

As we discussed in Section 3.3, the Cantor set is affine self-similar.

Fractal Dimension Suppose the affine self-similar set S may be subdivided into k congruent pieces,
each of which may be magnified by a factor of M to yield the whole set S. Then, the fractal dimension
D of S is (Devaney 188):

D =
log k

logM
.

To understand fractal dimension, first we consider a square. We see that if we break the square into
pieces that are 1/n the size of the original square, we need n2 pieces to reassemble the square. The
fractal dimension of a square is (Devaney 189):

D =
log n2

log n
=

2 log n

log n
= 2.

We see that the topological and fractal dimensions of the square are equal.

The Cantor set has a well-defined fractal dimension. The Cantor set has 2n intervals and a magnification
factor of 3n at any stage, so the fractal dimension of C is (Devaney 190):

D =
log 2n

log 3n
=
n log 2

n log 3
= 0.6309...

As we predicted, the dimension of the Cantor set is between 0 and 1. The Cantor set does not have
topological dimension, but it does have a well-defined fractal dimension. This shows that the Cantor set
is indeed a fractal.

4 Fractals in Art

Benoit Mandelbrot considered his fractal geometry to be a new form of art (Mandelbrot 21). He claims
fractal geometry as an “art for the sake of science,” and refers to the fractal as a useful beauty (Mandelbrot
22). Art historians and mathematicians, such as Mandelbrot, have been pondering the connections
between the fields of art and mathematics for decades. Here, we will connect the Cantor set to art and
architecture.
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Figure 5: Connected Cantor Set, (Tex Stack Exchange).

Mandelbrot finds the coexistence of order and chaos in the issue of dynamics of iteration beautiful in
itself (Mandelbrot 23). He also finds images of fractals artistic. In many cases, the traditional image of a
common fractal is altered to make it more aesthetically pleasing. For example, the representation of the
Cantor set above connects each iteration to the previous iteration. This Connected Cantor set (Figure
5) is more artistic than the usual representation of the set.

This image still represents the Cantor Set. Instead the of the traditional representation that consists of
a set of separated lines, this representation exhibits one continuous object. It is a more organic image,
which makes it more aesthetically pleasing. We can find examples in Chinese art and Architecture that
resemble both this Connected Cantor set, as well as the traditional representation of the Cantor set.

4.1 Chinese Art

Fractals appear in many pieces of Chinese art. We can even find resemblance to the Cantor set, particu-
larly the Connected Cantor set. Mandelbrot claims that fractals can serve as representations for natural
objects (Mandelbrot 22), and we will apply this idea to Chinese art.

We first turn to the work of Guo Xi (1020-1090), a Chinese artist of the Northern Song dynasty (Bentley).
Guo Xi painted in the black and white monumental landscape rugged style (Murashige 343). The rugged
monumental landscape style originated in the previous Five Dynasties period and was initiated by painter
Li Cheng (Bentley). It featured “crab-claw,” defoliated tree branches. During the Northern Song period,
Guo Xi adapted this monumental style, accentuating the crab-claw branches (Bentley). Though Guo’s
work came long before the Cantor set was discovered, we can find a resemblance to the set in his art.
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Figure 6: Early Spring, Guo Xi, ink on paper; 1072.

We consider Early Spring, one of Guo Xi’s most famous works (Figure 6). This piece, painted in 1072,
features the twisting crab-claw branches that the artist was known for (Murashige 343). The branches
begin with a thick branch size, and a smaller arm branches off from each larger branch. This process
is repeated on each smaller branch until the brush stroke becomes too thin to possibly be drawn. This
process is reminiscent of the iterative process we use to construct the Cantor set. These branches also
resemble our representation of the Connected Cantor set in Figure 5. This Cantor set representation
shows each iteration connected to the next iteration in a branch-like way. The trees in Guo Xi’s Early
Spring resemble a version of our connected Cantor set in which the branches have been turned and
twisted in different directions.

Guo Xi worked in a time where Song neo-Confucianism was the most prominent philosophy accepted by
the people of China. This philosophy influenced both the subject matter and style of the work at the
time (Bentley). A major concept explored in this type of neo-Confucianism is li, which means “inner
structure.” There are three different levels of li : the human level, the natural level, and the heavenly
level (Li, Yan 205). The goal of each person is to align her own moral inner structure, which has been
corrupted by emotions, with those of nature and heaven (Bentley). These philosophical levels are fractal-
like. The ultimate goal would be for the li to be “self-similar” at each level. The human at the first
philosophical level would like to make her inner structure “look” like the the inner structure of the next
two levels. No matter the level, li should look the same. In other words, li should be self-similar. The
concept of li is defined in a similar way to the way we define a fractal. Thus, even the philosophy behind
Guo Xi’s Early Spring resembles a fractal structure.

Figure 7: Seven Junipers, Wen Zhengming; Ming dynasty.
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We will also consider Wen Zhengming (1470-1559), a Chinese scholar and painter from the Ming dynasty
(Bentley). His famous Seven Junipers features twisted Juniper tree branches (Figure 7). These branches
share the same resemblance to the Connected Cantor set representation in Figure 5 as those of Guo
Xi’s trees. This is an even more distorted version of our Connected Cantor set, but it still exhibits the
thinning out effect we observed in Early Spring. By examining the works of Guo Xi and Wen Zhengming,
we find a resemblance to the Cantor set. We see that the Cantor set, and fractal structure in general,
can be applied in the context of Chinese art.

4.2 Architecture

Fractals also appear in architecture. We can find the Cantor set in the patterning of windows or other
features on buildings. For example, we look to the AT&T building, now known as the Sony Tower, in
New York City (Figure 8). The building was completed in 1984 and was designed by architect Philip
Johnson and his partner John Burgee. To find a Cantor set, we consider the pattern of the windows on
the front face of the building.

The top level of windows is in a symmetrical pattern. From the left, there is one medium-width window,
then three large-width windows. The central section of windows contains eight window sections with
small widths. The windows on the right side of the central section mimic the pattern of those on the left
side. We will consider the windows themselves as part of our Cantor set and the concrete as the part
we remove. At the next level of windows, each large-width window is “split” into four windows. At this
iteration of the set, more points, represented by the concrete, have been removed. We can think of the
pattern of the windows as a Cantor set. This is an example of a Cantor set that is not the traditional
middle-thirds set.

Figure 8: Sony Tower, Philip Johnson and John Burgee, New York City, New York; 1984.

For another depiction of the Cantor set in architecture, we turn to a much older example. We can find
the Cantor set in the capitals of Egyptian columns. For example, consider this column capital from the
Temple of Dendur from 15 BC, which now resides in the Metropolitan Museum of Art in New York City
(Figure 9).
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Figure 9: Column Capital from Temple of Dendur, Metropolitan Museum of Art, 15BC.

The capital features bundles of papyrus stalks and lotus leaves, which take the form of a curve. The top
curves are split into two smaller curves by removing a center section. The two smaller curves also shift
away from the center of the larger curve. This process is repeated three times on this particular capital.
This capital resembles a Cantor set in that various intervals of marble are removed through an iterative
process. The Egyptians may have even intentionally used an iterative process to create this motif.

5 Conclusion

Georg Cantor’s classical middle-thirds set exhibits intriguing mathematical properties. We showed that
the Cantor set is uncountable, which is surprising because it seems that it should be a small set. We also
proved the non-intuitive quality that though the Cantor set contains no subintervals, it also contains
no isolated points. We can produce the Cantor set through a two-dimensional system of two functions.
This study revealed the Cantor set as an attractor to an iterated function system. We also considered
the Cantor set as a one-dimensional system of points that are not sent to infinity through exploration of
the Tent Function. Discussion of the Cantor set as a fractal led us to find that C has a fractal dimension
between 0 and 1.

Benoit Mandelbrot considered his fractal geometry an art form. We considered the Cantor set as an
artistic form, with a focus in two different areas. Our Connected Cantor set representation resembles the
trees in works by Chinese painters Guo Xi and Wen Zhengming. We also found a resemblance to this
Connected Cantor set in the Song Tower of New York City. Lastly, we considered the column capital of
the Egyptian Temple of Dendur and found a more classic representation of the Cantor set.

We have taken a complex mathematical set and applied it to the world of art. The Cantor set not only
proves to be a set with interesting mathematical properties, but also a beautiful mathematical object
with multiple applications in an artistic context.
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