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Abstract

Modeling traffic flow has historically been tackled using a variety of different ap-

proaches. The microscopic method uses a system of ordinary differential equations to

model the interaction of a single car with its surroundings. This model has fixed pa-

rameter values for all driver behavior characteristics, such as reaction time and reaction

strength. Given that these parameters represent driver behavior, it is more realistic to

introduce some stochasticity into the model parameters and observe the effect on the

resulting traffic conditions. In this paper, direct simulation results show that stochas-

tically varied parameter values produce larger free-flow regions, faster stabilization to

free-flow conditions, and reduced traffic intensity overall. Fundamental diagrams show

that the model behaves as predicted by real traffic data.
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1 Introduction

Traffic flow modeling has long been at the forefront of applied mathematics and civil

engineering. How can we make transportation efficient for a large number of people?

As populations climb all around the world, answering this question could save large

amounts of time, money, and even lives. Many different mathematical models exist

that attempt to describe and predict the behavior of vehicles, traffic, and traffic jams.

Among the most widely used types of traffic models are microscopic and macroscopic

models. Macroscopic modeling involves the use of partial differential equations to

describe the density and velocity of cars along a road, similar to water flowing through

a pipe. A more comprehensive study of macroscopic traffic modeling can be found

in [7]. The microscopic model, with which we will be working in detail, deals with

the interaction between a single car and its surroundings. Essentially, the behavior

of traffic depends on the distance between each car and the next, and the driver’s

reaction to changes happening in front of them. Most microscopic models use a set

of ordinary differential equations to describe these interactions for each vehicle. For

further reading, Chapter 7 in [5] provides a detailed background on the different models

of traffic flow theory.

The microscopic model has several advantages over the macroscopic. For one,

the micro model contains more detail because it describes positions and behaviors of

individual cars along a road. This allows us to make calculations of traffic flow/flux

and road density, which are the main components of macroscopic models. In addition,

we can account for different types of driver behaviors in various traffic situations,

which permits us to introduce stochasticity, or randomness, into our model. Effects of

stochasticity will be further discussed later in the paper. The specificity of the micro

model comes at the expense of simplicity in the macroscopic model. Calculations in the

macroscopic model are simpler because they do not have to account for and keep track

of many vehicles at a time. For our purposes, we will accept more complex calculations

in order to investigate the effects of realistic driver characteristics on the model.

The model we will be working with is an optimal-velocity model - a system of two

ordinary differential equations that determine each car’s position and optimal follow-

ing distance (the distance between them and the car in front of them). A team of

researchers at Brown University and the Technical University of Denmark created this

model based on an existing optimal-velocity model presented in [1], in order to inves-

tigate the effects of relative car velocity on traffic behavior. Inherently, this model

involves choosing parameters to represent each driver’s reaction time and reaction

“strength” to changes in velocity of the preceding car. Since they are indeed param-

eters, this model does not permit any variability between individual drivers, which is

a very unrealistic condition to assume. Various works, such as [4] and [6], deal with

stochastic variation in the reaction time to changes in position of the preceding car,

however they do not include velocity-dependent parameters. Results from these papers
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are not conclusive about the effects of stochasticity.

The goal of this senior thesis is to explore the stability of traffic jam formations

when the parameters are more varied. Do the solutions to system become unstable

with a non-homogeneous population, or does free-flow prevail? First we investigate the

effects of each parameter on the model. Then we introduce stochasticity to simulate a

random sample of driver behaviors in the population and observe the outcome. Finally,

we discuss fundamental diagrams, a major tool used in all types of traffic flow modeling,

to assess the accuracy of our model.

2 Model Derivation

When developing a microscopic model for traffic flow, it is important to consider the

main factors that each individual driver may experience. In reality, a driver may be

aware of three or four individual cars in front of them, as well as a few cars behind

them. For simplicity, we restrict these factors to the behavior of just the preceding

car, specifically the velocity and relative position. Since the goal is to produce realistic

driver behaviors with our model, we must consider what these behaviors might be and

how to express them using variables and parameters.

Figure 1: A diagram of the basic ideas behind the car-following microscopic traffic model.

2.1 The Model

Consider Car n traveling along a road, following Car n + 1 at a moderate speed, as

illustrated in Figure 1. If Car n and Car n + 1 are too close together, irrespective of

any other traffic, Car n will adjust its acceleration (slow down) in order to maintain

what it considers a safe following distance, which we will call headway. That is, a

distance long enough so that it would have enough time to react to a sudden stop from

Car n + 1, begin to brake, and come to a stop, without a collision. So we know that

acceleration will depend on the reaction time of the driver, the relative positions of Car

n and Car n + 1 (or the distance between two cars), the velocity of Car n, and some

desired individual headway distance. The basic model that describes this behavior is

called an Optimal-Velocity Model (OVM) and is as follows:
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δp̈n = V(pn+1 − pn − s̄) + v0 − ṗn

where pn is the position of the nth car, δ is the reaction time of the driver, v0 is

the optimal velocity (speed limit), and s̄ is the optimal headway (road length divided

by number of cars). We will use the conventional dot notation to represent the time

derivative. This differential equation adjusts the driver’s acceleration p̈n based on how

close its current velocity is to an optimal velocity. The headway pn+1−pn is compared

with the optimal headway s̄ and then adjusted by V, a hyperbolic tangent function

which acts to scale this difference to a number between −1 and 1. Therefore, the

acceleration of each driver is dependent on the difference between the driver’s current

speed and the optimal velocity, and the difference between the current headway from

the optimal.

Here is an example scenario that will help to understand the function of the OVM:

If car n is traveling at the optimal velocity (v0 = ṗn), but is too close to the car in

front (pn+1 − pn < sn), then V (pn+1 − pn − sn) will be negative and v0 − ṗn will be

zero. Thus, p̈n will be negative, and car n will decelerate to match the target headway.

We also know, from basic practices of driving, that if Car n + 1 accelerates to a

greater velocity, Car n will try to reduce its headway and catch up. However, the

OVM does not account for relative velocities and driver dependent headways. So we

introduce a new variable sn to represent each driver’s individual desired headway. This

headway must depend on relative car velocities, a certain optimal headway for the road

conditions (s̄), and the driver’s personal reaction to changes in velocity.

With this additional variable, we arrive at the following non-dimensional model set

forth in [2]:

δp̈n = V(pn+1 − pn − sn) + v0 − ṗn (1)

αṡn = s̄− sn − β(ṗn+1 − ṗn) (2)

where we have replaced s̄ in the OVM with sn, determined by Equation (2), and

introduced two new parameters, α and β, which will be discussed in the following

section.

The new addition, Equation (2), adjusts the individual’s desired headway distance

depending on two factors. First, the β(ṗn+1 − ṗn) term allows the car to increase its

headway distance if the car in front is going slower than it, and decrease the headway

if the car in front is going faster. Second, the s̄ − sn describes the tendency for cars

traveling too close to the car in front to reduce its headway distance. Similarly, cars

traveling at a distance greater than the optimal headway distance s̄ will try to decrease

their headway.
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2.2 Analyzing the Model

We will be using a MATLAB program to simulate traffic of N cars driving on a circular

road of length L, see Figure 2. The actions of the first car on the road are determined

by the position and velocity of the last car (this eliminates the need for boundary

values). Free-flow is defined as the situation in which cars move with uniform speed

and headway distances. Free-flow solutions to the ODE model arise depending on the

chosen parameter values. Traveling wave solutions correspond to traffic jams, which

travel in the opposite direction of the traffic flow. Multiple simultaneous traffic jams are

also possible. As we will see, certain (α, β) pairs produce stable free-flow conditions.

Some create stable 1-, 2-, 3-, 4-, 5-, and 6-jam solutions (we will refer to these stable

solutions as k-jam solutions). Still other values create unstable traffic jams.
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Figure 2: MATLAB direct simulation on a ring road of length L, with N cars placed randomly

along the road.

We can visualize the effects of parameter alterations using free-flow stability dia-

grams (see Figure 3). A MATLAB program solves a related system of first-order ODEs

for various (α, β) pairs. It then plots a graph at points where a complex conjugate

pair of eigenvalues for this system crosses the imaginary axis, which denotes where the

free-flow bifurcates into traffic jams [2, p. 2].

In Figure 3, each curve divides the αβ plane into two sections. For example, let’s

examine only the magenta curve, which represents k = 1, or a single traffic jam. The

area bounded by the curve and vertical axis is where we see stable free-flow solutions

6



to our model. To the right of the curve, we see 1-jam solutions, which has the shape

of a single period of a sinusoidal waveform. When we overlay all curves for k = 1 to

6, we see that the stable free-flow region exists in the lower left corner on the positive

αβ axis. Outside this region, various different jam solutions are possible.
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Figure 3: Free-flow stability diagram for a 20-car scenario.

3 Parameters

There are numerous important parameters in the model that we will be using to analyze

traffic flow. Table 1 lists each parameter used by the model and briefly describes its

function. The parameters v0 and s̄ are more closely related to the road conditions and

are not dependent on individual driver behavior. In the next section we will explain

how to choose realistic values for these parameters. For this project, the parameters

that we are most interested in are β and α, for the reasons explained in Section 2.

Parameter Description

δ reaction time

v0 optimal velocity

s̄ optimal following distance (based on road length and number of cars)

α safety distance adjustment time

β strength of reaction to changes in relative velocity

Table 1: Parameters used in the model.
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4 Incorporating Realistic Data

4.1 Transitions from Non-dimensional to Dimensional

Since the goal of this project is to realistically model traffic flow, every effort must be

made to incorporate realistic parameter values and data. In order to find realistic values

for velocity, optimal headway, reaction times, etc., it is important to dimensionalize

the current model. As a part of my summer Research Experience for Undergraduates

(REU) at Brown University, my team worked closely with these aspects of the model.

We used the following length and time conversion based on a similar dimensionalization

made in [3]:

xn = `0 pn (3)

τ = t0 t (4)

where `0 = 11.63m and t0 = 0.69s. The variables xn and τ represent the dimensional

version of the non-dimensional variables pn and t. The length and time dimensions

are now meters and seconds, respectively (another simple conversion gives miles and

hours). The parameters δ̃, α̃, β̃ are the corresponding parameters in the dimensional

model and have units of seconds. The parameters δ̃ and α̃ are reaction times and β̃,

while also measured in seconds, behaves more like a reaction “strength”. That is, a

lower value of β̃ results in a moderate adjustment of the target headway, while a high

β̃ causes the driver to aggressively adjust the target headway.

4.2 Japanese Data

In [3] a group of applied mathematicians collaborated with a transportation research

group in Japan to obtain realistic parameter values for their model. The parameters

were calculated using actual traffic data on Japanese motorways. Another data set in

this paper contained values for city traffic in Stuttgart, Germany, which we excluded

because the city traffic was too variable (stops, accelerations, turns, etc.) We converted

these Japanese traffic values to our model and obtained v0 = 0.913 and s̄ = 2.15.

Using the dimensional conversions made in Section 4.1, this gives a maximum velocity

of v0 = 37.6 mph, and a optimal headway distance of s̄ = 25 meters. These values

give us a better picture of what sort of traffic we will be dealing with in the following

analysis.

5 Investigating Parameters of the Model

The goal for this section of the project is to observe how sensitive the model is to

the parameters α and β. This portion of research was also conducted as part of the

summer REU at Brown University. In the model, α and β appear in the second

differential equation that describes how drivers react to changes in velocity of the car
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in front of them. As a reminder, α represents the time the driver takes to adjust

his/her headway back to the optimal/desired headway sn, after a change in velocity is

observed. Similarly, β dictates how sensitive the driver is to changes in velocity. That

is, a high value of β would represent a proactive driver who tends to make a large

adjustment to his/her own headway when he/she detects even a slight change in the

speed of the car in front.

From Section 2, we know there exists a region of α and β in which free-flow is

stable. Figure 3 shows an example of the free-flow stability diagrams created using

real-world traffic data on Japanese motorways taken from [3]. The small region in the

bottom left corner on the graph (bounded by the black curve) is the region of (α, β)

pairs that produce stable free-flow. Initially, the authors of [2] fixed the (α, β) values

for every car on the road. Given that α and β represent driver behavior, it would be

more realistic to vary these parameters for each car in the simulation.

5.1 β

First we examine the sensitivity of the β parameter, specifically the effects of altering

the β-value for a single car. Using a MATLAB program, we can produce direct simula-

tions of traffic and manipulate the parameters as desired. First, specific (α, β) points

were chosen for which traffic jams were observed in the MATLAB direct simulation.

These coordinates were identified using free-flow stability diagram (see Figure 3). Then

all cars were fixed to these parameter values, while a single car, chosen at random, was

significantly reduced (β ≈ 0.1). Under these conditions, the direct simulations revealed

that traffic jams were alleviated and the system stabilized to free-flow. Figure 4 gives

a visual representation of these behaviors. Each plot shows the distances between the

cars on the ring road. If a traffic jam solution is present, the plot would appear sinu-

soidal, with the number of peaks corresponding to the number of jams. The higher the

amplitude of the sine wave, the heavier the jam. When the simulation begins, the cars

are given initial positions placed randomly around the road.

From these observations, we propose that a few moderate drivers (in a sea of oth-

erwise aggressive drivers), can alleviate traffic jams according to our model. That is,

a few drivers with low β-values can dissipate highly jammed traffic and the resulting

road condition is stable free-flow.

9



0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 2.3067min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 3

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 4.6133min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 1

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 6.92min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 9.2267min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 11.5333min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 0

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 13.84min,   Number of jams: 3

0 5 10 15 20

2

2.5

Distances b/w cars (ONE beta REDUCED)
number of jams: 0

0 5 10 15 20

2

2.5

Distances b/w cars (TWO beta REDUCED)
number of jams: 0

1 ! reduced 2 ! reduced! constant

Figure 4: Direct simulation of model with 20 cars. First column represents fixed β for all cars.

Second column represents one β reduced to 0.1. Third column represents two β reduced to 0.1.

5.2 α

We conducted a similar investigation for altering the α-values. (Reminder: the α

parameter measures the reaction time of the driver). The model seems to be less

sensitive to this parameter than to β. However, sufficiently reducing α for three or

more drivers in a simulation of 50 cars will alleviate traffic jams in a similar fashion to

the β-manipulation. Graphs similar to that in Figure 3 were produced for altering α-

values. These results reinforce the notion that a few “good” drivers among a majority

of drivers with (α, β) values in the traffic-jam region, can dissipate the traffic jams.

By “good” drivers, we mean drivers that have quick reflexes (low α) and moderate

reaction intensities (low β).

The reverse was also considered: do a few “bad” drivers destabilize free-flow? The

answer is no. A system in stable free-flow is very unlikely to destabilize with the

alteration of a few parameters.
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6 Stochastic Variation of Driver Characteristics

With a better understanding of the model’s parameter sensitivity and behavior, we

now move to introduce some stochasticity, or randomness. This section largely details

my personal research both at Brown, and continuing at Colorado College for my senior

thesis. We would like to answer the following questions: Will stochastic variations

in the parameters α and β impact the occurrence of traffic jams? Specifically, will a

varied driver population increase or decrease the size of the free-flow stability region?
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Figure 5: Exponential random distribution of beta values for 100 cars.

Section 5.1 hypothesized that samples containing a few good drivers can alleviate

jams in otherwise jammed traffic conditions. In this case the frequency distribution

of β-values would closely resemble an exponential random distribution as shown in

Figure 5. Direct simulations showed that the system running under the exponential

random distribution of β-values not only goes to free-flow, but stabilizes faster than an

identical system (same initial conditions) with only one or two β-values reduced. See

Figure 6 for reference.

11



0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 1.73min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 3

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 3.46min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 5.19min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 6.92min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 8.65min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 3

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 0

0 5 10 15 20
2

2.2

2.4

Distances b/w cars (beta CONSTANT)
TIME: 10.38min,   Number of jams: 3

0 5 10 15 20

2

2.5

(ONE beta REDUCED)
number of jams: 1

0 5 10 15 20

2

2.5

(exponential beta distribution)
number of jams: 0

 ! constant 1 ! reduced 2 ! reduced Exponential ! distrib.

Figure 6: Direct simulation of model with 20 cars. First column represents fixed β for all cars.

Second column represents one β reduced to 0.1. Third column represents an exponential distribution

of β following the example in Figure 5.

6.1 Traffic Intensity

In the MATLAB code, a jam is defined when the distances between cars is smaller than

the optimal headway distance s̄. Because of this, there is not much room for flexibility

in counting the number of jams in a direct simulation. The distance between two cars

may be only slightly less than s̄ and a traffic jam would be detected, even if traffic

appears to be flowing steadily to the human eye (for example, the middle diagram

of last column in Figure 6). Therefore, in addition to the number of traffic jams

observed, another method of quantifying traffic is needed. We (my summer research

advisor, Bjorn Sandstede, and I) came up with the concept of intensity. Intensity, I,

is calculated by centering the vector of distances between each car, ~d, around zero,

squaring it, and calculating the area under the resulting curve, as follows.

I =

∫
(~d− s̄)2 dx (5)

This accounts for the number of jams (number of peaks) as well as the severity of the

jam (amplitude of the wave). This way, even if the number of traffic jams counted by
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MATLAB remains the same, the intensity gives a clearer picture of what is happening

on the road. As part of my research for this senior thesis, I used this measure to

investigate threshold values for number of vehicles, n, with reduced parameter values

that are needed to produce free-flow in an unstable jam environment. In Figure 7, we

can see that traffic intensity drops visibly with each addition of a car with reduced

parameter values.
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Figure 7: Direct simulation results for observing the effect of reduced α- and β-values on the traffic

intensity.

6.2 Effects on the free-flow stability region

The previous arguments are sufficient in demonstrating the properties of the model,

under specific conditions, i.e. specific (α, β) pairs. Recall that one of the questions we

aim to answer deals with the effect of stochasticity on the size of the entire free-flow

stability region. Also recall that the MATLAB program used to produce the free-flow

stability diagrams is an ODE-solver, and therefore cannot include any variation in

parameter values. We instead turn again to the direct simulations. I wrote a new

MATLAB program that runs the model, with n randomly reduced β values, until

a traffic condition stabilizes (free-flow or jammed) for every (α, β) coordinate from

α, β = 0 to 5 in steps of 0.25. Three trials are performed at each grid point in order

to preserve accuracy of the test. The average number of traffic jams observed is then

recorded in a matrix and plotted in a 3-D shaded surface plot, as shown in Figure 8.

We display two-dimensional cross-sections of each plot for simplicity and readability.

Plots are shown for various values of n, the number of cars with reduced β values.
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Figure 8: Investigating free-flow regions for varying n, the number of randomly reduced β-values.

The sample size is 60 cars for this simulation.

As the plots in Figure 8 show, reducing just one driver’s reaction strength (β value)

widens the entire free-flow region in α-β space. The more β-values that are randomly

reduced, the wider the free-flow region becomes. These important results tell us that

if we have a few more moderate drivers, the remaining population of drivers can have

larger (α, β) values, and remain in free-flow, than they could before. That is, a varied

driver population increases the probability for free-flow to occur.

7 Fundamental Diagrams

The fundamental diagram is a major tool used in all branches of traffic flow modeling.

The diagram displays the relationship between flow or flux φ (the number of vehicles

passing through a location per unit time, also equal to the product of speed and

density), and density ρ (the number of vehicles on the road per unit distance). This
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is a useful tool when analyzing the capacity of a given road system. As shown in

Figure 9, the flow/density fundamental diagrams consist of two major branches. The

left branch is upward sloping and represents the free-flow conditions for the road. In

this portion of the diagram, the velocity of cars increases as the density increases. Even

though more cars are driving on the road, the cars are able to maintain or increase

their velocity. At a certain point, however, this system breaks. At a critical density,

the road becomes too packed for cars to be able to flow-freely and the flux drops. This

critical density is located at the apex of the curve. Beyond the critical density, the

diagram is downward sloping, implying that more densely packed roadways will have

a lower flux, and therefore slower speed. In this portion of the graph, traffic becomes

much less predictable; certain densities can produce a variety of different flow rates.

This is where traffic jams occur.

(a) Fundamental diagram created using real traf-

fic data. Reprinted from “Constructing Set-

Valued Fundamental Diagrams from Jamiton So-

lutions in Second Order Traffic Models,” by

Semibold, Flynn, Kasimov, and Rosales, 2012,

American Institute of Mathematical Sciences, 8,

p. 747. Copyright 2013 by the AIMS.
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(b) Fundamental diagram produced using model

data, with Japanese motorways parameters, road

length L = 10, 000m, and (α, β) = (1, 2).

Figure 9: Two flow/density fundamental diagrams.

Figure 9a is a fundamental diagram that was produced using road sensors to record

the flow rate and density of cars. Figure 9b is a fundamental diagram produced by

running our ODE model in a MATLAB program that includes a road marker and

counter to record the flux. As we can see, these two plots have the same general

behavior as previously described. Most realistic models, both micro- and macroscopic,

reproduce this general behavior. This is one of the reasons that fundamental diagrams

are so widely used in traffic modeling; this phenomenon seems to occur quite often both

in real world traffic and in model simulations. We accept the similarity between these

two diagrams as reassurance that our model does a good job of accurately predicting
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the behavior of traffic in various conditions.

8 Conclusion

In this paper, we have discussed the detailed behaviors of a modified optimal-velocity

microscopic traffic flow model. Building off of the work in [2], we have assessed the

sensitivity of the model to the parameters α and β using repeated trials of a MATLAB

direct simulation and incorporated real-world data from Japanese motorways from [3].

Direct simulation results show that stochastically varied parameter values give way

to larger free-flow regions, faster stabilization to free-flow conditions, and reduced

traffic intensity overall. Fundamental diagrams reassure us that the model behaves as

predicted by real traffic data.

In the future, it would interesting to further investigate the α and δ parameters, as

they also represent driver behavior characteristics (the MATLAB code that produces

the diagrams in Figure 8 takes on average 15 hours to complete, so a detailed investi-

gation of all parameters was not feasible for this senior thesis). Future studies could

also explore sampling the parameters from a variety of different probability density

functions and comparing the various outcomes. It would be interesting to investigate

what sort of free-flow regions result in normally distributed parameter values for the

driver population.
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