
1

Multithreading in Desktop Applications
A Characterization Study and Concurrency Bug Mitigation Strategy

Blake Jackson and Ben Ylvisaker

Abstract—We investigate thread-level concurrency in several
common desktop applications. We find that the majority of
active periods (periods of uninterrupted CPU activity for a single
thread) are relatively short, while the few long active periods
account for most of the active time. The shortest 90% of the active
periods only account for roughly 12.75% of total active time.
We speculate that this is generally true for most applications,
and that there might be some way to take advantage of this
fact in the scheduler. Due to the difficulties in catching, testing,
and fixing concurrency bugs, we propose modifying the thread
scheduler to reduce the risk of concurrency bugs where possible.
Our simulations show that our modification may work well for
certain applications depending on the level of CPU demand.

Keywords—threads, concurrency, thread scheduler, parallelism,
multithreading.

I. INTRODUCTION

In the software industry, there is now more demand
for highly interactive and responsive applications than
ever before. There is also more multicore hardware in the
hands of the typical consumer than ever before. One of the
most popular tools for taking advantage of this multicore
hardware and providing this interactivity is multithreading.
This has made thread-level concurrency common in modern
applications. Unfortunately, designing, implementing, and
testing asynchronous concurrent applications is difficult
[3]. This difficulty stems largely from the notorious non-
determinism in the order of execution of multithreaded
code which causes problems in detecting and reproducing
concurrency bugs. Thus, it is challenging and onerous for
programmers to isolate and fix concurrency related issues in
their applications.

Much of the concurrency within today’s software is
intentional and hugely beneficial to performance. However,
there also exists physical simultaneity between active periods
that occurs incidentally without any real benefits in terms of
speed, especially in applications that sre not particularly CPU
intensive. We will term this type of unnecessary physical
simultaneity “incidental concurrency”. To mitigate the risk
of concurrency bugs, we propose that any reduction in
incidental concurrency would be beneficial to typical desktop
applications, at least until tools for concurrency bug detection
and remediation and concurrent programming language design
have caught up to the demand for multithreaded software.

We begin with a characterization study of active periods
for four common desktop applications. Our results show that,
in general, the overwhelming majority of active periods for
the typical application are relatively short, while the few long

active periods account for most of the application’s active time.

Furthermore, perhaps due to the aforementioned inherent
difficulties that plague parallel programming, processor
resources in modern multi-core computers and phones are
seriously underutilized in many typical use cases [1], [2].
This result, along with the relatively short durations of most
active periods, leads us to believe that there is room to
reduce incidental concurrency with minimal detriment to
application performance and user experience by spreading
out simultaneously running active periods into what would
otherwise be idle time. Therefore, we propose modifying the
scheduler to reduce incidental concurrency while influencing
application responsiveness and runtime as little as possible as
shown in figure 1. Our simulations indicate that our methods
for accomplishing this may be viable and merit further
investigation.

This is desirable because physical simultaneity of threads
that share memory increases the risk of concurrency bugs. For
example, if two threads simultaneously read, increment by 1,
and write the same integer in memory, then the integer will
only reflect an increase of 1 when it should have been increased
by 2. These types of issues are currently dealt with by having
threads acquire locks, but, as shown by Lu et al, existing
solutions are not adequate [3]. It is not a reasonable goal to
eliminate all concurrency, nor is it what we are suggesting with
this study. Concurrency is crucial to performance. We would
like to reduce incidental overlaps between short active periods,
ideally while leaving the relatively few long active periods and
intentionally simultaneous computations unaltered.

II. BACKGROUND

Threads represent the smallest sequence of processor
instructions that can be managed independently by an
operating system’s scheduler. Multiple threads can exist for
any given application, and they share resources such as
memory. Multithreading is when multiple threads execute
concurrently both through physical simultaneity on multicore
hardware and by quickly switching between threads on
single CPU cores. Such context switching generally happens
often enough to give the appearance that the threads are
executing in parallel. This multithreading allows reactivity
and interactivity in applications since some threads can handle
user input, while others handle disk reads and writes, while
still others perform some computation, etc. On multi-core
processing hardware, several threads (that may share memory
resources) can truly run in parallel. This is beneficial in terms
of speed, but can give rise to bugs and errors not possible in
sequentially executing code (concurrency bugs). Note too that



2

Fig. 1. Illustration of proposed scheduler modification

rapid context switching also occurs on multi-core systems,
so there are non-deterministic complexities in the order of
thread execution not easily foreseen by programmers. This
non-determinism comes from factors beyond an application’s
control like disk read/write speed, network latency, CPU core
temperatures, and user actions.

In any normal personal computing system, each processor
core will have active periods, when it is actively performing
computations for some thread, and idle periods, when it is
waiting for a task from the scheduler. At the most basic
level, the thread scheduler simply allocates jobs to the CPU
cores to accomplish the necessary computations as quickly as
possible. This is done with some sort of priority queue of
threads waiting to run. The simplest way would be to use
a first-in-first-out (FIFO) queue so that active periods would
run in the order that they became ready to run. However, the
reality is that scheduling is much more complicated in modern
systems. Typically, it will involve a priority queue where each
queuing thread has a priority. These priorities can dynamically
change in response to changes in the environment while the
threads are queuing to maximize interactivity. Once an active
period is running, it will continue to run until it finishes,
yields, becomes unable to continue, or a higher priority thread
becomes available in the queue. Schedulers also consider CPU
core temperature and power consumption in their decisions,
so an active period may be stopped on one processor core
only to immediately resume on another core. In order to attain
the absolute best performance from the available hardware,
modern schedulers have become extremely complex.

III. MOTIVATION FOR CHARACTERIZATION STUDY

Recent years have seen a spike in the demand for highly
interactive software. Common applications increasingly rely
on network communication, and users simultaneously expect
speedy responses to numerous sources of input. This has

resulted in an industry-wide push for higher levels of concur-
rency. The increasing amount of processor cores in personal
computing hardware provides further impetus to write heavily
concurrent software. Today, threads are a very popular tool
to take advantage of multi-processor hardware and provide
interactivity through concurrency. Threads are prevalent in
many applications, both desktop and mobile, across operating
systems. Therefore, it is critically important to understand
how they typically behave. This understanding could help
application developers to better utilize threads, and help oper-
ating systems and hardware engineers to better support multi-
threading in their products. Alternatively, a greater understand-
ing of thread behaviour could, in time, show that threads
are not really the best concurrency option, thus shifting the
industry paradigm of parallel programming. To our knowledge,
the information collected and analyzed in the characterization
portion of this study is not published elsewhere, and we hope
to add it to the academic knowledge base of computer science.

IV. MOTIVATION FOR SIMULATING SCHEDULER TWEAKS

Concurrent programs are becoming more and more
prevalent both to take better advantage of now ubiquitous
multi-core hardware and to create responsive interactive
applications. As a result, writing good quality concurrent
programs has become critically important. Unfortunately, this
is quite challenging, and concurrency bugs are present (if
not rampant), even in high profile applications (e.g. MySQL,
Mozilla Firefox, OpenOffice). To make matters worse, the
non-determinism in the order of execution of concurrent
programs makes concurrency bugs notoriously difficult
to detect and reproduce during testing [3]. Therefore, we
propose that any reduction in concurrency at minimal cost to
performance would be advantageous, at least until concurrent
programming language design and tools for concurrency
bug detection and remediation have caught up to multi-core
hardware.

Previous research has shown that processing resources
are generally severely underutilized in multi-core computers
and phones. [1], [2]. Gao et al studied 20 popular mobile
applications and found that all display some thread level
parallelism, but that none took full advantage of all available
processing resources. They found that ”mobile applications
are utilizing less than 2 cores on average.” Blake et al found
a similar result for common desktop applications with the
notable exception of video authoring software which made
better use of all processor cores. They found that ”2-3 cores
are more than adequate for most applications.” This surplus of
processing resources indicates that we may be able to reduce
concurrency in thread execution without too much detriment
to responsiveness or runtime. This would not be the case if
applications displayed thread level parallelism that took full
advantage of all cores at all times. Furthermore, interactive
applications often create bursts of CPU activity punctuated
by long periods of idle time. Forcing some activity into these
idle periods instead of allowing it to run in parallel would
reduce concurrency without hurting the overall runtime of the



3

application. Thus, responsiveness becomes the main concern
in that situation.

We propose modifying the thread scheduler such that, when
an active period starts on one CPU core, it briefly blocks
other active periods from the same application from starting
on the other cores. This block would persist until either the
blocking active period ends or yields, or it runs for longer
than the maximum block time. Because most active periods
tend to be short, we hope that many of them can finish
before the maximum block time elapses, thus allowing the
next queueing active period to start without the possibility
of creating some concurrency issues with the first. Figure 1
provides a simple graphic explanation of this concept. We
also propose the possibility of keeping track of threads that
had long running active periods in the recent past, and not
blocking when they become active. This would decrease the
time cost of our scheduler modification, and blocking in those
cases should not reduce concurrency anyway because the
duration of the active periods of the historically long running
threads would be expected to exceed the maximum block time.
We evaluate the efficacy of these ideas in the ”Results” section.

Note that there is some precedent in industry for modifying
the scheduler to sacrifice a bit of speed or responsiveness to
improve some other aspect of the system. For example, Apple’s
OS X Mavericks uses timer coalescing when the computer is
running on battery power to increase the idle time of the CPU.
This decreases power usage thereby improving battery life as
shown in figures 2 and 3. Also, their new scheduler attempts to
use as few CPU cores as possible, leaving as many as possible
totally idle as long as demand allows [4].

Fig. 2. Power use in OS X without timer coalescing

V. METHODOLOGY

We collected system wide traces of thread context switches
using trace-cmd, which is a user-space front-end command-
line tool for Linux’s ftrace. Ftrace is a tracing framework
included with the Linux kernel. We used the Ubuntu operating
system running on a virtual machine on a Windows 7 host.
The virtual machine had access to all 4 cores of the host
machine’s processor and 4 gigabytes of RAM. We collected
data on Mozilla Firefox, LibreOffice Calc, LibreOffice Writer,
and Blender. The details and versions of these aspects of the

Fig. 3. Power use in OS X with timer coalescing

data collection are shown in Table I.

Component Version Details
trace-cmd 2.3.1
Ubuntu 14.04.3 LTS 64-bit
Kernel 3.13.0-76-generic
LXDE 0.5.0-4ubuntu4
Processor Intel i7-2640M CPU @

2.80GHz. Driver version
6.1.7600.16385

Virtual Box 5.0.2 r102096
Windows 7 (host) Windows 7 Professional Ser-

vice Pack 1
Firefox 43.0.4
LibreOffice 4.2.8.2 420m0(Build:2)
Blender 2.76b

TABLE I. COMPONENTS AND VERSION DETAILS

We selected LibreOffice Calc, LibreOffice Writer, and
Mozilla Firefox because of their large user bases and because
the functionality that they provide is widely considered a
necessity on modern personal computers. We chose to study
Blender because we expected it to display a higher level of
concurrency than the other applications. The testing actions
for each of these applications last for about 60 seconds. We
found that this is enough time to cover most typical functions
for the LibreOffice applications. The tests on Firefox simply
involved streaming a 1 minute long HD video from YouTube.
The tests on Blender involved rendering an image of a three
dimensional scene using the Cycles ray tracing render engine.
All experiments were repeated 5 times, and we observe very
little change between trials.

Determining which threads are doing work for a particular
application is not straightforward. Oftentimes, applications
will take advantage of preexisting operating system threads
to perform some of their computations. Because this study
is primarily concerned with threads belonging to the same
application, we used the Lightweight X11 Desktop Environ-
ment (LXDE) to minimize the load on the CPU from sources
other than the applications being studied. Nonetheless, some
of the active periods in our data do come from other sources
like the operating system and trace-cmd. Tables 2-9 below



4

indicate that, despite the presence of some unrelated threads,
the majority of the active periods and active time during the
experiments come from the applications being tested. The
tables were each generated from a single experiment with each
application, but there is very little difference between trials in
the top ten threads. There are many more threads present in
each experiment that are too insignificant to appear on the
tables.

Thread Name Total Active Time (s) Cumulative Percentage of Active Time
soffice.bin 7.36 62.03
Xorg 3.29 89.76
gdbus 0.30 92.32
lxpanel 0.18 93.87
trace-cmd 0.14 95.04
pcmanfm 0.09 95.76
ibus-daemon 0.08 96.44
openbox 0.07 97.04
kworker/u8:0 0.03 97.33
ibus-ui-gtk3 0.03 97.61

TABLE II. ACTIVE TIME BY THREAD IN LIBREOFFICE CALC

Thread Name Total Active Periods Cumulative Percentage of Active Periods
Xorg 11035 30.87
soffice.bin 10840 61.19
gdbus 3282 70.37
trace-cmd 2175 76.45
ibus-daemon 1624 81.00
openbox 1213 84.39
rcu sched 1013 87.22
lxpanel 941 89.85
ibus-ui-gtk3 349 90.83
pcmanfm 330 91.75

TABLE III. ACTIVE PERIODS BY THREAD IN LIBREOFFICE CALC

Thread Name Total Active Time (s) Cumulative Percentage of Active Time
HGCM-NOTIFY 40.157501 79.74
soffice.bin 6.503134 92.65
Xorg 2.078598 96.78
trace-cmd 0.436562 97.65
gdbus 0.379625 98.40
lxpanel 0.160768 98.72
openbox 0.118533 98.95
ibus-daemon 0.102665 99.16
ibus-ui-gtk3 0.045302 99.25
xscreensaver 0.035916 99.32

TABLE IV. ACTIVE TIME BY THREAD IN LIBREOFFICE WRITER

Thread Name Total Active Periods Cumulative Percentage of Active Periods
HGCM-NOTIFY 184008 85.33
soffice.bin 9091 89.55
Xorg 8971 93.71
gdbus 3289 95.23
trace-cmd 1944 96.13
ibus-daemon 1610 96.88
openbox 1279 97.47
rcu sched 1009 97.94
lxpanel 769 98.30
xscreensaver 296 98.43

TABLE V. ACTIVE PERIODS BY THREAD IN LIBREOFFICE WRITER

Note the appearance of the thread ”HGCM-NOTIFY” at the
top of the tables for LibreOffice Writer data. This thread is

associated with Virtual Box, which gives ample reason for
skepticism regarding its pertinence to Writer. However, it is at
the very top of the active time and active periods lists for all 5
Writer experiments, and it is not present for any other applica-
tion studied. This indicates that it is indeed performing work
specifically for writer. Furthermore, we repeated the Writer
experiments on a machine running Linux Mint with 2 cores.
On that machine, the thread ”Cinnamon” was consistently
second on these lists. We suspect that ”Cinnamon” was doing
the same work there that ”HGCM-NOTIFY” was doing in the
virtual machine, and that the Virtual Box software does not
drastically influence the behaviour of Writer.

Thread Name Total Active Time (s) Cumulative Percentage of Active Time
Xorg 55.097729 42.53
MediaPl∼back #6 26.871962 63.28
Compositor 17.52024 76.80
firefox 10.696766 85.06
MediaPD∼oder #2 2.308864 86.84
alsa-sink-Intel 2.282829 88.60
MediaPD∼oder #3 2.269279 90.36
MediaPD∼oder #1 2.196414 92.05
ImageBridgeChil 1.913534 93.53
Socket Thread 1.677432 94.82

TABLE VI. ACTIVE TIME BY THREAD IN MOZILLA FIREFOX

Thread Name Total Active Periods Cumulative Percentage of Active Periods
Compositor 110439 29.50
Xorg 104233 57.35
MediaPl∼back #6 18894 62.40
firefox 16090 66.70
ImageBridgeChil 9919 69.35
MediaPl∼back #1 9309 71.83
MediaPl∼back #4 9292 74.32
MediaPl∼back #5 9249 76.79
MediaPl∼back #2 9180 79.24
MediaPl∼back #3 9160 81.69

TABLE VII. ACTIVE PERIODS BY THREAD IN MOZILLA FIREFOX

Thread Name Total Active Time (s) Cumulative Percentage of Active Time
blender 203.98057 97.08
Xorg 2.496559998 98.27
alsa-sink-Intel 2.216301998 99.33
pulseaudio 0.391725001 99.51
threaded-ml 0.274172 99.65
trace-cmd 0.22989 99.75
kworker/u8:2 0.143979 99.82
kswapd0 0.100234 99.87
lxpanel 0.073227 99.91
lxterminal 0.036065 99.92

TABLE VIII. ACTIVE TIME BY THREAD IN BLENDER



5

Thread Name Total Active Periods Cumulative Percentage of Active Periods
blender 153918 73.77
Xorg 28113 87.24
alsa-sink-Intel 7809 90.99
threaded-ml 7295 94.48
pulseaudio 6985 97.83
trace-cmd 2274 98.92
rcu sched 404 99.11
lxpanel 289 99.25
gdbus 158 99.33
kworker/0:0 158 99.40

TABLE IX. ACTIVE PERIODS BY THREAD IN BLENDER

As shown in the above tables, the most significant threads
directly pertain to the applications. This is most obvious
with Blender, where the threads “blender” and “Xorg” (the
most popular Linux display server) account for 98.27% of
the active time, but the concept holds true for the other
applications as well. The tables for Firefox end with relatively
low cumulative percentages (94.82% and 81.69%), but this is
at least partially attributable to the presence of several more
numbered “MediaPlb̃ack” and “MediaPDõder” threads further
down the lists. We have good reason to believe that these
threads all belong to Firefox because they do not appear for
any of the other applications. In general, we posit that if a
thread is highly significant across trials for some application
then it is doing work for that application. Thus, one could
filter out threads that are only significant for a portion of
trials for each application and assume that they belong to
background tasks. However, the general consistency that we
see between trials indicates that this would not significantly
impact our results.

We found that it is not feasible to consider only threads
created by the applications in question, even though trace-cmd
can provide this information, because applications commonly
utilize preexisting threads to perform their computations. This
was perhaps most evident during preliminary data collection
on the LibreOffice applications, where filtering out preexisting
threads caused the data to reflect a single active period that
took up almost all of the runtime (roughly one minute). This
was not actually the case, but all context switches after that
thread began involved some preexisting thread and were,
therefore, filtered out during data collection. This raises some
difficult questions about what exactly it means for a thread
to ”belong” to an application. For purposes of this paper, we
assume, based on minimizing irrelevant CPU demand and on
consistency across trials, that most of the data collected is
directly attributable to the applications being studied.

VI. RESULTS

A. Data Characterization
Here, we show that the majority of active periods for the

applications studied are relatively short in duration. Figure
4 shows the cumulative fraction of active periods and the
cumulative fraction of active time as functions of the active
period duration for all of the data for all applications together.
The next 4 figures show the same metrics for each application

separately. To see these metrics for each individual trial (5
per application) see Appendix B.

Fig. 4. All data: Active periods and active time vs. active period length

Fig. 5. Calc active periods Fig. 6. Writer active periods

Fig. 7. Firefox active periods Fig. 8. Blender active periods

These plots show that, in general, the majority of active
periods for these applications are relatively short, while the
few long active periods account for most of each application’s
active time. Looking at the data for all four applications
together, 90% of the active periods are less than or equal to
475 microseconds in length, but all of these together only
account for roughly 12.75% of total active time.



6

We speculate that this general pattern holds for the vast
majority of widely used software. The two LibreOffice
test protocols involved quite a bit of user input throughout
the testing. In contrast, streaming a video on Firefox and
rendering in Blender required no user input. Thus, we have
two interactive and two non-interactive applications displaying
roughly the same pattern. Furthermore, one of our reasons
for including Blender in this study is that we suspected that
its specialized nature and relatively small user base might
lead to different behaviour here. As is evident from Figure 8,
this was not the case. Blender followed the same pattern as
the other applications. Future testing with more applications
could confirm this hypothesis.

It worth noting the presence of some active periods here
that do not belong to our applications. As discussed above,
these account for a small minority of the data collected,
but our data suggest that they are disproportionately on the
shorter end of the duration spectrum.

B. Scheduler Modification Simulation
Here, we evaluate the thread scheduler modifications. We

begin with the modification where, when an active period
starts on one CPU core, the scheduler briefly blocks all
other active periods from starting on the other cores. This
block persists until either the blocking active period ends or
yields, or it runs for longer than the maximum block time.
We call this the ”blocking scheduler”. We have seen that
most active periods tend to be short (90% shorter than 475
microseconds), so we hope that many of them can finish
before the maximum block time elapses. This allows the
next queueing active period to start without the possibility of
creating concurrency issues with the first. We also evaluate
the possibility of not blocking for threads that recently
had long running active periods. We call this the ”selective
blocking scheduler”, and the figures that correspond to this
method are in Appendix B. We evaluate these concepts with
block times from 0 to 1500 microseconds. Our categories
for evaluation are reduction of concurrency, impact on total
application runtime, and impact on application responsiveness.

We begin with LibreOffice Calc. Figure 10 shows that
the increase in total runtime is negligible for the full range
of block times. Figure 11 shows that the effect on the
responsiveness is a more serious issue. The maximum delay
time for an active period with block times greater than
1100 microseconds could certainly be visually perceptible to
humans. However, the median delay time would barely effect
performance. Figure 9 shows that this scheduler generally
decreases all measures of concurrency, but that the marginal
benefit with increasing block times is clearly diminishing.
Any block time over roughly 410 microseconds eliminates all
concurrency not involving ”long” active periods. For purposes
of this study, we define ”long” active periods as those lasting
more than 500 microseconds. Note that fewer than 10% of
active periods are long. Eliminating concurrency involving

Fig. 9. Reduction in concurrency with the blocking scheduler in Calc

Fig. 10. Impact of the blocking scheduler on runtime in Calc

only short active periods is desirable because it would allow
application developers to focus their debugging efforts on
only the code expected to generate long running active periods.

Figure 22, figure 23, and figure 24 show very similar
results for the selective blocking scheduler. The impact to
total runtime remains inconsequential, there is slightly less
detriment to responsiveness, and there is slightly less benefit
in terms of concurrency reduction. Notably, the selective
blocking scheduler does not completely eliminate concurrency
involving only short active periods.

All in all, these schedulers seems to work fairly well
with Calc. It is important to keep in mind, however, that the
original Calc data contained less than 0.9 seconds of overlap
time for all measures of overlap time, and that there were
also only about 12 seconds of total active time split over all



7

Fig. 11. Impact of the blocking scheduler on responsiveness in Calc

four processors for just over a minute of total runtime. In
other words, Calc is not at all CPU intensive.

Fig. 12. Reduction in concurrency with the blocking scheduler in Writer

Now, we perform a similar analysis for LibreOffice Writer.
Figure 13 shows that the increase in total runtime, though
greater than with Calc, is still negligible for the full range
of block times with a maximum less than 460 microseconds.
However, figure 14 shows that the effect on responsiveness,
which was the main concern in Calc, is even greater here.
The maximum delay time increases sharply to levels that
would noticeably impact performance for block times greater
than 700 microseconds. Even with shorter block times, the
maximum active period delay is reason for concern, but, as
with Calc, the median delay time remains wholly negligible
across all block times. The 90th percentile delay time for
Writer is consistently close to 10 times the corresponding
value for Calc. Figure 12 shows that this scheduler has the

Fig. 13. Impact of the blocking scheduler on runtime in Writer

Fig. 14. Impact of the blocking scheduler on responsiveness in Writer

potential to greatly decrease the number of active periods
with any overlap. Furthermore, as with Calc, the scheduler
completely eliminates overlaps involving only short active
periods at a block time of roughly 400 microseconds. With
Writer, however, the benefits as quantified by pairwise overlap
time and time with any overlaps are not as pronounced.
With this information in mind, the analysis for the selective
blocking scheduler on Writer is completely analogous to that
same analysis for Calc.

The original data for this particular experimental trial had
about 40 seconds of runtime with 45 seconds of active time
across the 4 cores. This means that Writer is much more
CPU intensive than Calc, which is the reason for the greater
detriment to responsiveness with these schedulers.

The blocking scheduler’s effect on runtime with Firefox



8

Fig. 15. Reduction in concurrency with the blocking scheduler in Firefox

Fig. 16. Impact of the blocking scheduler on runtime in Firefox

is similar to what we have seen above. That is to say that
runtime is not the main concern. The main concern with
Firefox is that the maximum and 90th percentile delay times
can be several tenths of a second for block times greater
than 400 microseconds. This would certainly cause obvious
damage to responsiveness. Furthermore, though it can reduce
the proportion of active periods that overlap by over 10%,
the blocking scheduler does not appear to reduce pairwise
overlap time or the time with any overlaps at all, although
it does bring these metrics to zero when long active periods
are disregarded. We see essentially the same (though slightly
tempered) reductions in concurrency with the selective
blocking scheduler, and the detriment to responsiveness,
though not quite as steep, remains in the same ballpark.

Firefox is more CPU intensive than the two LibreOffice
applicaitons, with about 126 seconds of active CPU time

Fig. 17. Impact of the blocking scheduler on responsiveness in Firefox

during 70 seconds of data collection. It also has relatively
high original levels of concurrency as shown in figure 15
with a block time of 0 seconds. This helps to explain why the
scheduler modifications hurt responsiveness more than with
the LibreOffice applications.

Fig. 18. Reduction in concurrency with the blocking scheduler in Blender

Blender is by far the most CPU intensive of the four
applications with approximately 211 seconds of active CPU
time in just under a minute. It also has intrinsically high
levels of concurrency as shown in figure 18. Therefore, it
is not surprising that the responsiveness of blender shows
the greatest response to the scheduling changes. Even the
median active period delay time, which is always very low
for the other 3 applications, is several seconds for most of
the range of block times with Blender (see figure 20). Also,
almost all active periods are delayed. Figure 19 shows that
the overall runtime of the render increases drastically once



9

Fig. 19. Impact of the blocking scheduler on runtime in Blender

Fig. 20. Impact of the blocking scheduler on responsiveness in Blender

the block time is greater than 400 microseconds. From a
performance standpoint, this is unacceptable. Furthermore,
in figure 18, though the fraction of active periods with
any concurrency does decrease with block time, the other
measures of concurrency show relatively little change. All of
this holds generally true for the selective blocking scheduler
as well. Clearly these scheduling tweaks are much more
costly with Blender than with the other applications, without
any significant improvement to the benefits.

From this analysis it is clear that these particular
scheduler modifications are beneficial and viable only for
applications that have low CPU needs (like Calc). The
costs simply outweigh the benefits for more CPU intensive
applications. Ideally, the scheduler could identify CPU
intensive applications or CPU intensive circumstances (if
multiple applications are taxing the CPU) and either reduce

blocking or cease blocking altogether in these circumstances.

Furthermore, performance would be better if the scheduler
could more accurately predict whether a queuing active
period would be long or short, and only block for short
active periods. We suspect that event based threads tend to
have shorter active periods than computation threads, so only
blocking for event threads could be one way of accomplishing
this. Also, allowing computation threads to run their active
periods unblocked would help to mitigate performance costs
with CPU intensive applications. The challenge is then to
determine which threads are event based and which are
computation focused. Because of the suspected difference
in active period duration between event and computation
threads, we initially suspected that thread ID might be a
good predictor of active period duration. Table X shows, in
descending order, the coefficients of variation of active period
duration for the four applications. Only threads with 1000 or
more active periods in one trial are shown.

Calc Writer Firefox Blender
7.48 5.81 5.60 4.92
2.99 5.22 5.29 4.13
2.87 3.83 4.62 4.08
1.90 3.82 4.01 3.77
1.87 3.12 2.84 3.70
1.68 2.66 2.80 3.52
1.19 2.25 2.69 3.44
0.39 1.38 2.65 2.33

0.97 2.45 2.32
0.86 2.14 1.82

2.10 1.45
2.10 0.89
2.09 0.61
2.06 0.59
2.03
1.92
1.78
1.56
1.41
1.31
1.28
1.27
1.27
1.01
0.84
0.64
0.57

TABLE X. COEFFICIENTS OF VARIATION FOR ACTIVE PERIOD
DURATION OF THREADS WITH AT LEAST 1000 ACTIVE PERIODS

Table X indicates that the duration of recent active periods
for any given thread is not always an accurate predictor of
duration of subsequent active periods. This information helps
to explain why there was not a greater performance difference
between the selective and non-selective blocking schedulers.
Figure 21 shows that, despite some high coefficients of
variation, the mean durations for the threads in Firefox have
some spread and perhaps display some binning. The other
applications produce similar results, but with fewer reliable
data points because they all had fewer threads with over
1000 active periods than Firefox. We posit that the gap in
mean duration may be the divide between event based and



10

computation based threads, but further study is necessary to
verify this. Also, the data suggest that looking at historic
mean duration for a thread may provide a useful part of
a more complex system for predicting the length of active
periods.

Fig. 21. Mean active period duration for the most active threads in Firefox

VII. CONCLUSION

In the characterization portion of this study, we found that
the majority of active periods are relatively short, while the
minority of long active periods account for most of each
application’s active time. For the applications that we studied,
the shortest 90% of active periods only account for roughly
12.75% of total active time. Future work can investigate
more operating systems (both desktop and mobile), more
applications, and more hardware environments to figure out
in what circumstances this result holds true.

We have also shown that our proposed blocking thread
scheduling techniques are good for applications that have low
CPU needs, but are simply too costly in terms of performance
for CPU intensive applications. In the future, we would like to
investigate dynamically adjusting the block time in response
to CPU workload, develop a better method for predicting
active period duration, and ensure that we only block threads
that share memory space with one another.

REFERENCES

[1] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, ”Evolution
of Thread-Level Parallelism in Desktop Applications,” in Proceedings
of the 37th annual international symposium on Computer architecture,
2010.

[2] C. Gao, A. Gutierrez, R. G. Dreslinski, T. Mudge, K. Flautner, and
G. Blake, ”A Study Of Thread Level Parallelism on Mobile Devices,”
in Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[3] S. Lu, S. Park, E. Seo, and Y. Zhou, ”Learning From Mistakes - A
Comprehensive Study on Real World Concurrency Bug Characteristics,”
in Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, 2008.

[4] N. Anderson, ”How OS X Mavericks works its power-saving magic:
More details on App Nap, Timer Coalescing, and Compressed Memory,”
in ars technica, 2013.



11

APPENDIX A
PERFORMANCE EVALUATION FIGURES FOR THE SELECTIVE BLOCKING SCHEDULER

LibreOffice Calc:

Fig. 22. Reduction in concurrency with the selective blocking scheduler in Calc

Fig. 23. Impact of the selective blocking scheduler on runtime in Calc

Fig. 24. Impact of the selective blocking scheduler on responsiveness in Calc



12

LibreOffice Writer:

Fig. 25. Reduction in concurrency with the selective blocking scheduler in Writer

Fig. 26. Impact of the selective blocking scheduler on runtime in Writer

Fig. 27. Impact of the selective blocking scheduler on responsiveness in Writer



13

Mozilla Firefox video streaming:

Fig. 28. Reduction in concurrency with the selective blocking scheduler in Firefox

Fig. 29. Impact of the selective blocking scheduler on runtime in Firefox

Fig. 30. Impact of the selective blocking scheduler on responsiveness in Firefox



14

Blender Cycles rendering:

Fig. 31. Reduction in concurrency with the selective blocking scheduler in Blender

Fig. 32. Impact of the selective blocking scheduler on runtime in Blender

Fig. 33. Impact of the selective blocking scheduler on responsiveness in Blender



15

APPENDIX B
ACTIVE PERIOD DURATION GRAPHS FOR EACH EXPERIMENTAL TRIAL

LibreOffice Calc:



16

LibreOffice Writer:



17

Mozilla Firefox video streaming:



18

Blender Cycles rendering:


