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Abstract

This paper examines the propagation of rumors over various social network structures. We create
two modified compartmental SIR models by bridging concepts from graph theory, network theory, and
epidemic modeling. We incorporate these models in three complex networks: Complete Graph, Small
World, and Preferential Attachment. Then, we conduct numerical simulations through modeling software
to study the speed, intensity, duration, and extent of the spreading rumor through each structure.
Finally, we compare the results between the simulations and pinpoint the underlying characteristics of
each network. Our results show that large centralized hubs are more e↵ective in rumor spreading than
small, dispersed, but highly connected communities. We also find that by increasing the infection rate
or creating more connections within a network both lead to a faster spreading and overall larger final
rumor size.

1 Introduction

A rumor is a piece of “information or a story that is passed from person to person but has not been proven
to be true” [24]. Rumors have a✏icted all societies throughout the course of history. They penetrate small
social circles and a✏ict entire nations. The spreading of misinformation has had undesirable e↵ects in
changing public opinion, causing large economic loss, creating an atmosphere of skepticism around factual
evidence, and inducing irrational behavior in individuals or large groups. Rumors encompass: political smear
campaigns (FOX News stating Obama is a Muslim), conspiracy theories (the attacks of September 11 were
an inside job), and religious and territorial conquest (the Romans defaming the Phoenicians about their
supposed child sacrificial rituals in order to gain general population approval for grounds of invasion). We
have even seen the spread of rumors in our daily lives these past few months: Presidential candidate Donald
Trump distorting New Jersey Muslims’ celebrations and saying they were cheering on the 9/11 attacks, Yik
Yak posts around the University of Missouri about race riots and KKK threats leading to increased police
presence in the area, David Daleiden creating a misconstrued video about Planned Parenthood and abortion
which gained massive popularity, possibly leading to Colorado Springs Planned Parenthood attack by Robert
Dear.

In this paper we review the areas of mathematics that contribute to rumor propagation modeling then
study rumor dynamics with an adapted SIR epidemic model on three complex social networks: Complete
Graph, Small World, and Preferential Attachment. We run multiple numerical simulations for each network
and analyze the final rumor size, duration, intensity, and speed within each network structure. Then we
compare the outcomes between networks and locate which parameters intrinsic in the network lead to each
result.

The rest of the paper is organized as follows. In section 1 we introduce graph theory, its terminology,
configuration, and application in social networks. Section 2 describes network theory, the formation of three
types of networks, and the dimensions and specifications unique to each network. Section 3 familiarizes us
with the basic SIR compartmental model including the corresponding set of ordinary di↵erential equations
for dynamical modeling. Section 4 gives a formulation of the SIR Rumor model over network structures with
mean field equations. In section 5 we present numerical simulations and interpret the results. In section 6,
we close the paper with a conclusions.

The study of rumor spreading first started in the 1960s with Daley and Kendall, who derived their
model from infectious disease models. They were the first to apply the terms ignorant, spreader and sti-
fler in likening rumor propagation to epidemic compartmental modeling for a susceptible, infected, and
recovered population. Using a set of di↵erential equations, they built a stochastic model with a closed and
homogenously mixed population that circulated the rumor through random contact between individuals
based on specified probabilities [19]. Maki and Thompson presented a derivative of this model by creating
a modified deterministic DK model using directed contacts (where rumors can only spread through specific
pathways), discrete time, and Markov Chains. These early models did not take into account the influence of
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the structural properties of a network or the underlying e↵ects of social interactions in a network on rumor
propagation, but instead focused on a simplified, uniform model structure. Nevertheless, both models have
been used extensively for quantitative studies of rumor propagation. Sudbury found the equilibrium points
of the MT model and gave the equations that predict when a rumor will cease to exist within a population
[22]. Lefevre and Picard analyzed the final size and duration of a rumor within a population [20]. Nekovee
et al. integrated complex social networks within the rumor model and introduced a forgetting mechanism
based on the attractiveness of remembering a rumor. They ran numerical simulations to examine the epi-
demic threshold and other dynamics on random graphs and scale-free networks to see which of the two was
more inclined to spread rumors [14]. Wang et al. created a SIRaRu model by di↵erentiating the success of
a spreading rumor from the inevitability of an infectious disease by classifying individuals into two stifler
categories: Ra individuals as people who accept the rumor but choose not to spread it, and Ru individuals
as people who do not accept the rumor in the first place, both groups allowing ignorant individuals to bypass
the spreader stage. They ran this model over homogenous and inhomogenous networks and showed that the
network structure has a significant bearing on the final rumor size. Then, they incorporated a random and
targeted immunization strategy to mitigate large-scale rumor propagation [15]. Li and Ma studied a delayed
SIR rumor propagation feature for emergency situations [21]. Wang et al. proposed a SIR rumor model over
network structures that combined individuals with a network medium for rumor propagation. They studied
the increased dynamical behavior of rumor spreading not just by word of mouth but other avenues such as
online sites like Facebook, Twitter, and Reddit [9].

Since the 1970’s, network structures have been getting a lot of attention due to their varied applications
in the social sciences, mathematics, and computer science. These structures have been identified in neural
networks, power grids, website linkages, and collaboration graphs between researchers as well as actors [23].
Their initial implementation in modeling was used to study the dissemination of information, ideas, news,
and rumors. The development of complex network theory has brought modeling into a new period of research,
allowing for more intricate models that can merge features like variable spreading rates between individuals
or rules that govern the spread of disease through a diverse population to more accurately reflect real life
networks. Watts and Strogatz presented the Small World (SW) network structure as a hybrid of regular
and random networks using a rewiring procedure, then invited others to study disease dynamics over these
network structures [23]. Zanette first employed complex network theory to study rumor propagation on small
world networks [16]. Barabási and Albert presented a network structure that incorporated features of power
law scaling seen in real networks to create the Barabási-Albert (BA) network. It is a model that rivals Small
World in accuracy, especially in the use of social networks [12]. Newman et al. led an empirical investigation
of virus propagation over a constructed email social network [18]. Following Newman, Ebel et al. built a
social network from an email server of 60,000 emails and 5000 students and noted how the network analysis
fit the mold of a scale-free model with small world characteristics [17]. Csányi et al. showed that human
social networks are likely to be constructed of a hybrid of several networks with di↵ering characteristics.
They used Hungarian social networking site and found that it follows a combination of SW and BA networks
[13].

2 Literature Review

2.1 Graph Theory

Graph Theory is an area of discrete mathematics discovered by Leonard Euler in his paper Seven Bridges of
Königsberg written in 1736. It was considered a recreational area of mathematics with few applications until
the advent of computer science, which opened the doors to theoretical chemistry, electrical engineering, and
operations research [3]. Recently, it has been used in mathematical modeling to study the algorithmic and
structural properties of network structures. Representing a problem as a graph can provide a di↵erent point
of view and, in some cases, make the problem much simpler. Graphs excel at depicting the logical or physical
linkages within a system. Combined with the techniques of Network Theory, graph theoretic representations
of complex systems can be analyzed to study the structure in a system of interacting agents. Airline routes
and transportation networks, friendship groups within a high school, and information dissemination through
the Internet are but a few examples in which this applies [1].
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A graph G is a pair (V (G), E(G)), where V (G) is a non-empty finite set of elements called nodes and E(G)
is a finite set of unordered pairs of distinct elements of V(G) called edges [2]. A graph is a mathematical
structure used to model relationships between a collection of objects. The nodes are the set of objects
within the graph, and the edges are the links that connect the objects to each other. We say that the
order of G, or the number of nodes in G, is |V (G)| and the size of G, or the number of edges in G,
is |E(G)| [3]. In Figure 1(a), the nodes of G are V (G) = {A,B,C,D,E, F,G} and the edges of G are
E(G) = {ab, bc, ae, be, bd, dg, fg}. The order and size of G is |V (G)| = 7 and |E(G)| = 7 respectively. Two
nodes of a graph that have an edge joining them are called adjacent. In our example, nodes B and D are
adjacent. We specify the degree of a node as the number of edges connected to that node, for instance
deg(B) = 4 [2].

(a) A graph with 7 nodes and 7 edges. (b) Adding, subtracting, and taking the union on a set of
graphs.

Figure 1: A few example graphs noting terminology and arithmetic operations.

Now that we have the terminology for the elements of a graph, we can arrange ways to traverse the graph.
Given an initial node n0 in our graph G, we can create an edge-sequence of the form n0n1n2...nm�1nm

. We
define a path as an edge-sequence in which all the nodes and edges are distinct, and a circuit as a path that
returns to the initial node. We designate the length of a path or circuit as the number of edges from the
beginning to end, for example in Figure 1(a) a path of length 5 is e � a � b � d � g � f while a circuit of
length 3 is b � a � e � b. The distance of a graph is the shortest path between two nodes, for instance the
distance of C to A is 2 while a path of length 3 from C to A is c� b� e� a [2].

We can label graphs by the way their elements interact with each other. A graph is connected if there
exists a path between any pair of nodes. A graph is simple if there does not exist multiple edges between
nodes or self-loops within a node. For example, our graph in Figure 1(a) is connected and simple. A complete
graph, C

n

is a simple graph in which every pair of nodes is adjacent. Given n nodes, we have 1
2n(n � 1)

edges. For example, in Figure 1(b), G1 is complete since it has 4 nodes and 1
24(4� 1) = 6 edges. A graph is

regular if every node has the same degree, for instance G2. Nodes in a regular graph are called homogeneous.
We can perform operations between and on graphs to modify them. Given G1 = (V (G1), E(G1)) and

G2 = (V (G2), E(G2)), we can take the union G1 [G2 = (V (G1)[V (G2), E(G1)[E(G2)). We can take the
sum of G1 +G2 by taking the union of the graphs and drawing an edge from each node of G1 to each node

4



of G2. We can also carry out subtraction on a graph by deleting an edge e or a node n together with all the
edges connected to n, for instance in Figure 1(b), G4 = G2 � gf and G5 = G2 � E.

We can form disconnecting sets and separating sets on a connected graph whose removal of edge-sets and
node-sets respectively will disconnect G. In Figure 2, the set of edges {cf, ce, de, df} is a disconnecting set for
G while the set of nodes {C, D, E} is a separating set for G. These removals form G1 and G2 respectively. We
define the edge-connectivity as the smallest number of deleted edges in order to disconnect G, and similarly,
vertex-connectivity as the smallest number of deleted nodes in order to disconnect G [2]. In Figure 2, the
edge connectivity of G is 2 since we can form the disconnecting set {ab, ad} while the vertex connectivity
of G is 2 since we can form the separating set {B,D}. These removals form G3 and G4 respectively. Using
these operations, we are able to isolate interesting or important sections of a graph and study their structural
properties. Specifically we can study the entirety of the graph, called global metrics, or a smaller region of
the graph, called local metrics.

Figure 2: A depiction of disconnecting sets and separating sets on a graph.

A subset of the nodes and edges in a graph may contain certain characteristics, or relate to each other in
particular ways. We call these disjoint, connected subgraphs components, since they are internally connected
and independent pieces of the graph [1]. For example, in Figure 3(a), when we remove the edge xy we are
left with a giant component containing X, and the small subgraph containing Y . We will see in the next
section how large complex networks usually contain one giant component and how studying the connections
between components gives insight into the underlying structure of a network. To further illustrate, in Figure
3(b), Graph H is composed of four distinctively di↵erent components. For instance, component A has a
high concentration of nodes connected to a central node while component B has more connections between
individual nodes but a larger degree of separation between nodes on opposite sides of the component.

5



(a) The subgraph containing X is a component
within a larger graph.

(b) Graph H has four disconnected components.

Figure 3: Examples of disassembling graphs for further analysis.

2.2 Network Theory

Network theory is the study of complex interacting systems that can be represented by graphs. Specifically,
social network theory observes social dynamics within social networks of organizations, groups, or websites
by representing individuals as nodes and interactions between individuals as edges. Using graph-theoretic
techniques, it has been used to describe the evolution and spread of ideas in societies [4]. By fashioning
distinct models based on the allotment and connectivity of edges and nodes, networks can be made to
resemble real datasets and common properties can be exhibited between di↵erent network domains [1]. Two
ways to di↵erentiate network types involve the clustering coe�cient and the average path length. We will
cover Random Networks, such as Erdős – Rényi model, Small World Networks, and Preferential Attachment
Networks, such as the Barabási – Albert model.

First, we define triadic closure to be the increased likelihood of two people who share a common friend
within a social network to more likely be friends themselves at some point in the future [1]. This is based on
the observation that there is a greater opportunity for these two people to meet due to the mutual friend.
Then we define the clustering coe�cient for an individual n in the graph G as,

cc(n) =
number of pairs of adjacent neighbors

number of pairs of neighbors
=

number of triadic closures containing n

number of possible triadic closures containing n
,

where 0  cc(n)  1. In other words, the clustering coe�cient of a node is defined as the probability that two
randomly selected friends of the node are friends with each other [1]. We can take the clustering coe�cient
of the graph by taking the average of the clustering coe�cient of all n 2 G so that,

CC(G) =
1

|V |
X

n2V

cc(n).

The larger the clustering coe�cient, the stronger triadic closure there is between nodes. Next, we define the
path length between two nodes m,n 2 G as the length of the shortest path from m to n, denoted by d(m,n).
Thus, the average path length of a connected graph G is,

L(G) =
1

n(n� 1)

X

m,n2V

d(m,n).

The Erdős – Rényi (ER) model is constructed by connecting nodes randomly. It is denoted by G(n, p),
where n are nodes and for any two nodes chosen there is a rewiring probability p that they are adjacent.
We include edges between nodes independent from every other edge. Each node has about the same degree,
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p = hki
n

where hki is the average degree of a node and p is the expected degree of all nodes in ER. If p is
small, the graph tends to be disconnected with many components, such as the graph G(20, 0.2) in Figure
4(a). If p is large, the graph tends to be well connected, such as the graph G(20, 0.8) in Figure 4(b). In
general, the degree distribution of the network will follow a normal distribution with very few nodes of
large or small degree. We see an example of this in Figure 4(c), where the degree for a node in G(20, 0.8)
follows a normal distribution. We determine the probability of a node having degree h by using the binomial
distribution:

�
n�1
h

�
ph(1� p)n�1�h, where each node has n� 1 opportunities to create an edge between other

nodes. A graph G(n, p) on average has
�
n

2

�
p edges. The graph in Figure 4(a) has 41 edges while the graph

in Figure 4(b) has 157 edges. The clustering coe�cient of an ER graph is CC(G(n, p)) ⇡ p = hki
n

. For
example, CC(G(20, 0.2)) = 0.23 and CC(G(20, 0.8)) = 0.82. ER models exhibit a small average shortest
path length but tend not to be clustered, for instance L(G(20, 0.2)) = 2.12 and L(G(20, 0.8)) = 1.17. Due
to low clustering, ER graphs are usually not realistic for real world networks.

(a) Graph G(20, 0.2) has a low rewiring probability. (b) Graph G(20, 0.8) has a high rewiring probability.

(c) Degree distribution of ER graphs follows a normal distribution.

Figure 4: Erdős – Rényi Graphs
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Small World networks were designed to mimic real world phenomena by demonstrating short path lengths
as well as high clustering, seen by an average path length L(G) ⇡ 1 and a clustering coe�cient CC(G) ⇡ 1
respectively. These networks are defined by G(n, p, k) where p is the rewiring probability and k is the
mean degree distribution of nodes. Figure 5(a) displays a Small World network G(20, 0.1, 9) with L(G) =
1.05, CC(G) = 0.94 and an edge count of 180. The high clustering coe�cient is due to the existence
of communities, or highly connected hubs. As the probability of rewiring increases, there exists a greater
likelihood for a SW network to create shortcuts between these communities. Communities tend to attract the
members of other communities forming even bigger communities, where paths between these communities
tend to be short. This occurrence is seen in our parameters: As p increases, L(G) decreases quickly and
CC(G) decreases logarithmically slower than L(G). This allows L(G) to decrease greatly with only small
decreases in CC(G). Figures 5(c) and 5(d) show the graphs of L(G) and CC(G) as a function of p for
G(5000, p, 5). This relates to the node degree distribution for G(500, p, 5) in Figure 5(b), which accounts for
the formation of these communities since there exist nodes with a much higher degree of connections within
the network. The existence of these short paths between highly connected nodes have consequences for the
high potential speed with which information or diseases can spread through a social network [5].

(a) Graph G(20, 0.1, 9) with L(G) = 1.05,
CC(G) = 0.94 and edge count of 180

(b) Degree distribution of Small World graphs

(c) Path length as a function of rewiring probability (d) Clustering as a function of rewiring probability

Figure 5: Small World Graphs

The Barabási – Albert model generates scale-free networks using a preferential attachment model and
growth. A scale-free network has a power law degree distribution of the form P (k) ⇠ k�� , where P (k) is
defined as the probability that a node, n, chosen at random has degree k or, equivalently, as the fraction of
nodes in the graph having degree k. These networks are widely observed in real world systems. A preferential
attachment network works on the basis that some quantity is distributed among individuals according to
how much they already have, deemed ‘the rich get richer’ model. Growth means that the number of nodes in
the network increases over time. Thus, a BA graph is denoted by G(n, k) where a new node with k edges is
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added at each step. In the case of social networks, a node with many edges represents a popular person with
numerous relationships. When a newcomer enters the community, she is more likely to form a relationship
with one of the well-known people rather than one of the relatively unknown individuals, thus forming a new
edge to this already highly connected node. These highest degree nodes are called hubs, and have a stronger
ability to connect with nodes added to the model. The average path length of a BA model is L(G) ⇠ lnN

ln lnN

,
which is shorter than L(G) for the ER model. The clustering coe�cient distribution for BA models decrease
as the node degree increases. This means that low degree nodes belong to very dense components, which in
turn, are connected by hubs [6]. The BA graph in Figure 6(a), G(20, 2), has an L(G) = 2.12, CC(G) = 0.38,
and an edge count of 37. The BA graph in Figure 6(d), G(20, 11), has an L(G) = 1.19, CC(G) = 0.83, and
an edge count of 154. Figures 6(b) and 6(e) show the node degree distribution for each graph respectively.
Figures 6(c) and 6(f)s display the power law nature of each degree distribution for each graph respectively.

(a) Graph G(20, 2) with L(G) = 2.12,
CC(G) = 0.38, and edge count of 37

(b) Degree distribution of G(20, 2) (c) Power law nature of G(20, 2)

(d) Graph G(20, 11) with L(G) =
1.19, CC(G) = 0.83, and edge count
of 154.

(e) Degree distribution of G(20, 11) (f) Power law nature of G(20, 11)

Figure 6: Barabási – Albert Graphs

2.3 SIR Model

Infectious diseases are the second leading cause of death worldwide [8]. The spread of infectious diseases
is an intricate phenomenon that depends on many complex factors such as the type of host, disease, and
environment. Specifically, social contact networks pose an interesting avenue in which diseases are likely
to spread from person to person. Mathematical models have incorporated network theory to simulate
disease propagation by using contact networks which represent each individual as a node and draws an edge
between two individuals who come in contact with each other to more accurately model disease transaction
[1]. Models are able to represent simplified real systems as mathematical constructs by selectively choosing
which parameters of study to focus on while ignoring minor factors or conditions imposed on a real system
that are not pertinent to the results being studied. For example, a model can incorporate a simplistic
closed population, meaning it does not account for new individuals entering the system via births, deaths,
immigration or emigration, but rather studies the interactions between an exclusive group of individuals.
These models can predict the numerous attributes of disease spread such as the duration of an epidemic as
well as the total number of infected individuals. After determining propagation avenues within the system,
models can interpret the data on a disease and design control measures within the system, such as quarantine,
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behavior modification, and vaccination, which can be implemented to curb the intensity of spread [8].
In the late 1800s, Sir Ronald Ross developed the first mathematical models, specifically for the epidemi-

ology of malaria, which laid the foundations for modern application of infectious disease modeling. Given a
population of hosts, or individuals that are susceptible to a disease, and introducing a pathogen, or disease-
causer within the hosts, Ross wanted to see how an outbreak could be modeled within a population [8].
He noted that some diseases led to an endemic equilibrium, where the pathogen was maintained within the
population causing small outbreaks over the course of many years, while some diseases led to full-blown
epidemics, where there is an intense outbreak among the population followed by the disappearance of the
pathogen [7]. His research influenced the first basic SIR model by Kermack and McKendrick. This model
assigns each individual in a closed population to a compartment according to its disease status at time t:
S(t) is the susceptible population at time t, I(t) for the infectious population, and R(t) for the recovered
population. Interactions between individuals are determined by a set of ordinary di↵erential equations in
which a set of parameters is chosen to dictate the probability of interactions [4]. At each time step, indi-
viduals can move between compartments until the disease has run its course. Time can be measured in two
approaches based on the resulting needs of the model. By using Discrete time, our model measures each
variable once at each allotted time step resulting in a finite number of measurements. On the other hand, by
using Continuous time, time is viewed as a continuous variable resulting in an infinite number of measure-
ments, usually concluding in a larger yet more comprehensive dataset than discrete. To simplify, the model
assumes transmission of the disease between any two hosts is a random event. It assumes Homogeneity of
Hosts in which all hosts have the same individual characteristics, and Uniform Mixing in which each host is
equally likely to make contact with each other host [8]. This model is able to map the pattern of spread for
di↵erent pathogens and predict the future course of an outbreak in another population [8].

Figure 7: A basic SIR compartmental model. � is the probability of a susceptible individual contracting a disease
from an infected individual, thus transitioning from the S compartment to the I compartment. � is the probability
of an infected individual recovering from a disease and transitioning from the I compartment to the R compartment

The basic model for a closed and constant population is given by the set of di↵erential equations [7]:

dS

dt
= ��SI

dI

dt
= �SI � �I

dR

dt
= �I

N = S + I +R = 1

(1)

where N is the total population size and the initial condition for each compartment is S(0) = S0 ⇡ N ,
I(0) = N � S0 ⇡ 0, and R(0) = 0. For purposes of simplifying our model, we set N = 1 to normalize our
population. In the first time step we can introduce an initially infected host, called the index case [8].

An individual in the S compartment is susceptible to infection by coming into contact with an infectious
individual. An individual in the I compartment is infectious and has some rate of infecting susceptible
individuals [1]. Each infected individual transmits the pathogen to b susceptible individuals per unit time.
This contact rate is denoted by � = b

N

. The number of new cases per unit time, called secondary infections,
is bI S

N

= �SI [7]. By making a model assumption of permanent immunity, an individual who moves from
the I compartment to the R compartment is removed from consideration, since the individual no longer
poses a threat to the future of infection. R-stage individuals are neither infectious nor infectable since they
are either dead or have permanent or temporary immunity [4]. The rate at which infected individuals recover
or die from the disease is �. If d is the duration of the infection in an individual within the model, then
� = 1

d

. We can determine the prevalence of the disease at each time step by I(t)
N

. We can follow the expected
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number of new infections per infected individual by the basic reproductive rate, R0. R0 is derived by

time between recoveries

time between contacts
⇥ total population size.

Time between recoveries = d = ��1 . Time between contacts = 1
�

. Thus R0 = �N

�

[7]. If R0 > 1 then the
disease will persist within the population. If R0 < 1 then the disease will die out after a finite number of
time steps. In disease prevention measures, the goal is to reduce R0 to below 1. The final size of a major
outbreak depends on R0.

Figure 8: Graph of a basic closed population SIR model with permanent immunity. N = 2000, � = .0002, � = .1,
t = 100, R0 = 4, with initial conditions S(0) = 2000, I(0) = 0, and R(0) = 0. The susceptible population is the
dashed line, the infected population is solid line, the recovered population is the dotted line.

The long-term behavior of our SIR model can be determined by looking at the equilibria and the corre-
sponding stability at each equilibrium point. Equilibria are points where the function does not change with
time, for instance when the ordinary di↵erential equation dx

dt

= 0. Stability refers to the model’s response to
moving a bit away from the equilibrium point. We say an equilibrium is locally stable if a small perturbation
results in a solution that tends back toward the equilibrium point. Similarly, an equilibrium point is locally
unstable if a small perturbation results in a solution that moves away from the equilibrium point. If a per-
turbation results in our point orbiting the equilibrium or staying a fixed distance away from the equilibrium,
it is denoted neutrally stable.

For the SIR di↵erential equations, one equilibrium is given at the point,

dS

dt
= �bI

S

N
= 0.

This means either S = 0 or I = 0. If S = 0 then we have no susceptible population to infect. Thus I = 0,
which means S = N = 1 since our population is normalized. This means our population is disease free; our
pathogen has not infected any individuals. We say that (S⇤

1 , I
⇤
1 , R

⇤
1) = (N, 0, 0) = (1, 0, 0) is the disease free

equilibrium.
We obtain the second equilibrium point by setting,

dI

dt
= �SI � �I = 0.

By factoring this equation, we see 0 = �SI � �I = I(�S � �). In this case, either I = 0 or S = �

�

. If I = 0,

then we have the above case. If S = �

�

, then we can find the other equilibrium by solving for I and R. Thus
to solve for I, we take,

N = S + I +R

N =
�

�
+ I +R

I = N �R� �

�
.

(2)
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Then we solve for R by setting dR

dt

= 0,

dR

dt
= �I

0 = �(N �R� �

�
)

R = N � �

�
.

(3)

Now we can find I by substituting (3) into (2),

I = N �R� �

�
.

I = N � (N � �

�
)� �

�

I = 0.

(4)

We say that (S⇤
2 , I

⇤
2 , R

⇤
2) = ( �

�

, 0, N � �

�

) = ( �
�

, 0, 1� �

�

) is the endemic equilibrium.

Now we can linearize our equations dS

dt

, dI

dt

to find the stability of our disease free point. This means
shifting the equilibrium to the origin and redefining our variables as S⇤ = N � S and I⇤ = I. Thus our new
di↵erential equations become:

f1 = dS

⇤

dt

= dN

dt

� dS

dt

= 0� (�bI S

N

) = bI S

N

= b I
⇤

N

(N � S⇤) = bI⇤ � b I
⇤
S

⇤

N

f2 = dI

⇤

dt

= dI

dt

= bI S

N

� �I = b I
⇤

N

(N � S⇤)� �I⇤ = bI⇤ � b I
⇤
S

⇤

N

� �I⇤.

Then we take the Jacobian matrix of our equations:

J(s, i) =

✓
@f1

@s

@f1

@i

@f2

@s

@f2

@i

◆
=

✓
� bI

⇤

N

� bS

⇤

N

bI

⇤

N

bS

⇤

N

� �

◆
=

✓
��I⇤ ��S⇤

�I⇤ �S⇤ � �

◆

Let s = N = 1 and i = 0 for our disease free point.

J(1, 0) =

✓
0 ��
0 � � �

◆

Our eigenvalues are: �1 = 0 and �2 = � � �. If our eigenvalues are negative or zero, then the equilibrium is
stable. Otherwise, the equilibrium is unstable if the eigenvalues have a positive part. If R0 > 1, then our
point is stable and if R0 < 1, then our point is unstable. Thus �1 is stable, and �2 is stable if R0 < 1, i.e. if
� > �, and unstable if R0 > 1, i.e. if � > �. Recall, if R0 < 1 then no epidemic occurs and if R0 > 1, then
an epidemic takes place [8].
Let s = �

�

and i = 0 for our endemic equilibrium point.

J(
�

�
, 0) =

✓
0 ��
0 0

◆

Our eigenvalues are: �1 = 0 and �2 = 0. Thus, our equilibrium point is stable.

3 Model derivation

3.1 The Simple Rumor Model

Social network analysis examines the structure of relationships between entities such as groups of people,
social media sites, and scholarly publications. Specifically, this analysis has been key in understanding the
propagation of news and rumors [10]. Though authoritative sources and expert opinions usually curb the
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intensity of propagation, rumors continue to have a great impact on society in their power to shape public
opinion [11]. Rumor propagation has been compared to the spread of computer viruses or epidemic diseases.
Studying rumor propagation mechanisms and the network structures in which they are disseminated are
important for reducing the e↵ect of rumor spreading.

Mathematical models have tried to capture this phenomenon and, presently, have been combining a
modified SIR model with Network Theory. For example, in a social network, individuals are nodes and
contacts between di↵erent people are edges. The standard rumor-spreading model is the Daley-Kendall
model, a modified SIR model. From a fixed social network of N = S + I + R individuals we have three
groups: ignorants, spreaders, and stiflers. The ignorants, S, have never heard the rumor. The spreaders,
I, are actively spreading the rumor to ignorants. The stiflers, R, have heard the rumor but are no longer
interested in spreading it [9]. Two types of rumor spreading mechanisms can be used. The push-model
assumes that only spreaders actively seek ignorants to inform them of the rumor. The push-pull model
assumes the pull-model but additionally ignorants contact spreaders in attempts to learn of the rumor [11].

The rumor is propagated through the population by pair-wise contacts. A spreader who contacts an
ignorant attempts to “infect” the ignorant with the rumor determined by a ‘probability of infection’ �. If
successful the ignorant becomes a spreader. When a spreader interacts with another spreader or stifler, the
initial spreader will become a stifler with a probability �, due to the initial spreader realizing the rumor
has lost its ‘shock value’. With a certain probability �, the spreader will forget or become uninterested in
spreading the rumor, thus becoming a stifler. Nothing occurs when an ignorant meets another ignorant,
or an ignorant meets a stifler [9]. Fig 8 depicts a compartmental model which shows the flow of rumor
propagation. Our di↵erential equations for this model are:

dS(t)

dt
= ��S(t)I(t)

dI(t)

dt
= �S(t)I(t)� �I(t)(I(t) +R(t))� �I(t)

dR(t)

dt
= �I(t)(I(t) +R(t)) + �I(t)

(5)

Figure 9: � is the probability of a S-I interaction. � is the spreader’s rumor forgetting rate. � is the probability of a
spreader interacting with a stifler or another spreader.

3.2 Rumor Spreading Model Over Complex Networks

To create a rumor spreading model over complex networks, we modify the simple rumor model by including
the average degree of the network, hki, into our equations:

dS(t)

dt
= ��hkiI(t)S(t)

dI(t)

dt
= �I(t)S(t)� �hkiI(t)(I(t) +R(t))� �I(t)

dR(t)

dt
= �hkiI(t)(I(t) +R(t)) + �I(t)

(6)

Then, we combine these equations with the adjusted specifications inherent in each network, such as
the path length and clustering coe�cient. In the next section, we will analyze rumor propagation through
homogeneous networks, meaning that all nodes within the model share the same characteristics. Every edge
in each model has an equally weighted probability for rumors to pass through them. We use the simple
rumor model for the Complete Graph simulations, with reasonings which will be explained in greater detail
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later. Complete Graphs contain all possible edges between their nodes so that every node is connected to
every other node. We use the complex networks model for Small World and Preferential Attachment graph
simulations.

To get a general idea of how this model works, we see that as the spreading rate, �, increases SIR graph
shifts left since the outbreak becomes more intense. The spreader curve gets larger over a smaller time
period, while the susceptible curve falls. As we increase the average mean degree, hki, the graph shifts
left as more individuals have a higher average degree of connections allowing for a rumor to hold a greater
chance of spreading through di↵erent avenues of individuals. As we increase the probability of a spreader
interacting with a stifler or another spreader, �, the spreader curve drops as the stifler curve grows due to
the increased rate at which spreaders become stiflers. At a certain threshold, if � is low and � is high, then
the spreader category can die out. As we increase the rate of forgetting a rumor, delta, we find a similar
graphical interpretation to �.

4 Results of Numerical Simulations and Discussion

To perform a numerical analysis, I linked the simulation programs Netlogo IONTW to Mathematica. Netlogo
IONTW excels at modeling and running SIR model simulations over complex networks. It also calculates
and records important metrics pertaining to the network before and after simulating the disease, such as
the expected mean degree, clustering coe�cient, path length, and the basic reproductive rate. Only the
constants � (not the same � from our models above), d, and the infection rate can be varied to produce
the outcome of our parameters within the Netlogo program, so I focused on these parameters for running
simulations and comparing results. Also, note that each of these parameters controls a di↵erent aspect
within each model, which will be explained later. I kept a closed and constant population of N = 100 for
all experiments. Netlogo uses a stochastic algorithm to create and simulate its models, so replicating and
studying one particular (deterministic) model with identical parameters is di�cult. Though it is able to run
batch processes and give the outcome results for each simulation, it is not able to parse the data at each time
step to demonstrate the inner mechanics of how a simulation obtains its results. Mathematica, on the other
hand, is not equip with a complex network package, even though it has an awesome di↵erential equations
solving and modeling engine. By linking the two programs together, I was able to track and report on the
propagation of the disease at each time step and generate a basic SIR graph for each network.

4.1 Complete Graph Model

For the Complete Graph model, I ran 4 experiments with di↵ering infection rates. The experiments consisted
of 250 simulations, tracking the number of susceptible, infectious, and recovered at each discrete time step for
250 time steps separately. After collecting the data, I took the mean of each category for each corresponding
time step (for example, the number of infected at t=35 for all simulations) and plotted a line graph for each
S, I, and R curve then compared the results using the collected data.

Table 1: Complete Graph Constants and Parameters and their E↵ects

Constant E↵ect
� No e↵ect because Complete graph will always have a 100% clustering coe�cient
d No e↵ect because Complete graph will always have a path length of 1
hki Does not vary because expected mean degree for Complete graph is always N � 1 = 100� 1 = 99

4.1.1 The E↵ect of Increasing the Infection Rate �

The basic reproductive rate, R0, varies in correlation with the infection rate. As the infection rate increases,
R0 increases, and we see the duration of the rumor go from short to long to constant. We see a similar result
for the time of the infection’s peak. This could be because the rumor with R0 = 1 fizzles out within the
population quickly since it is not able to gain traction and spread. When R0 = 2, the rumor lasts longer in
the population since the rumor is stronger, infecting people over a longer period of time (think of the flu).
Then, when R0 = 3 the rumor spreads quickly since it is highly infectious, but fizzles out at the same time
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as R0 = 2. This may be due to the possibility of the model passing a certain threshold of population (in this
case 65%), where there ends up being a smaller pool of susceptible individuals that can become infectious
as more individuals become infectious or removed. The percentage of spreaders at the peak and the total
removed individuals shoot up drastically from R0 = 1 to R0 = 2, but then level out from R0 = 2 to R0 = 3
since we have a small finite population N .

(a) R0 = 1 (b) R0 = 2 (c) R0 = 3

Figure 10: Increasing the infection rate in Complete Graph results in an increase in R0. The dashed line represents
the number of ignorants, S(t). The solid line represents the number of spreaders, I(t). The dotted line represents
the number of stiflers, R(t).

4.2 Small World Model

For the Small World model, Netlogo combines an Erdős – Rényi graph with a Nearest Neighbor graph
(meaning the nodes are arranged in circle instead of a lattice or square or random placement in space). I
ran four experiments varying the infection rate, three experiments varying �, and three varying d. I ran 250
simulations with 1000+ time steps for each experiment.

Table 2: Small World Constants and their E↵ects

Constants E↵ects
� a↵ects the rewiring probability and the expected mean degree
d A node is connected to the d nearest neighbors to each side of every node
hki Expected mean degree of each node in the network

4.2.1 The E↵ect of Increasing the Infection Rate �

As we increase the infection rate, our parameters hki, CC(G), and L(G) stay approximately the same; only
R0 increases as the infection rate increases. When R0 > 1.5, major rumor epidemics occur (> 25% of
population). When R0 < 1.5, the rumor tends to die out quickly, not a↵ecting a large percentage of the
population at any given time. The time of the rumor peak occurs later as R0 approaches 2, then occurs
sooner with more total percentage of the population becoming infected as R0 > 2. Similarly with the
duration of the infection for major outbreaks, as R0 increases, the duration decreases and the intensity of
the outbreaks increase. As R0 grows, a larger percentage of total individuals get infected by the rumor.
Beyond R0 = 5, the entire population appears to succumb to the rumor.
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(a) R0 = 0.75 (b) R0 = 1.4 (c) R0 = 1.9

(d) R0 = 2.9 (e) R0 = 4.7

Figure 11: Increasing the infection rate in Small World results in an increase in R0. The dashed line represents the
number of ignorants, S(t). The solid line represents the number of spreaders, I(t). The dotted line represents the
number of stiflers, R(t).

4.2.2 The E↵ect of Increasing �

If we manipulate our constant �, we see an increase in our parameters hki and R0, but a decrease in CC(G)
and L(G). The edge density increases. The time of peak infection decreases, signifying the enhanced speed
of the spread of the rumor through the population. This also corresponds to a shorter duration time as �
increases. Also the intensity and strength of the rumor increases noted from the larger final rumor sizes
and the percentage of the population a↵ected during the peak of infection. The total number of removed
individuals tapers o↵ as � increases due to less susceptibles present in the total population.

(a) � = 1 (b) � = 2.5 (c) � = 5

Figure 12: Increasing � in Small World results in an increase of the mean degree and R0, and a decrease in the
clustering coe�cient and path length. The dashed line represents the number of ignorants, S(t). The solid line
represents the number of spreaders, I(t). The dotted line represents the number of stiflers, R(t).

4.2.3 The E↵ect of Increasing d

We get results similar to � as d is increased, except that CC(G) increases instead of decreases as d gets
larger. d seems to have a dramatic e↵ect in increasing CC(G), by about 7% when adding 1 more edge to
each node (i.e. d going from 3 to 4). It appears that the larger CC(G) is, the longer it takes for the rumor
to peak, yet the intensity of the outbreak and final rumor size end up the same, simply shifting the spreader
curve to the left.
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(a) d = 1 (b) d = 3

(c) d = 4 (d) d = 6

Figure 13: Increasing d in Small World results in an increase of the mean degree, R0, and the clustering coe�cient,
while a decrease occurs in the path length. The dashed line represents the number of ignorants, S(t). The solid line
represents the number of spreaders, I(t). The dotted line represents the number of stiflers, R(t).

4.2.4 Discussion on Parameter’s E↵ects on Small World

As � increases, the average number of edges on a node increase causing more connections between nodes
within the network. Counter intuitively, when we increase �, we actually dilute the already strong clustering
that occurs within this network. This occurs because increasing � can cause there to be a greater likelihood
of long connections (rewirings) existing from nodes across the network that break up the small clustered
components that may exist on the edges of the network where there are many short connections within
closely spaced nodes. Thus CC(G) decreases as � increases. As � increases, the existence of more edges
within the model cause L(G) to decrease since there exist more avenues for shorter lengths between nodes.
As d increases, CC(G) increases since greater clustering forms with nearby nodes. As with �, as d increases,
L(G) decreases for similar reasons. We can compute the rewiring probability as p = �

N�1 . The expected

mean degree of the network can be computed within the network as hki = 2d+ �� dN�

N�1
2
N

= 2d+ �� 2d�
N�1 .

4.3 Preferential Attachment Model

For the Preferential Attachment model, I ran four experiments varying the infection rate, four varying �,
and 3 varying d. Similar to Small World, I ran 250 simulations with 1000+ time steps for each experiment.
This graph initially begins with a complete graph of n nodes, then adds the remainder N � n nodes to the
graph one node at a time. Each new node added randomly attaches to a certain number of nodes within the
current model in proportion to the degree of each node from the previous iteration of adding nodes (rich get
richer).
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Table 3: Preferential Attachment Constants and their E↵ects

Constant E↵ect
� This model begins with an initial complete graph of �-nodes
d Each new node added will have d edges
hki Expected mean degree

4.3.1 The E↵ect of Increasing the Infection Rate

As we increase the infection rate, our parameters hki, CC(G), and L(G) stay approximately the same; only
R0 increases as the infection rate increases. When R0 < 1.2, the infection duration lasts longer the closer
R0 approaches 1.2, then it shifts back to a medium duration as R0 approaches 2. The time of peak infection
shifts left, then right, then ends up in the middle where it continues to stay as R0 > 1.2. The total removed
and percentage of spreaders at peak time steadily increase as R0 increases. The rumor peak and rumor
duration tend toward the middle after R0 gets above 1.2 since when R0 is below a certain threshold, the
rumor gains momentum but is still not strong enough to permeate through the population. Instead it slowly
infects individuals and stays within the population for longer periods of time. Once R0 passes the threshold,
then it returns to its normal spreading pattern, permeating throughout the population at a quicker rate,
then fizzling out at a faster rate as less susceptibles that can be infected are present in the population.

(a) R0 = 0.8 (b) R0 = 0.9

(c) R0 = 1.14 (d) R0 = 2

Figure 14: Increasing the infection rate in Preferential Attachment results in an increase in R0. The dashed line
represents the number of ignorants, S(t). The solid line represents the number of spreaders, I(t). The dotted line
represents the number of stiflers, R(t).

4.3.2 The E↵ect of Increasing �

If we manipulate our parameter �, we see an increase in hki, CC(G), and R0 but a decrease in L(G). The
time of the rumor’s peak is sooner (graph shifts to the left). As � increases the intensity of the outbreak
increases, as seen through the increases in the percentage of spreaders at peak time and the total removed.
The duration of the infection is shorter then starts to get longer between 14 < � < 25. The peak infection
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time occurs once the higher degree nodes get infected then start infecting the lower degree nodes. In Small
World CC(G) decreases when we increase �, but in Preferential Attachment, CC(G) increase. This occurs
because increasing � creates a larger initial closely clustered (CC(G) = 1) complete graph. Since d is
constant in this particular experiment, the initial complete graph is the determining factor of CC(G).

(a) � = 2 (b) � = 8

(c) � = 14 (d) � = 25

Figure 15: Increasing � in Preferential Attachment results in an increase of the mean degree, R0, and the clustering
coe�cient, while a decrease in path length. The dashed line represents the number of ignorants, S(t). The solid line
represents the number of spreaders, I(t). The dotted line represents the number of stiflers, R(t).

4.3.3 The E↵ect of Increasing d

Similarly to above, if we manipulate our constant d, we see an increase in hki, CC(G), and R0, and a
decrease in L(G). This makes sense since there are (N��)d edges present in each experiment, so as d grows,
the expected mean degree gets larger, the clustering coe�cient gets larger, and the path length gets shorter.
The total removed and spreader percentage at peak time both increase as d increases. The peak infection
time shifts right then left, similarly with the infection duration.

(a) d = 1 (b) d = 4 (c) d = 5

Figure 16: Increasing d in Preferential Attachment results in an increase of the mean degree, R0, and the clustering
coe�cient, while a decrease occurs in the path length. The dashed line represents the number of ignorants, S(t). The
solid line represents the number of spreaders, I(t). The dotted line represents the number of stiflers, R(t).
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4.3.4 Discussion on Parameter’s E↵ects on Preferential Attachment

As we increase �, there will be more edges present but only in proportion to the initial complete graph,
1
2n(n � 1). As � increases, the duration of the rumor gets longer between 14 < � < 25 because we have
less centralized hubs with a large degree since we have up to 1

4 (25 nodes) of our population in a tightly
clustered group. In this sense, our graph is mimicking a Small World graph. Thus the rumor will not
spread as quickly as if there were one or two large hubs that would receive the rumor and spread it to all its
connecting nodes. Instead, the rumor must begin infecting the larger cluster before leaving the cluster and
infecting the remaining nodes. In Preferential Attachment, it appears that as the path length gets shorter
and the expected mean degree gets larger, the speed of the rumor sweeps quicker through the population
after a certain threshold for each. If it is too far below this threshold, then the infection will peak and die
out quickly, not e↵ecting too large a chuck of the population. Similarly if it is high above the threshold, it
will peak and die out, but will cause mass infection in the process.

4.4 Comparison Between Graphs

4.4.1 Final Rumor Size

I matched similar final rumor sizes (FRS) between all three simulations and compared the results. Referring
to Table 4, we see similar percentages of spreaders at peak time for FRS⇡10. For FRS⇡30 and 50, the
percentage of spreaders at the time of peak infection for Small World and Complete Graph (the intensity
of the rumor) is about half the intensity for Preferential Attachment, then levels out to 3

4 the intensity
of Preferential Attachment for FRS ⇡ 70. Complete Graph is much faster in reaching the peak infection
time than Small World and Preferential Attachment, as well as having the shortest rumor duration of all
3 networks. This is probably due to the maximum number of edges present in all Complete Graph models
which enables the quickest spread of infection. Preferential Attachment spreads the infection at a faster rate
than Small World, in some cases almost doubling the infection duration and time of peak infection. Again, I
would argue this is due to the highly connected nodes that exist within Preferential Attachment, and, once
infected, are liable to spreading the rumor to the remainder of the network. This phenomenon is compared
to the highly connected but separate communities that exist within Small World network.

Small World appears to have similar infection durations regardless of the final size of the rumor. Yet the
time of infection peak occurs quicker when FRS ⇡ 10, then longer when FRS ⇡ 30 and 50, then quickest
when FRS ⇡ 70. This is probably due to the strength of the rumor permeating through the population. As
the rumor size gets larger for Preferential Attachment, both the rumor duration and time of peak infection
occur at a later period of time. We see a similar phenomenon in Complete Graph.

In general, Preferential Attachment has smaller hki, CC(G), and L(G) values than Small World in each
scenario, sometimes up to half for hki and CC(G) in each case. The expected mean degree is less since we
have a power law degree distribution in Preferential Attachment, and a normal distribution in Small World.
The clustering coe�cient is smaller since Small World is designed to have many small hubs throughout the
perimeter of the network while Preferential Attachment is designed to have a few big hubs that extend and
connect throughout the network. The path length is shorter for PA since with one or two big central hubs,
one can jump quickly through the network to any other node by first moving to a big hub.

4.4.2 Percentage of Spreaders at Rumor Peak

I matched similar spreader percentages between all three simulations and compared the results. Referring
to Table 5, we see similar results as above: hki, L(G), CC(G) are smaller in Preferential Attachment than
Small World. There are very similar hki values but much smaller values of CC(G) in Preferential Attachment.
Complete Graph is the fastest in spreading the rumor between the three models. Small World has a larger
final rumor size than Preferential Attachment in each case, though the intensity is the same. It appears
that the rumor lasts longer and is slower in peaking in Small World than Preferential Attachment, yet more
people are infected by the rumor in Small World. This is due to the fact that in Small World there exist
a greater number of separate highly connected communities that spread the rumor at a slower rate, taking
longer to di↵use the rumor to di↵erent parts of the network, than the one or two highly connected hubs in
Preferential Attachment that spread the rumor everywhere through the network quickly. The shorter path
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R0 � ↵ hki CC(G) L(G) TRP % at peak RD

FRS ⇡ 10
CG = 6 1 0.0011 0.1 - - - 10 2 144
SW = 3 0.74 - 0.78 0.001 0.01 8.1 - 8.6 0.33 - 0.36 2.5 - 2.6 7 2 392
SW = 11 1.3 - 1.45 0.002 0.01 8.3 - 8.8 0.33 - .036 2.5 - 2.6 273 3 1000
PA = 6 0.8 0.0025 0.01 4 0.13 - 0.17 2.9 - 3 130 2 577
PA = 5 0.7 0.005 0.01 2.1 0.02 3.6 - 4.6 148 2 535

FRS ⇡ 30
SW=32 1.8 - 2 0.003 0.01 8.1 - 8.5 0.33 - 0.37 2.5-2.6 368 5 1000
PA=31 1.76 0.005 0.01 5.26 0.34 - 0.44 2.5 - 2.7 147 10 676

FRS ⇡ 50
CG=46 2 0.0021 0.1 - - - 36 9 154
SW=50 2.2 - 2.4 0.005 0.01 6.8 - 7.2 0.46 - 0.49 2.9 - 3.1 330 10 1089
PA=53 2 0.01 0.01 4 0.1 - 0.2 2.9-3.1 186 17 755
PA=54 2.6 0.005 0.01 7.8 0.16 - 0.21 2.3 198 20 831

FRS ⇡ 70
CG=65 3 0.00312 0.1 - - - 34 19 153
SW=70 2.7 - 3.1 0.005 0.01 8 - 9 0.33 - 0.38 2.5 -2.7 240 20 885
PA=68 3.2 0.005 0.01 9.7 0.18 - 0.22 2.2 167 27 773

Table 4: Comparison of Final Rumor Size

length in Preferential Attachment lead in part to the quicker speed at which the rumor is disseminated.
Along the same lines, a higher clustering coe�cient in Small World leads to a slower speed of dissemination.

R0 � ↵ hki CC(G) L(G) TRP R(1) RD

% I(t)⇡ 10
CG=9 2 0.0021 0.1 - - - 36 46 154
SW=10 2.2 - 2.4 0.005 0.01 6.8 - 7.2 0.46 - 0.49 2.9 - 3.1 330 50 1089
PA=10 1.76 0.005 0.01 5.26 0.34 - 0.44 2.5 - 2.7 147 31 676

% I(t)⇡ 20
CG=19 3 0.00312 0.1 - - - 34 65 153
SW=20 2.7 - 3.1 0.005 0.01 8 - 9 0.33 - 0.38 2.5 -2.7 240 70 885
PA=20 2.6 0.005 0.01 7.8 0.16 - 0.21 2.3 198 54 831

% I(t)⇡ 30
SW=27 3.3 - 3.5 0.005 0.01 10 - 10.5 0.41 - 0.45 2.4 - 2.5 218 80 787
PA=27 3.2 0.005 0.01 9.7 0.18 - 0.22 2.2 167 68 773

Table 5: Comparison of Percentage of Spreaders at Rumor Peak

4.4.3 R0

I matched similar R0 values between all three simulations and compared the results. Referring to Table 6,
we see similar results in the speed of the infection through the di↵erent networks as well as the parameters
in CC(G), L(G), and hki. Each network has a similar final rumor size for a specific R0. In the Complete
Graph, R0 can be obtained from the equation: R0 = ( �

↵

)N where � is the infection rate and ↵ is the end
infection rate. For discrete time models of Small World and Preferential Attachment, R0 can be computed
as: R0 = �

↵+��↵�

hki.
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� ↵ hki CC(G) L(G) TRP % at peak R(1) RD

R0 ⇡ 1
CG = 1 0.0011 0.1 - - - 10 2 6 144

SW = 1.3 - 1.45 0.002 0.01 8.3 - 8.8 0.33 - 0.36 2.5 - 2.6 273 3 11 1000
PA = 1.14 0.004 0.01 4 0.1 - 0.2 2.7 - 3 173 3 12 815
R0 ⇡ 2
CG = 2 0.0021 0.1 - - - 36 9 46 154

SW = 1.8 - 2 0.003 0.01 8.1 -8.5 0.33 - 0.37 2.5 - 2.6 368 5 32 1000
PA = 2 0.01 0.01 4 0.1 - 0.2 2.9 - 3.1 186 17 53 755
R0 ⇡ 3
CG = 3 0.00312 0.1 - - - 34 19 65 153

SW = 2.7 - 3.1 0.005 0.01 8 - 9 0.33 - 0.38 2.5 - 2.7 240 20 70 885
PA = 3 0.005 0.01 9 0.63 - 0.77 2.4 129 16 44 722
PA = 3.2 0.005 0.01 9.7 0.18 - 0.22 2.2 167 27 68 773

Table 6: Comparison of R0

5 Conclusion

In this paper we examined the dynamics of rumor spreading on three complex social networks: Complete
Graph, Small World, and Preferential Attachment. In Complete Graph, we assume that each individual has
an equal probability of interaction with every other individual. This is represented by an edge connection
between every individual node within the network. Small World is characterized by many small groups of
tightly connected individuals with a few inter-community connections. As an example, this can be thought
of as you as the connector between your family, your college friends, and your work colleagues. Preferential
Attachment is depicted by a few highly connected centralized hubs, which form the bulk of the network. This
relation is seen through online sites such as Google or Wikipedia, which present trillions of links to other
webpages throughout the Internet network, while other sites, such as a personal blog, are not so heavily
linked. The clustering coe�cient and the path length are common features shared by all networks. These
features can be manipulated to create network structures that mimic real life phenomenon. They ultimately
determine the speed, duration, intensity, and final size of a rumor spreading over a network. Simply put, the
more connections that exist within a network, the more avenues there are for a rumor to spread. Similarly,
the fewer number of steps between individuals to get exposure to a rumor, the faster the rumor will be able
to reach more individuals.

We set up two rumor spreading models based on modified SIR contact networks and carried out numerical
simulations to compare the di↵erent network structures. For all three networks our findings show that
increasing the infection rate results in faster, more intense, and larger final rumor sizes. In SW, increasing the
rewiring probability leads to an increase in the number of cross graph connections between communities while
simultaneously decreases the strong clustering held between small communities. In a↵ect, this SW network
becomes more like a PA network, leading to more severe rumors. By increasing the number of adjacent
neighbor connections, stronger clustering occurs within the network, which results in slower spreading rumors
across the network. For PA, increasing the size of the initial complete graph before running the simulation
leads to a greater number of hubs that may emerge within the network. These hubs act more like tightly knit
communities, since they exhibit stronger clustering and slower rumor spreading. In a↵ect, this PA network
mimics the properties of a SW network. In general, we encounter a spectrum of network variation between
SW and PA through tweaking the initial conditions of the simulation.

In summary, we find that the CG model is the most e↵ective network for spreading rumors since it
has the maximum number of connections, highest clustering, and lowest path length. In general the mean
degree, path length, and clustering are lower in PA than SW, but the hubs in PA are more e↵ective at rumor
spreading than the communities in SW. These findings can help future studies construct hybrid networks
between CG, SW, and PA for further analysis. Our results can serve as a reference for assessing a network
type as well as determining methods for countering the harmful spread of rumors within other networks.
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A Appendix: Table Results for Each Network

Inf Rate R0 Time of Rumor Peak % of I(t) at peak Total Removed Rumor Duration

0.0011 1 10 2 6 144
0.0021 2 36 9 46 154
0.00312 3 34 19 65 153

Table 7: Complete Graph results

Inf Rate R0 Time of Rumor Peak % of I(t) at peak Total Removed Rumor Duration

0.001 .74 - .78 7 2 3 392
0.002 1.3 - 1.45 273 3 11 1000
0.003 1.8 - 2 368 5 32 1000
0.005 2.7 - 3.1 240 20 70 885
0.012 4.6 - 4.8 107 50 90 622

Table 8: Small World Infection Rates Results

� R0 hki CC(G) L(G) TRP % at peak R(1) RD

1 2.2 - 2.4 6.8 - 7.2 0.46 - 0.49 2.9 - 3.1 330 10 50 1089
2.5 2.7 - 3.1 8 - 9 0.33 - 0.38 2.5 - 2.7 240 20 70 885
5 3.4 - 3.7 10 - 11 0.25 - 0.27 2.2 - 2.3 176 30 79 743

Table 9: Small World � Results

d R0 hki CC(G) L(G) TRP % at peak R(1) RD

1 1.3 - 1.5 4 - 4.5 0.02 - 0.04 3.1 - 3.5 294 5 21 993
3 2.7 - 3.1 8 - 9 0.33 - 0.38 2.5 - 2.7 240 20 70 885
4 3.3 - 3.5 10 - 10.5 0.41 - 0.45 2.4 - 2.5 218 27 80 787
6 4.6 - 4.8 13.9 - 14.3 0.5 - 0.53 2.2 - 2.3 148 42 83 714

Table 10: Small World d Results

Inf Rate R0 Time of Rumor Peak % of I(t) at peak Total Removed Rumor Duration

0.0025 0.8 130 2 6 577
0.003 0.9 197 3 8 768
0.004 1.14 173 3 12 815
0.01 2 186 17 53 755

Table 11: Preferential Attachment Infection Rates Results

� R0 hki CC(G) L(G) TRP % at peak R(1) RD

2 1.31 3.94 0.11 - 0.2 2.9 - 3.1 276 5 19 809
8 1.42 4.24 0.2 - 0.3 2.8 - 2.9 201 7 25 766
14 1.76 5.26 0.34 - 0.44 2.5 - 2.7 147 10 31 676
25 3 9 0.63 - 0.77 2.4 129 16 44 722

Table 12: Preferential Attachment � Results
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d R0 hki CC(G) L(G) TRP % at peak R(1) RD

1 0.7 2.1 0.02 3.6 - 4.6 148 2 5 535
4 2.6 7.8 0.16 - 0.21 2.3 198 20 54 831
5 3.2 9.7 0.18 - 0.22 2.2 167 27 68 773

Table 13: Preferential Attachment d Results

B Mathematica Code

Listing 1: Mathematica code for Simple Rumor Model and Rumor Spreading Model

1

2 Basic Rumor Model in a Closed Population
3

4 Clear [ solution ]
5

6 Here are your set of ordinary di↵erential equations :
7 seqn[\[Lambda] , \[Sigma] , \[Delta] ] := s ’[ t ] == (�\[Lambda] i[t] s [ t ]) ;
8 ieqn [\[ Lambda] , \[Sigma] , \[Delta] ] :=
9 i ’[ t ] == (\[Lambda] i[t ] s [ t ] � \[Sigma] i [ t ] ( i [ t ] + r[t ]) � \[Delta] i [

10 t ]) ;
11 reqn [\[Lambda] , \[Sigma] , \[Delta] ] :=
12 r ’[ t ] == (\[Sigma] i [ t ] ( i [ t ] + r[t ]) + \[Delta] i [ t ]) ;
13

14

15 This command clears your solutions from previous iterations and prepares to solve your system of equations :
16 Clear [\[ Lambda], \[Sigma], \[Delta ]];
17 solution [{\[Lambda] , \[Sigma] , \[Delta] , initials , initiali , initialr ,
18 tfinal }] :=
19 NDSolve[{seqn[\[Lambda], \[Sigma], \[Delta ]],
20 ieqn [\[ Lambda], \[Sigma], \[Delta ]], reqn [\[Lambda], \[Sigma], \[Delta ]],
21 s [0] == initials , i [0] == initiali , r [0] == initialr }, {s, i , r}, {t , 0,
22 tfinal }] // Flatten ;
23

24 This command inputs initial conditions for each value within the ODEs and allows you to control each value ’ s input with a
slider to get a sense for how each parameter a↵ects your model:

25 Manipulate[
26 Plot[Evaluate[{s [ t ], i [ t ], r [ t ]} /.
27 solution [{\[Lambda], \[Sigma], \[Delta ], initials , initiali , initialr ,
28 tfinal }]], {t , 0, tfinal }], {{\[Lambda], 0.005}, 0,
29 1}, {{\[Sigma], 0.01}, 0, 1}, {{\[Delta ], 0.05}, 0, 1}, {{ initials , 1000},
30 0, 10000}, {{ initiali , 1}, 0, 10}, {{ initialr , 0}, 0, 10}, {{ tfinal , 10},
31 10, 1000}]
32

33 �����������������������������������������������������������������������������

34 Complex Rumor Model
35

36 Installing the NetLogo�Mathematica Link
37

38 To install the NetLogo�Mathematica link, go to the menu bar in Mathematica, click on File and select Install ... In the
Install Mathematica Item dialog, select Package for Type of item to install , click Source, and select From file ...
In the file browser, go to the location of your NetLogo installation , click on the Mathematica Link subfolder, and
select NetLogo.m. For Install Name, enter NetLogo. You can either install the NetLogo link in your user base
directory or in the system�wide directory. If the NetLogo link is installed in the user base directory , other users
on the system must also go through the NetLogo�Mathematica link installation process to use it . This option might be
preferable if you do not have permission to modify files outside of your home directory . Otherwise, you can
install NetLogo�Mathematica link in the system�wide Mathematica base directory.

39

40 Starting NetLogo
41

42 Once installed , the NetLogo package can be loaded at any time with the following command:
43

44 << NetLogo‘
45
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46 To start NetLogo simply type the following command, and use the file browser to locate the NetLogo parent directory .
47

48 NLStart[]
49

50 Choose netlogo 5.2 file within the IONTW file on your desktop to activate
51

52

53 I will give you an example of one experiment:
54

55 Section 1: Simulations on Preferential Attachment
56 N = 100
57 Discrete , 1000+ time steps per simulation
58 time step size = 1
59 Run 250 simulations per experiment (about 30 minutes for each)
60

61 This command loads the netlogo file for Preferential Attachment:
62 NLLoadModel[ToFileName[{$NLHome, ”models”, ”Sample Models”}, ”pa.nlogo”]];
63

64

65

66 Experiment 1: Vary for di↵erent lambda
67 inf rate = .005
68 end inf rate = .01
69 \mathcal{R} 0 = 1.31
70 d = 2
71 <k> = 3.94
72 CC(G)= .11 � .2
73 L(G) = 2.9 � 3.1
74 lambda = 2
75

76 This command counts the number of infectious at each discrete time step for 1000 time steps . Then it tells it to repeat
this process 250 times:

77 gi1 = Table[
78 x = NLCommand[”new�network”,
79 ”ask n�of 1 turtles [become�infectious]”];
80 NLDoReport[”go”, ”(count turtles with[ infectious ?])”, 1000], {x,
81 250}]
82

83 This command plots out all the values for each of the 250 simulations generated above:
84 ListLinePlot [ gi1 ]
85

86 This command takes the average of all the values from the 250 simulations to make one line :
87 hi1 = Mean[gi1]
88

89 This command counts the number of susceptible at each discrete time step :
90 gs1 = Table[
91 x = NLCommand[”new�network”,
92 ”ask n�of 1 turtles [become�infectious]”];
93 NLDoReport[”go”, ”(count turtles with[ susceptible ?])”, 1000], {x,
94 250}]
95 ListLinePlot [gs1]
96 hs1 = Mean[gs1]
97

98 This command counts the number of removed at each discrete time step:
99 gr1 = Table[

100 x = NLCommand[”new�network”,
101 ”ask n�of 1 turtles [become�infectious]”];
102 NLDoReport[”go”, ”(count turtles with[removed?])”, 1000], {x, 250}]
103

104 ListLinePlot [gr1]
105

106 hr1 = Mean[gr1]
107

108 This command combines the means of each simulation into one line plot :
109 ListLinePlot [{hs1, hi1 , hr1}]
110

111 Results :
112 Infection peak: t = 250, 5% of population
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113 # of removed: 19
114 Infection Length: t = 800
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