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Abstract. This paper will undertake an investigation into attitudes towards
mathematics. Data from 27 Denver Public High Schools1 reports that all stu-
dents in the DPS high schools score on average 15% higher on reading/writing
standardized tests than on math. The study speculates that this stems from
attitudinal di↵erences towards the subjects that students have. This study
proposes a mathematical model that hypothesizes the school’s environmental
make-up, students home environment, and students performance on standard-
ized tests a↵ect students attitudes toward mathematics. The model will be
implemented in the software package SMART-PLS that uses a partial least
squares regression algorithm to estimate the latent variable ”Attitudes To-
wards Mathematics” and investigate what factors a↵ect math education. The
study shows that Attitudes Towards Math a↵ect performance on Standardized

Testing and Home Environment a↵ects students Attitudes Towards Math and
Standardized Testing Performance.

1. Introduction: Structural Equation Modeling

Structural Equation Modeling (SEM) is a multivariate data analysis method. The
SEM-based technique has stemmed from and is closely related to techniques such as
principal component analysis, factor analysis, and multiple regression. The social
sciences have found SEM particularly useful as many of its studies aim to investigate
variables that are not directly measurable. As with an attitude towards math, many
real-world phenomena are not as blatantly causal as they seem but are the e↵ect
of secondary factors that are di�cult to directly link. The SEM-based technique
allows for an adjustable model based in theory and hypothesis to be tested and
analyzed with data using path and factor analysis, covariance algebras, and various
statistical tests.

1.1. Overview of SEM. To look at SEM, the following terms are helpful,

• Measured Variable: Observed variables/indicators, predictors and outcomes
in path analysis. Also known as independent.

• Latent Variable: Un-observable variable, the driving constructed variable
for measured variables. Also known as dependent.

• Formative Indicator: The formative measurement scale exists when indi-
cators cause the latent variable and cannot be interchanged amongst one
another.

• Reflective Indicator: The reflective measurement scale exists when the in-
dicators are correlated and interchangeable.

• Exogenous Variable: A variable that is not caused by another variable.
1
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• Endogenous Variable: A variable that is caused by one or more other vari-
ables. Endogenous variables may cause other endogenous variables.

• Error: Variance remaining after prediction of a measured variable.
• Disturbance: Variance remaining after prediction of latent variable.
• Direct E↵ect: Regression coe�cients of direct prediction.
• Indirect E↵ect: Mediating e↵ect of exogenous variable (x1) on endogenous
variable (y) through another exogenous variable (x2).

• Covariance Structure: Relationships based on variance and covariance.

2. Steps of SEM

Step 1 Model Specification: The first step in SEM is to specify a model based
on theory and research. The model generally has two sub-models: the inner model,
sometimes referred to as a structural model, and the outer model, sometimes re-
ferred to as a measurement model. These sub-models are connected by single or
double headed arrows called paths. A single headed arrow denotes a prediction
that one variable has an e↵ect on another variable. A double headed arrow denotes
a correlation. If there are no arrows between variables, this denotes a hypothe-
sized absence of relationship. Each path will have an associated parameter, some
of which will be estimated and some fixed.
Outer Models The outer model examines the relationships between the measured
variables and the latent variables. The relationships are indicated by the estimated
path coe�cients, associated errors, and standard errors. This information gives an
indication of the fit of the model.
Inner Models: The inner model examines the relationships between the latent
variables. The relationships are indicated by the estimated path coe�cients, asso-
ciated disturbances, and standard errors. The model is constructed to assess how
the latent variables relationships behave and the fit of the model.

Figure 1. Generic Latent Variable Path Model

Step 2 Identification: A model can be under-identified, meaning there are more
unknown parameters than known parameter and not all parameters can be es-
timated. The model can be just-identified, meaning there are the same number
of known and unknown parameters, or the model can be over-identified, meaning
there are more known parameters than unknown parameters. Essentially, this step
identifies the degrees of freedom in the model.
Step 3 Model Estimation: Model estimation estimates all parameters in the
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model. This step mainly occurs in computer programs. SMART-PLS, the program
used in this study, utilizes a partial least squares regression algorithm to estimate
the parameters.
Step 4 Model Fit: The estimated model parameters are used check the model
fit. To evaluate model fit, one should examine standardized residuals, R2 values for
endogenous variables, t statistics, and inner and outer path coe�cients. ”Overall
model fit obviously should be assessed by considering both statistical fit and model
interpretability” (Kunnan 308).
Step 5Model Respecification: When a model has not demonstrated good model
fit, the models’ parameters are respecified and then re-estimated. This process con-
tinues until the model has good fit.

2.1. Underlying Parameters in SEM. Now, we will explore the underlying
mathematics of SEM. It has been mentioned that SEM is based in regression and
covariance algebras, so it follows that the underlying parameters in SEM would
be regression coe�cients, variances, and covariances. To recall some covariance
algebra rules, the equation for expected value for discrete random variables is

E[x] =
NX

i=1

x
i

p
i

where x
i

is an outcome and p
i

is the probability of the outcome and the equation
for covariance is

COV (X1, X2) = E[(X1 � E[X1])(X2 � E[X2])] =

E[X1X2]� E[X1]E[X2].

Some important rules to remember specifically for SEM are

COV (c,X1) = 0

COV (cX1, X2) = c · COV (X1, X2)

COV (X1 +X2, X3) = COV (X1, X3) + COV (X2, X3),

where c is a constant. And lastly, we should recall that a regular basic regression is

Y = bX + a

Now, we can take a look at a simple example model.
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Figure 2. Example Latent Variable Path Model

Given this simple latent variable model, these are the equations.

Y1 = �11X1 + ✏1

Y1 is predicted by X1 and ✏1. X1 is an exogenous variable so � is used to indicate
the weight.

Y2 = �21Y1 + �21X1 + ✏2

Y2 is predicted by X1 and Y1 and error. Y1 is endogenous thus the weight is in-
dicated by �. The di↵erent weights are used to indicate the relationships between
the type of variables the path connects. So, � weights indicate a relationship be-
tween a exogenous variable and an endogenous variable while � weights indicate a
relationship between two endogenous variables.

In this model there is an example of an estimated covariance with a simple path
and a complex path. The simple path is between the exogenous and endogenous
variables, COV (X1, Y1). We know Y1 = �11X1 + ✏1.

COV (X1, Y1) = COV (X1, �11X1 + ✏1)

now recall equations covariance rules above,

COV (X1, �11X1 + ✏1) = COV (X1, �11X1) + COV (X1, ✏1)

COV (X1, �11X1) = �11COV (X1, X1)

where we know COV (X1, X1) is the same as the variance of X1. So,

COV (X1, Y1) = �11�X1,X1

The complex path is between two endogenous variables, COV (Y1, Y2). Substituting
the equations for Y1 and Y2 and then distributing the pieces,

COV (Y1, Y2) = COV (�11X1 + ✏1,�21Y1 + �21X1 + ✏2)

COV (Y1, Y2) = COV (�11X1,�21Y1) + COV (�11X1, �21X1)+

COV (�11X1, ✏2) + COV (✏1,�21Y1) + COV (✏1, �21X1) + COV (✏1, ✏2)
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Nothing in the equation correlates with ✏ so,

COV (Y1, Y2) = COV (�11X1,�21Y1) + COV (�11X1, �21X1)

any by rearranging,

COV (Y1, Y2) = �11�21(X1, Y1) + �11�21COV (X1, X1)

COV (Y1, Y2) = �11�21�x1y1 + �11�21�x1x1

Using the above equations, COV (X1, Y2) is very easy.

COV (X1, Y2) = COV (x1,�21Y1 + �21X1 + ✏2) =

COV (X1, Y2) = �21�11�x1x1 + �21�x1x1

Referring back to the model,

Figure 3. Example Latent Variable Path Model

COV (X1, Y1) = �11�X1,X1

COV (Y1, Y2) = �11�21�x1y1 + �11�21�x1x1

COV (X1, Y2) = �21�11�x1x1 + �21�x1x1

We can see how these equations are taken from the relationships in the model.
Using these equations, a covariance matrix is built like so,

Table 1. Sample Covariance Matrix

X1 Y1 Y2

X1 var(X1) cov(X1,Y1) cov(X1,Y2)

Y1 cov(Y1,X1) var(Y1) cov(Y1,Y2)

Y2 cov(Y2,X1) cov(Y2,Y1) var(Y2)
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The covariance between two variables is the correlation multiplied by the product
of the variables’ standard deviations. The covariance of a variable with itself is
the variable’s variance. The covariance matrix shows these values in correlation
with the model. The goal is to construct a model with a implied covariance matrix
that is not significantly di↵erent from the sample covariance matrix. The sample
covariance matrix is constructed using the initial values of the un-estimated model,
and the implied covariance matrix is constructed using the values of the estimated
model. This is one test SEM utilizes to evaluate the goodness of fit of the model.

3. Partial Least Squares Path Modeling

Partial Least Squares (PLS) path modeling was developed as a computer implemen-
tation for econometrics2. PLS is not the conventional structural equation modeling
technique; however for some research objectives it is more suitable. PLS is often
the least restrictive of the multivariate data analysis methods, and for this reason
was appealing to this study. PLS is used for theory confirmation, to find where
multivariate relationships between certain variables exist, and to analyze such re-
lationships.

The PLS algorithm used in SMART-PLS occurs in three steps.
1) The algorithm runs an iterative estimation process of the latent variable scores
which repeats until convergence occurs or the maximum number of iterations have
occurred. The iterative process goes as follows:

• a) outer approximation of the latent variable scores
• b) estimation of the inner weights
• c) inner approximation of the latent variable scores
• d) estimation of the outer weights.

2) Then the algorithm estimates the outer weights/loading and path coe�cients.
3) Finally the algorithm estimates the location parameters.

Explaining the Algorithm
1) (a) First, the data for all the cases for each variable is normalized. Then outer
path weights are initialized, usually at 1. Then the initial outer path weights are
multiplied by the normalized value of each indicator for each case. These values
are added together for each latent variable. Then this value is normalized to give
outer approximation of latent variable scores.
(b) The inner path weights are estimated next by taking the covariance of the la-
tent variable scores from (a) of any two latent variables there is a path between.
(c) To find the inner approximation of latent variable scores for exogenous latent
variables, the path coe�cient (b) is multiplied by the normalized outer approxi-
mation value (a) of the endogenous variable. For endogenous latent variables, the
outer approximation value (a) of its exogenous latent variable is multiplied with its
respective path coe�cient. This occurs for each exogenous variable that causes the
endogenous variable and these values are added together.
(d) Finally, the outer weights are re-estimated. To find the estimation of outer

weights, the inner estimations (c) are multiplied by the outer initial weights and
then normalized.
To run the next iteration, the outer path weights would be initialized at the re-
estimated values i.e. step (a). Then steps (b)-(d) would run again. This process
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continues until the values of the indicator outer weights have converged.
2) Next, the outer loadings are calculated by taking the covariance of the normal-
ized input data with the data from the final outer estimation. The path coe�cients
are estimated by a linear regression specified by the program.
3) The location parameters are similarly calculated by a linear regression specified
in the program.

3.1. Weighting Scheme. The model weighting options o↵ered by SMART-PLS
are

• centroid weighting scheme
• factor weighting scheme
• path weighting scheme

These di↵erent weighting scheme o↵er slightly di↵erent results however using any
one of them is ideal. The use of the schemes allows for obtaining the highest
R2 value for endogenous latent variables. This study utilized the path weighting
scheme which is the default setting for SMART-PLS.

4. Motivation

The Denver Public School data shows that for all 27 high schools in the study,
standardized reading and writing test scores are higher than math.

• 70% of all students not eligible for free or reduced lunch (FRL) in 2013 were

proficient and above on the Math CSAP/TCAP.

• 37% of all students eligible for free or reduced lunch (FRL) in 2013 were proficient

and above on the Math CSAP/TCAP.

• 45% of all students in 2013 were proficient and above on the Math CSAP/TCAP.

• In comparison, 60% of all students were proficient and above on the English/Reading

CSAP/TCAP. That’s a 15% di↵erence.

This study speculates that reading and writing are more fully integrated into child-
hood from a young age while mathematics is left out. The purpose of this study is
to look into the underlying relationships of various variables and attitudes towards
math. These variables are observed to be causally linked to how students feel about
math. This study looks to mathematically investigate these observations to help
the Denver Public School system target factors that are most a↵ecting students
attitudes towards and interest in math. The study is also interested in the e↵ects
of integration on attitudes towards learning.

5. Specifying the Attitudes Towards Math Model

The attitudinal model to examine attitudes towards math in Denver Public High
Schools looks 4 latent variables with 10 di↵erent indicators. The indicators and
other latent variables demonstrate what this study believes to be the underlying
causes of an ”attitude”. The indicator data make up is shown in Table 2 and the
outer and inner model structure is shown in Figure 4.
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Table 2. Indicator Data

Indicator Data

School Environmental Makeup

class size # of students in class

fulltime # of full time teachers employed

frl % eligible for free and reduced lunch

ell % english language learners

min % minority

sped % special education

Home Environment Makeup

ps
SPF score card rating of parental
encouragement and satisfaction

avg.income average household income

Attitudes Towards Math

ss
SPF score card rating of student
engagement and satisfaction

Standardized Testing Proficiency

TCAP1 % proficient in math

TCAP2 % proficient in reading/writing

Figure 4. Attitudinal Model
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5.1. Information from SMART-PLS in Attitudinal Model. After running
the consistent PLS algorithm the first time the following results were found. In this
section the results of the algorithm will be explained.
(i) Explanation of target endogenous variable variance

• The coe�cient of determination, R2 is 0.542 for the target latent variable
Attitudes Towards Mathematics. This means that the two latent variables,
Class Environment and Home Environment moderately3 explain the 54.2%
variance in Attitudes Towards Mathematics.

• Together the three latent variables, Attitudes Towards Math, Class Envi-
ronment, and Home Environment, explain 70.6% of the variance of Stan-
dardized Testing Proficiency.

Table 3. Inner Model
Attitudes Towards
Math

Classroom
Environment

Home
Environment

Standardized Testing
Proficiency

Attitudes Towards
Math

0.967

Classroom
Environment

-0.181 -0.240

Home
Environment

0.658 -0.419

Standardized Testing
Proficiency

(ii) Inner model path coe�cient sizes and significance

• The inner model suggests that Attitudes Towards Math has the strongest
(0.967) e↵ect on Standardized Testing followed by Classroom Environment
(�0.240) and then Home Environment (.� 0.419).

• Home Environment has the strongest (0.658) e↵ect on Attitudes Towards
Math followed by Class Environment (�0.181).

• The hypothesized path between Attitudes Towards Math and Standard-
ized testing and the hypothesized path between Home Environment and
Attitudes Towards Math are statistically significant.

• However, the hypothesized relationship between Classroom Environment
and Attitudes Towards Math is not statistically significant.

• Class Environment and Home Environment do not e↵ect Standardized test-
ing directly.

• Home Environment significantly (0.636) e↵ects Standardized testing indi-
rectly.

(iii) Outer model reliability and validity
Next the correlations between the latent variable and the indicators in the outer
model will be examined. Firstly, looking at the Stop Criterion function in
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SMART-PLS it is shown that the algorithm converged after only 8 iterations which
is much better than the default 300. This is a quick confirmation that the model
is not completely wrong.

The Outer Loadings function provides information on the path coe�cients, in-
ternal consistency, and internal validity.

Table 4. Results Summary for Reflective Outer Models and Inner Models

Latent Variable Indicators Loadings
Indicator Reliability
(i.e. loadings2)

Cronbach’s
Alpha

AVE

Class Environment

class size; -0.274 0.075

fulltime; -0.330 0.108

frl; 0.621 0.385

ell; 0.488 0.238

min; 0.472 0.222

sped; 0.813 0.660 0.889 0.282

Home Environment ps; 0.998 0.9960

avg.income; 0.241 0.058

Attitude Towards
Math

ss; 1.000 1.000 1.000 1.000

Standardized Testing
Proficiency

tcapmath; 0.951 0.904

tcapread/write; 0.947 0.896

(iv) Indicator Significance and Reliability
The recommended minimum significance value is 0.5. It can be seen that classsize,
fulltime, and avg.income are not statistically significant indicators. The recom-
mended minimum reliability value is 0.4 and the preferred level is 0.7. It can be
seen that within the Class Environment latent variable that frl and sped approach
or exceed the minimum reliability value. This information suggests that the Class
Environment some indicators demonstrate a low level of significance and internal
consistency reliability. This may suggest that there are too many formative indi-
cators for this variable. Within the Home Environment only ps indicator exceeds
the preferred level values. All indicators within the Attitudes Towards Math and
Standardized Testing Proficiency exceed the preferred level values.

(v) Cronbach’s Alpha
Cronbach’s Alpha is used to measure internal consistency reliability. The values for
both Class Environment and Attitudes Towards Math exceed the preferred level
of 0.7 thus they have high levels of internal consistency reliability. However, Stan-
dardized Testing Proficiency and Home Environment do not.
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(vi) Convergent Vailidity In order to confirm convergence validity, each latent
variable’s Average Variance Extracted (AVE) values are looked at. From table 2,
it is shown that Home Environment and Standardized Testing Proficiency do not
have AVE values. Attitudes Towards Math AVE value is greater than the preferred
threshold of 0.5. Thus the convergent validity of Attitudes Towards Math is con-
firmed.

(v) Discriminant validity
In a 1981 Journal of Marketing Research, Fornell and Larcker suggested that if the
square root of a latent variable’s AVE values is greater than other correlation values
among latent variables than the value can be used to confirm discriminant validity.

Table 5. Fornell-Larcker Criterion Analysis for Checking Dis-
criminant Validity

Attitude
Toward Math

Class
Environment

Home
Environment

Standardized
Testing Proficiency

Attitude Toward Math
Single Construct
Variable

Class Environment -0.392 0.531

Home Environment 0.716 -0.320

Standardized Testing
Proficiency

0.762 -0.485 0.351

For example, the latent variable Classroom Environment’s AVE is demonstrated
to be 0.282 from table 2. thus its square root is 0.531. Its correlation values in
row and column of Classroom Environment’s are (�0.392) and (�0.320,�0.485)
respectively. The square root of Classroom Environment’s AVE value is greater
than the latent variable correlations. This indicates that discriminant validity is
well established.

6. Further Testing

SMART-PLS is able to further examine the model from small sample sizes through
methods such as bootstrapping and blindfolding. These processes re-sample a large
number of sub-samples from the given data which estimates the procedures of sam-
ple statistics (mean, percentiles, etc.) and treats the re-sampled data as new. This
has sparked controversy in the ”truth” of the data. However, it is not the point of
this paper to engage in the debate.

(vii) Checking Structural Path Significance in Bootstrapping

6.1. Bootstrapping. To obtain confirmation of the structural path significance,
we use the bootstrapping function on SMART-PLS. Bootstrapping creates sub-
samples with randomly selected observations from the original data. These sub-
samples are then used to re-estimate the model. Bootstrapping gives mean values
and standard errors for inner model path coe�cients and weights and loadings in
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the outer model. The disadvantages of bootstrapping also lie in its simplicity. The
assumptions that are made in order to create sub-samples and reorder data are
not explicitly stated. Thus, the number of bootstrap samples recommended has
increased greatly with advanced computing power as to avoid random sampling
errors.

Table 6. Inner Path Significance

Linkage #

1
Attitude Towards Math )
Standardized Test Proficient

5.920

2
Class Environment )
Attitudes Towards Math

0.765

3
Class Environment )
Standardized Test Proficient

0.873

4
Home Environment )
Attitudes Towards Math

5.924

5
Home Environment )
Standardized Test Proficient

1.739

Using the two-tailed t-test with 5% significance level, we can test path significance
if the T-statistics is larger than 1.96. In examining the inner model, it can be seen
that the 2, 3, and 5 linkages are not significant.

After checking inner path significance using Bootstrapping, the outer loadings can
be explored. Examining the T-statistic of the outer loadings, the same standard of
1.96 is used to check for high significance.
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Table 7. Outer Path Significance

Classroom
Environment

Home
Environment

Attitudes Towards
Math

Standardized Testing
Proficiency

ell; 2.802

frl; 2.972

sped; 2.775

min; 3.087

classsize; 0.088

fulltime; 2.342

ps; 10.393

avg.income; 0.724

ss;
Single Item
Construct

tcap1; 16.344

tcap2; 13.081

It can be seen that the classroom size and avg. income indicators have low T-
statistic values which indicates that the do not have a high significance in the outer
model loadings. All other indicators have high significance. These findings support
the indicator reliability findings above.

7. Blindfolding

Blindfolding is an iterative process that calculates the Q2 criterion which evaluates
how well the model can predict the data of the cases that are omitted. Q2 refers
to predictive relevance. The iterative process involved omitting one case at a time
and then re-estimating the model. The omitted values are then predicted by the
re-estimated model. The Q2 value in the cross validated redundancy test estimates
the predictive relevance of targent endogenous variables. A model has predictive
relevance is Q2 > 0 and is lacking if Q2 ⇡ 0 or Q2 < 0.

Table 8. Cross-validated Redundancy Values Q2

SSO SSE Q2

Attitudes Towards
Math

27.00 15.804 0.415

Standardized Testing
Proficiency

54.00 23.810 0.559

It can be seen that predictive relevance is demonstrated by both endogenous
latent variables.
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8. Implications

The real world implications of this study are manifold. First, we will address the
insignificant findings. The insignificance of the indicators class size and avg.income

was surprising. These findings may have been due to taking the average from each
high school for these values making the values relatively similar for all schools. Per-
haps, a better way to examine these indicators would be to look at each individual
class and parental income within one school. The path from Class Environment
to Standardized Testing Proficiency was found to be weak due to insignificant and
inconsistent indicators, not necessarily due to a falsely hypothesized relationship.
The hypothesized direct relationship between Home Environment and Standard-
ized Testing is shown to be false. We learned that Class Environment and Home
Environment explain the 54.2% variance in Attitudes Towards Mathematics. This
is significant considering how many other variables could a↵ect an attitude for ex-
ample what one’s friends think about math, what period is math o↵ered, or if the
classroom is air conditioned or not. We learned that attitudes strongly a↵ects stan-
dardized testing proficiency which is a reasonable conclusion. A student who has a
positive attitude towards a subject will perform better on a test than one who does
not. SEM evaluates how significantly indicators a↵ect latent variables and latent
variables a↵ect each other but it does not conclude if the e↵ects are positive or
negative. The results of this study could be used by charter schools to determine
if the findings a↵ect attitudes for the better or not.

9. Conclusion and Re-specification

Understanding SEM allows one to measure un-measureable constructs, opening ex-
citing doors for explaining phenomena in our world that cannot be measured. SEM
was best option for this study considering how the model was constructed, using
hypothesis and observed relationships as the primary point of departure. The con-
firmatory nature of SEM allowed the study to test the model that was believed
to be true for its validity and to evaluate relationships. This allowed the study
to focus on and to confirm or not its chosen areas of interest. The weaknesses of
the study lie in its small sample size, the data available, and the construction of
the model. Much of the data was a↵ected by the averaging as mentione above.
The SPF report card that noted student satisfaction/engagement and parent sat-
isfaction/encouragement was a self-reported evaluation which may have a↵ected
the validity of the study. The study would have benefited from an evaluation of
parent and student opinions on math specifically. The latent construct ”attitudes
towards mathematics” logically is the target latent variable by the construction of
the study’s hypothesized relationships however the construct is not necessarily im-
plied by the relationships. The SMART-PLS program only allows for single headed
arrows which limited correlation relationships between variables. To further this
study, one could account for the many other variables that could possibly a↵ect
”attitudes towards math” and their underlying constructs. The study could be
expanded to include more high schools or could be explored in one high school. To
leave our readers on a note that looks to the future of math education, we have
included the re-specified model.
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10. Re-Specified Model
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Collegiate Preparatory Academy, Denver School of the Arts, DCIS at Montebello, Denver Center
for International Studies, DSST at Green Valley Ranch, DSST at Stapleton, East High School,
George Washington High School, John F. Kennedy High School, KIPP Denver Collegiate High
School, Manual High School, Martin Luther King High School, Noel Community Arts School,
North H.S., Sims-Fayola International Academy, South H.S., Southwest Early College, STRIVE
Prep - Smart, STRIVE Prep - Excel, Thomas Je↵erson High School, Venture Preparatory High
School, West Generations High School, West Leadership Academy.

2Herman Wold developed partial least squares path modeling in the 1960’s. Since its creation,
PLS has gone through many gradual changes and a vast evolutionary process that has brought
the method to the high recognition it has today.

3In market research, a moderate R2 value is 0.50
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