
Integer Factorization and RSA Encryption

Noah Zemel

February 2016

1 Introduction

Cryptography has been used for thousands of years as a means for securing a
communications channel. Throughout history, all encryption algorithms utilized
a private key, essentially a cipher that would allow people to both encrypt and
decrypt messages.

While the complexity of these private key algorithms grew significantly dur-
ing the early 20th century because of the World Wars, significant change in
cryptography didn’t come until the 1970s with the invention of public key cryp-
tography. Up until this point, all encryption and decryption required that both
parties involved knew a secret key. This led to a weakness in the communica-
tions systems that could be infiltrated, sometimes by brute force, but usually
by more complicated backtracking algorithms.

The most popular example of breaking a cipher was when the researchers
at Bletchley Park (most notably Alan Turing) were able to crack some of the
private keys being transmitted each morning by the Nazi forces,. This enabled
the Allied forces to decipher some important messages, revealing key enemy
positions.

With the advent of computers and the power to do calculations much faster
than humans can, there was a clear need for a more sophisticated encryption
system—one that couldn’t be cracked by intercepting or solving the private key.

In public key cryptography, there are two keys: a private key and a
public key. The public key is used to encrypt the message, while the private
key is needed to decrypt it. Only the decryptor knows the private key. If the
encrypted message (called the ciphertext) is intercepted, it will be impossible
to decipher without the private key.

This paper will provide an overview of the RSA cryptosystem as well as
some of the necessary mathematics behind it. Furthermore, I will detail some
of the factorization algorithms used to crack RSA, and will describe my work
implementing these algorithms in Java with the intent of identifying which are
the most efficient for factoring various sized integers.

1



2 Mathematical Background

In understanding how some of these public key cryptosystems function, it is
necessary to give a brief overview of some pertinent ideas from number theory
involving modular arithmetic.

2.1 Euclidean Algorithm

The Euclidean algorithm provides a fast and efficient way to solve for an
inverse in modular arithmetic through the division algorithm. It is easier to
simply show how this works through example. Suppose one wants to find
17−1 (mod 60). A series of equivalences with divisors and remainders can be
made, similar to long division:

60 = 3 · 17 + 9
17 = 1 · 9 + 8
9 = 1 · 8 + 1
8 = 8 · 1 + 0

Through the division algorithm, it is deduced that the gcd(17, 60) is the last
non-zero remainder (in this case, 1). Now plugging that back in to get:

1 ≡ 9−8 ≡ 9−(17−9 ·1) ≡ 2 ·9−17 ≡ 2(60−3 ·17)−17 ≡ 2 ·60−7 ·17 (mod 60)

Since 60 ≡ 0 (mod 60), there is left (−7)17 ≡ 1 (mod 60) which gives 17−1 ≡
−7 ≡ 53 (mod 60), and thus the algorithm works. This algorithm is essential
for algorithms discussed in Section 4, as it can be seen that the time complexity
of the Euclidean algorithm is O(ln(n)), or linear in logarithmic time.

2.2 Fast Exponentiation

Fast exponentiation is another algorithm that helps improve efficiency when
working with modular exponents. In some of our cryptosystems, it is necessary
to be able to solve Me mod N , where e and N are very large numbers, usually
over 150 digits. It would be incredibly computationally heavy to solve this
normally, so fast exponentiation is utilized to speed this up.

Essentially, a table of the binary powers of M mod N is constructed. Let’s
take an arbitrary M = 61, e = 21, N = 79 to illustrate this. The table is as
follows:

611 ≡ 61 (mod 79)
612 ≡ 3721 ≡ 8 (mod 79)
614 ≡ 82 ≡ 64 (mod 79)
618 ≡ 642 ≡ 67 (mod 79)
6116 ≡ 672 ≡ 65 (mod 79)

To now find an equivalence for Me (mod N), substitute 6121 ≡ 61(16+4+1) ≡
6116 · 614 · 611 ≡ 65 · 64 · 61 ≡ 12 (mod 79). This algorithm reduces the number

2



of multiplications down to around O(ln(n)), which is polynomial in logarithmic
time. This is a great improvement over the operation that would otherwise be
exponential in logarithmic time (e.g. O(elogn)).

2.3 Euler’s Theorem

Euler’s Theorem, published by Euler in 1763, states that given relatively
prime integers a and n, aφ(n) ≡ 1 (mod n). The function φ(n) is called Euler’s
totient function and counts all the numbers less than or equal to n that are
relatively prime to n. It is important to recognize that given a prime p, φ(p) =
p − 1. Similarly, given a product of two primes N = p · q, φ(N) = φ(p · q) =
φ(p)φ(q) = (p− 1)(q − 1). This theorem is at the core of RSA cryptography.

3 Overview of Modern Cryptosystems

3.1 Discrete Logarithm Problem

In the mid 1970’s, Diffie and Hellman published their key exchange system
which relied on the discrete logarithm problem (DLP) for security. In fact,
all modern key-exchange cryptography can be traced back to this problem. The
DLP reads: given a primitive root g of a finite field Fp, and nonzero h, find
exponent x that satisfies:

gx ≡ h (mod p)

Both the Diffie-Hellman key exchange and the ElGamal public key cryptosys-
tem, a famous asymmetric cryptosystem, intrinsically rely on this equation for
their security.

One of the security issues that plagues this type of symmetric key exchange is
an attack called a man-in-the-middle attack. For practical purposes moving
forward, this paper will refer to the encryptor as Bob, the decrypter as Alice,
and the eavesdropper as Eve. Here’s an analogy to explain this: say Eve does
not know how to play chess, but claims she can play two grandmasters simul-
taneously. She then takes the move one of the masters uses against the other
one, and vice versa (4). In a man-in-the-middle attack on a Diffie-Hellman key
exchange, Eve intercepts both the keys being exchanged (A and B) and replaces
them with her secretly computed value of E as E = ge and passes on her E
value to both Alice and Bob instead of their transmitted A and B. In the end,
both Alice and Bob end up with the same private key, so they have the appear-
ance that their communications are secure, as they are both able to encrypt
and decrypt messages, however the eavesdropper Eve is able to decipher every
message being sent.

3.2 RSA Public Key Cryptosystem

Today, RSA public key encryption is used in favor of the Diffie-Hellman an
ElGamal systems.

3



An interesting tidbit of history surrounding RSA is that, while it was in-
vented in 1977 by the three mathematicians Rivest, Shamir, and Adleman, an
earlier equivalent system was invented by the English mathematician Cocks in
1973, but was kept classified by the English government until the 90’s, thus the
publically available RSA encryption became the norm for those not privy to
top-secret government cryptosystems. In fact, the export of such systems was
considered treasonous to many governments, which made research and develop-
ment of cryptography through the late 20th century (and even today) a very
controlled operation, with most of the research being done under a top-secret
label.

A large difference between the RSA system and Diffie-Hellman and ElGamal
is the underlying equation that is being solved. The latter two systems relied
on solving the congruence ax ≡ b (mod p) for x. In RSA encryption, the system
solves for the integer d given xe ≡ c (mod N), where e · d ≡ 1 (mod φ(N)).
Another core difference here is that N is a composite number approximately of
size 21000 and is the product of two very large, privately known prime numbers
(i.e. N = p · q). The security of RSA revolves upon the difficulty of solving
e · d ≡ 1 (mod φ(N)) without the knowledge of N ’s prime factorization.

The RSA algorithm works through the following steps: First, Alice needs
to create her public key through choosing two prime numbers p and q that are
at least 150 digits. She then calculates her public key N = p · q and decides
upon a public encryption exponent e that satisfies gcd(e, (p − 1)(q − 1)) = 1.
She then makes public her public key (N , e). For Bob to encrypt a message to
Alice, he converts his message into an integer M between 1 and N , and then
computes, utilizing fast exponentiation, the ciphertext c ≡ Me (mod N) using
Alice’s public key. For Alice to decrypt the message, she first calculates d (using
the Euclidean algorithm) that satisfies ed ≡ 1 (mod (p− 1)(q − 1)). Now Alice
is ready to decrypt the message through the fact that M = cd (mod N).

3.2.1 Why RSA works

At first, it looks like magic that Alice is able to convert the ciphertext back into
the original message while no eavesdroppers can. Let’s look at the arithmetic
involved: After Bob sends Alice the ciphertext c ≡Me (mod N), she computes:

cd ≡ (Me)d ≡Mde ≡M1+k(φ(N)) ≡M · (Mφ(N))k ≡M · 1k (mod N)

Two important substitutions in the above equivalence occur when, first, she is
able to substitute de ≡ 1+k(φ(N)) for some k ∈ Z, as this was established dur-
ing the original calculation for d (de ≡ 1 mod φ(N)). The second substitution
involves using Euler’s theorem to generate the equivalence Mφ(N) ≡ 1 (mod N),
given gcd(M,N) = 1. It is assumed that M and N are relatively prime, as
N = p · q where both p and q are quite large, thus the chance of M sharing a
common factor with N is approximately 1

p , which is negligible. Modern RSA
systems will have a catch mechanism that ensures the integerized message M
does not share a common factor with N . Therefore, this substitution holds.

4



The security of this system involves the fact that there is no known method
to calculate φ(N) without the knowledge of N ’s prime factorization.

4 Factorization Algorithms

My work focuses on cracking RSA public key cryptography through factoring
N into p and q through a variety of factorization algorithms that I have spent
much time implementing in Java.

In particular, I compare the efficiencies of these algorithms to one another
and determining which algorithms are more efficient given a variable size mod-
ular field (N). My implementation involves a unique combination of number
theory, linear algebra, and computer science. Specifically, I have looked at
the quadratic sieve method, the number field sieve, the Pollard rho algorithm,
Shanks’ square form factorization, and as a control group, trial division.

4.1 Trial Division

Trial division is the easiest of the algorithms to understand, however is the
least efficient, as its run-time is exponential (as opposed to the faster, sub-
exponential run-times of the other algorithms). It can be thought of as brute
force factorization, as it is the most basic algorithm. The algorithm simply
iterates through a list of primes p1, p2, . . . , pk and tries to divide N by pi. If
it divides without a remainder, the algorithm has successfully factored N . If
not, i is incremented and the algorithm repeats. The run time of trial division
is exponential in logarithmic time by recognizing that it is necessary to try all
primes up to

√
N in the worst-case scenario. In Big-O notation, given N

1
2 tries,

the time complexity is: O(e
1
2 ·ln(N)). All other algorithms implemented should

run faster than trial division, especially for N ≈ 21000.

4.2 The Quadratic Sieve

The majority of research done on factorization algorithms has been with the
quadratic sieve, a rather complicated and incredibly useful algorithm that func-

tions in sub-exponential time, on the order of O(e
√

ln(n) ln ln(n)).

4.2.1 Difference of Squares Factorization

At the heart of the quadratic sieve is difference of squares factorization (recall
from algebra that 899 is easily factored via: 899 = 900 − 1 = 302 − 12 =
(30 − 1)(30 + 1) = (29)(31)). This same logic is used to factor N into some
a2 − b2, which also works the same under modular arithmetic. The algorithm
starts with some b = d

√
Ne, and then increases b by 1 and reduces b2 (mod N)

until it equals a perfect square a2. It is now possible to factor N through the
congruence a2 ≡ b2 (mod N). This is much easier starting with b ≈

√
N as

5



b2 (mod N) will be a small number. This idea leads to the three-step process
known as the quadratic sieve.

The first step is called relation building, wherein a large table of integers
a1, a2, . . . , ak is created such that the quantity ci ≡ a2i (mod N) factors as a
product of small primes.

The next step is called the linear algebra elimination step, where we
take a product of various ci1, ci2, . . . , cis generated in the relation building so
that all of the corresponding ci’s factors are exponentiated to an even power,
such that ci1, ci2, . . . , cis = b2 is a perfect square. In practice, this is computed
through solving for the basis vectors in a massive, sparse matrix of the prime
powers modulo 2.

The final step is GCD computation. In this step, the algorithm takes
some a = ai1, ai2, . . . , ais and computes the GCD d = gcd(N, a − b). It is
relatively likely that d is a nontrivial factor of N . If it is not, different relations
must be chosen that satisfy the even exponent condition. If, after exhausting
all possible combinations of relations, there is still no non-trivial gcd, then it
is necessary to increase the size of the sieve and try again. A more in-depth
example of implementation will follow at the end of this section.

4.2.2 Smooth Numbers

The quadratic sieve takes the ideas from factorization via difference of squares
a step further by using a property related to smooth numbers. An integer
n is B-smooth if all of its prime factors are less than or equal to B (1). For
example, 2, 3, 4, 6, 8, and 9 are 3-smooth while 5, 7, 10 and 11 are not.

In evaluating the efficiency of the quadratic sieve, it is important to under-
stand the function ψ(X,B), which counts the number of B-smooth numbers
between 1 and X. Its growth as X and B grow to very large numbers “needs
to increase in just the right way” (1).

An important theorem detailing this growth is called the Canfield, Erdős,
and Pomerance Theorem, which reads: fix a number 0 < ε < 1 and let
X and B increase together while satisfying: (lnX)ε < lnB < (lnX)1−ε. In
moving forward, we denote u = lnX

lnB . Now there is the unique property that the

number of B-smooth numbers less than X satisfies ψ(X,B) = X · u−u(1+o(1))
where o(1) is little-o notation meaning as X tends to infinity, o(1) goes to 0. In
looking at which values of B and X are needed for the algorithm to work, we

arrive at the equation: L(X) = e
√

(lnX)(ln lnX). By looking at the growth table
of L(X) with respect to X (1), it is seen that L(X) follows a pattern of sub-
exponential growth. It turns out that in order to have a reasonable chance of

factoring N , it is necessary to choose B ≈ L(N)1/
√
2 (1). In order for the linear

elimination step to be successful, it follows that there must be at least π(B)
B-smooth numbers, where π(B) is the number of primes up to B. This much
seems obvious, and for all practical applications of the quadratic sieve where it
is factoring integers on the order of 1024 bits (approximately 300 digits), this
will usually be met by the nature of taking many relations.

6



Finding B-smooth numbers (mod N) is crucial to be able to solve the table
of relations, as it needs numbers with small factors in order to piece two or more
of them together successfully to have the factors of their product all be raised
to an even exponent. If the factors are large, this task becomes very difficult.
A core question is how do we appropriately find numbers a >

√
(N) such that

a2 (mod N) is B-smooth? The quadratic sieve will sieve a list of different a
values by prime powers up to B, and from that it is possible to construct rela-
tions from every entry that has been sieved. There is some pertinent logic that
surrounds how to reduce these numbers that will be addressed in the example.

4.2.3 Quadratic Residue

In order to speed up the efficiency of the quadratic sieve algorithm, the imple-
mentation utilizes a facet of modular arithmetic known as quadratic residues.
If an integer a cannot be equal to a square modulo prime p, then the quadratic
sieve should know to skip that integer in the sieve. Given these conditions, a is
referred to as a quadratic nonresidue modulo p. If a is a square modulo p
(there exists c ∈ Z such that c2 ≡ a (mod p)), a is referred to as a quadratic
residue modulo p. Now the question presents itself of how do we tell if a is a
quadradic residue (QR) or a quadratic nonresidue (NR)? In order to solve this,
one must implement what is known as quadratic reciprocity using Legendre
symbols and a pertinent theorem. The Legendre symbol of a modulo p is

denoted as
(
a
p

)
, and via various operations, will reduce to either 1 if a is a QR,

-1 if a is a NR, or 0 if p divides a. The following three operations allow one to
reduce the Legendre symbol to determine if a is a QR or NR modulo p:

1)
(
−1
p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

2)
(

2
p

)
=

{
1 if p ≡ 1 or 7 (mod 8)

−1 if p ≡ 3 or 5 (mod 8)

3)
(
p
q

)
=


(
q
p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−
(
q
p

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4)

4.2.4 Example

To demonstrate the quadratic sieve in action, I have included a screenshot of the
output from the Java program I wrote implementing the quadratic sieve using a
very small value of N in order to demonstrate certain aspects of the algorithm,
as shown in Figure 1. For this example, I chose N = 1147 = 31 · 37, and for
this sieve to work, it is necessary to calculate smooth numbers up to B = 27,
which means the sieve will factor prime powers up until 27. While the program

normally approximates B by using the formula B ≈ L(N)
1√
2 as described in

section 4.2.2, these approximations tend to fall apart when working with small
numbers, thus trial and error was required to find a successful value of B.

7



Figure 1: The Quadratic Sieve

In the walkthrough of the output, the first item of interest is the origi-
nal sieve values. These numbers are genereated through the function F (T ) ≡
T 2 (mod N). The first value of T is the square root ceiling of N , denoted
d
√
Ne, as d

√
Ne2 (mod N) will be close to 0, making the prime factors of

the value (mod N) small, and thus easier to find relations. Starting with
F (34) ≡ 9, and then F (35) ≡ 78, and so forth, the sieve is capped once T 2 > 2N .

8



This can be seen in the output that the last number in the sieve is F (47) as
482 = 2307 > 2 ∗ 1147. When all the original values have been gathered, the
sieve can begin.

As the algorithm sieves through the list, it will divide certain numbers in the
list by increasing prime powers p up to B, starting with 2. For each iteration
of the sieve (each time p is increased), the algorithm determines which entries
satisfy t2 ≡ 1147 (mod p) and divides those entries by the prime factor of p.
The sieve starts with the first prime power, 2, and every entry in the sieve that
satisfies t2 ≡ 1147 ≡ 1 (mod 2) is divied by 2, which is every other entry starting
with F (35). Next, the sieve moves on to sieving 3. There are two solutions to
the equivalence t2 ≡ 1147 ≡ 1 (mod 3), where t = 1 and t = 2, thus 3 is sieved
twice from the list. The first reduction begins with F (34) as 34 ≡ 1 (mod 3) and
the second begins with F (35) as 35 ≡ 2 (mod 3). For each of these reductions,
every third entry in the sieve is divided by 3 since the algorithm is operating
currently in modulo 3. The sieve continues down the list of prime powers. The
program runs a calculation before each iteration of the sieve to verify that there
is at least one solution to t2 ≡ 1147 (mod p) by seeing if 1147 is a quadratic
residue modulo p. In the output, 5, 7, and 23 all have no solutions, and thus
are not sieved. Once the end of the sieve is reached (p ≥ B), we look at every
entry that has been reduced to 1 and build relations from the prime factors of
the corresponding F (T ) values (the original entries in the sieve).

The next step the program calculates is determining which of the primes
factors in the relations table can be combined to create a perfect square (i.e.
which relations can be combined so that the combined prime factors all appear
to an even exponent?). In my program, this is done by solving the nullspace of a
matrix with all the prime factors for basis vectors in order to generate solutions,
which is not shown in the output. In this example, there is only one solution
which is obtained by multiplying F (35) and F (43), as shown in the last part of
the output (F (35) · F (43) ≡ (2 · 3 · 3 · 13)2 (mod 1147)).

The final step of the algorithm computes the GCD of the difference of squares
(35 ·43−2 ·3 ·3 ·13) and N , and if that result is non-trivial, then it is a factor of
N . If it is trivial, the algorithm returns to the solution vectors of the null-space
matrix and chooses another one. If still no non-trivial GCD calculations present
themselves, it is necessary to increase B and re-do the entire sieve. Here, the
implementation has computed a non-trivial factor of 1147 as 31, and the other
factor is easily obtained by dividing 1147 by 31.

4.2.5 The Number Field Sieve

The general number field sieve (GNFS) is the fastest factorization algorithm
for integers larger than 2350, or approximately 100 decimal digits. It follows
a similar method to the quadratic sieve, but uses an algebraic number field to

reduce the time complexity to O
(
e(c+o(1))·ln(N)

1
3 ln ln(N)

2
3

)
where c ≈ 1.526 (9).

When looking at numbers of the form ae ± b, the number field is determined
by a, e, and b (6). Implementing and fully understanding the number field

9



sieve is graduate-level work that requires significant programming expertise and
incredibly expensive computers to achieve the type of efficiency first described
by Lenstra, et al. in their 1989 paper.(9; 11)

4.3 Pollard’s ρ Method

Pollard’s ρ factorization algorithm is much less complicated than the quadratic
sieve; however, it does not function as quickly for factoring realistic sizes of
N in an actual RSA system. There are further shortcomings that make the
ρ and the similar ρ − 1 and ρ + 1 algorithms somewhat obsolete for cracking
RSA systems. The algorithm is so named because of the shape the “search”
makes in looping through integers (it looks like the greek letter ρ). The method
works as follows: given some N to be factored as in the other algorithms,
it starts by setting a = 2. Next, it loops j = 2, 3, 4, . . . until it reaches a
specified bound. Inside the loop, the algorithm sets a = aj (mod N) and
compute d = gcd(a − 1, N). If 1 < d < N , it has successfully factored N with
nontrivial factor d. If d = 1 or d = N , it has not, and it increments j and
tries again. This method in many ways is similar to brute force factorization,
but with a significant efficiency advantage. Pollard’s ρ method works best when
one of the factors of N is significantly smaller than the other, and becomes
very slow when both factors of N are of similar size. For this reason, this
algorithm is not the preferred method of factoring N values used in actual
RSA implementations. Furthermore, the time complexity of this algorithm is

exponential in logarithmic time (approximately O
(
e

1
4 ln(N)

)
), as opposed to the

faster subexponential methods. Finally, modern RSA systems defend against ρ
factorization by making sure that neither (p − 1) nor (q − 1) factor into small
primes, making this factorization algorithm somewhat irrelevant.(1; 5; 6)

4.4 Shanks’ Square Form Factorization

Shanks’ Square Form Factorizations (SquFoF) utilizes the difference of squares
factorization described in section 4.1.1. This is the fastest algorithm for factoring
integers between 230 and 260 (12). The algorithm works through computing
quadratic forms of different integers under the given modulus N to be factored.
For a more detailed description of the algorithm, Gower and Wagstaff’s paper
(12) is very comprehensive. SquFoF operates in exponential time complexity

under logarithmic operations, given as O
(
e

1
4 ln(N)

)
.

5 Analysis of Algorithms

The initial design of this project involved my successful implementation and
comparison of these various factorization algorithms. In practice, my com-
puter science skills have hindered the efficiency of the more complex algorithms
(quadratic sieve and SquFoF), while favoring the simpler ones (Pollard ρ, trial

10



division). As such, I have resorted to publically available code in order to suc-
cessfully compare these algorithms. Tilman Neumann has compiled a program
that implements all of these algorithms, among others (7). He writes of his im-
plementation that trial division is the most efficient for N < 227, 32-bit SquFoF
for 228 < N < 242, 64-bit SquFoF for 243 < N < 268, and the self-initializing
variant of the quadratic sieve for 269 < N . “[The quadratic sieve] is currently
the algorithm of choice for “hard” composites with about 20 to 120 digits. [...]
For larger numbers, the number field sieve moves to the front, but this “viability
border” between the quadratic sieve and the number field sieve is not very well
defined, and shifts as new computer architectures come on line and when new
variations of the underlying methods are developed.” (10) The general number
field sieve is the most efficient algorithm given 2350 < N (1).

Next, we will look at the time complexity (O-values) of each of the examined
algorithms (1; 8):

Algorithm Time Complexity (Big-O) Type

Trial Division O
(
e

1
2 ln(N)

)
exponential

Pollard ρ O
(
e

1
4 ln(N)

)
exponential

SquFoF O
(
e

1
4 ln(N)

)
exponential

Quadratic Sieve O
(
e(1+o(1))·

√
ln(N) ln ln(N)

)
subexponential

Number Field Sieve O
(
e

(
3
√

64
9 +o(1)

)
·ln(N)

1
3 ln ln(N)

2
3

)
subexponential

More research should be done in analyzing the borders of efficiency between
these various algorithms, ideally working with very experienced computer pro-
grammers and powerful, reliable machines.

6 Conclusion

Modern RSA cryptosystems are, generally speaking, impossible to crack given
the current hardware and factorization algorithms used. As larger and larger
numbers are factored, RSA systems will adapt to use even larger keys. Currently,
private keys are usually 2048 bits, or 617 decimal digits. The largest numbers
factored so far have been on the order of 200 decimal digits. There was even
a competition called the RSA Factoring Challenge that awarded money for
the successful factorization of larger and larger numbers from a set of massive
composite integers labelled the RSA numbers that promoted the research of new
factorization algorithms and the fine-tuning of existing ones.

So far, we have yet to attain factorization in linear time under logarithmic
operations, with the best algorithms operating in subexponential time. Given
the pace of new technological breakthroughs, it will come, sooner or later, that
our archaic computational systems based on transistors will limit the seemingly
boundless increase in efficiency in these algorithms. One such linear time al-
gorithm has been discovered for quantum computers (computers that function

11



not with bits, but with quantum bits (qubits)—physical particles that can have
“spin”). This algorithm was created in 1994 and is called Shor’s Algorithm.
Given the infancy of quantum computing, the largest number this algorithm
has thus been able to factor has only been 56153. But all great things start in
small places, and with many more years of technological discovery to come, it
is possible that this algorithm can usurp the general number field sieve as the
fastest factorization algorithm.

References

[1] Jeffery Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction to
Mathematical Cryptography. Springer, New York, New York, 2014.

[2] Carl Pomerance. A Tale of Two Sieves. American Mathematical Society,
43(12): 1473–1485, 1996.

[3] Willie K. Harrison. Physical-Layer Security: Practical Aspects of Channel
Coding and Cryptography (Doctoral Dissertation). School of Electrical and
Computer Engineering, Georgia Institute of Technology, 2012.

[4] Man-in-the-middle attack. Wikipedia.
http://en.wikipedia.org/wiki/Man-in-the-middle attack.

[5] J. M. Pollard. Theorems on factorization and primality testing. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 76: 521-528, 1974.

[6] Richard P. Brent. Primality Testing and Integer Factorisation.
http://maths-people.anu.edu.au/∼brent/pd/rpb120.pdf.

[7] Tilman Neumann. PSIQS.
http://www.tilman-neumann.de/.

[8] Kostas Bimpikis and Ragesh Jaiswal. Modern Factoring Algorithms. Univer-
sity of California, San Diego.

[9] A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard. The Number
Field Sieve. December, 1989.

[10] Carl Pomerance. Smooth Numbers and the Quadratic Sieve. Algorithmic
Number Theory, Vol. 44, 2008.

[11] Carl Pomerance. The Number Field Sieve. Proceedings of Symposia in Ap-
plied Mathematics, Vol. 48, 1994.

[12] Jason E. Gower and Samuel S. Wagstaff, Jr. Square Form Factorization.
American Mathematical Society, 1997.

12


