
Homology and Data

Austin Eide

April 8, 2016

Abstract

Topological Data Analysis (TDA) is a growing field in applied mathematics.
TDA encompasses a wide variety of topological methods which can be applied to
the problem of analyzing large or noisy point-cloud data sets. One of the most
important of these methods is persistent homology, which characterizes the shape
of a data set by finding holes of various dimensions in the data. This paper covers
the algebraic construction of simplicial homology groups, gives efficient methods
for computing them, and provides some intuition into what these groups mean.
It then exnteds these ideas to a data analysis setting by discussing the algebraic
theory behind persistent homology and also giving some examples computed in the
R package TDA, which efficiently computes the persistent homology of data.

1 Introduction

The power of topology comes from its abstraction; a topologist is interested in exam-
ining the most general features that characterize a space. These features are said to
be invariant under homeomorphisms and allow the topologist to conclude that spaces
which appear radically different are actually one and the same, a concept that gives rise
to an often repeated joke about breakfast pastries and a certain type of mug.

On a more elegant note, topological invariance may also have been the concept which
led Henri Poincaré to conclude that “mathematics is the art of giving the same name to
different things.” Poincaré is often credited as the mathematician who laid the founda-
tions for modern algebraic topology, and important tools in the subject such as homotopy
theory can be traced back to his work. Homotopy uses algebra to encode information
about spaces in a simple way. Homotopy equivalence is a very strong topological relation,
and, while it does not imply that spaces are homeomorphic, many important topological
properties such path-connectdness and simple-connectedness are also homotopy invari-
ant. However, while homotopy is a powerful theory, it is generally very difficult to
compute explicitly the homotopy groups of a given space.

This fact renders homotopy difficult to use in particular settings, especially in applied
or computational topology. Another theory attributed to Poincaré, though, proves to
be nearly as powerful as homotopy while also allowing for efficient computation. This

1

theory—called homology—uses holes to classify space. To give an often-used example:
a sphere is not a solid ball because a sphere bounds a hole while the ball does not;
similarly, a circle is not a disk because the circle is a hollow loop while the disk is solid.
This type of classification is quite similar to the type produced by homotopy. However,
a key distinction is that where homotopy groups of a space X are constructed based on
functions with certain properties from the n-dimensional sphere Sn to X, the homology
groups of X rely solely upon information encoded in what is called a chain complex on
X, making them more easily computable in most cases.

In this paper, we are interested in simplicial homology, or the homology groups of sim-
plicial complexes. Working on simplicial complexes is advantageous in that a given
complex can be described combinatorially (i.e., in terms of sets and subsets), meaning
that simplicial complexes of reasonable size are relatively easy to store and do com-
putations on. Moreover, simplicial homology can be used to reach broader results in
topology, as many topological spaces can be triangulated by a simplicial complex that
is homeomorphic to the original space. In Section 2 I give a brief overview of simplexes
and simplicial complexes. From there, I describe a general construction of simplicial
homology groups. Then, in Section 3, I discuss prevailing methods and algorithms for
computing the homology of a simplicial complex.

Homology (and in particular, simplicial homology) is a valuable tool in large part be-
cause the homology of a given space can be easily computed. To this end, much of the
recent work in applied topology has dealt with efficient methods for computing homol-
ogy groups, especially as it pertains to data analysis. In this kind of topological data
analysis, we begin with a set of vectors X = {x1, x2, . . . , xn} in Rm (point-cloud data)
and suppose that this data has been sampled from some underlying space P also in Rm
[9]. By examining the homological features of the data X, we hope to gain some insight
into what P might look like. To do this, we construct a simplicial complex K on X
according to certain parameters and conditions for connecting two points by an edge,
and then compute the homology of this complex. Analyses like this are especially useful
in examining high-dimensional data which cannot be plotted or viualized directly: we
can detect the presence of homological features in such data without ever actually seeing
them. Recent work in image recognition and protein analysis speaks to this [3,7].

Analyzing data topologically is beneficial because the topological features of the data X
and the underlying space P do not depend on coordinates or metrics which “may not
be natural [to the data] in any sense,” as Carlsson puts it in [3]. Rather, a topological
analysis directly examines the shape and fundamental geometric properties of a space,
which are impervious to metric or coordinate choices. However, in the setup mentioned
in the previous paragraph, the reader might notice that in constructing a complex on a
set of data we are nonetheless forced to make a choice of parameter which may or may
not be optimal (how do we decide where to draw an edge, and where not to?). Rather
than attempting to optimize parameters, topological data analysis has generally turned

2

to the idea of persistence to solve this problem. In persistent homology, we construct
a sequence of nested complexes K1 ⊂ K2 ⊂ · · · ⊂ Km on a set of point-cloud data X,
where each Ki is a simplicial complex corresponding to a certain parameter choice. We
then compute homology groups for each Ki to determine which homological features
persist through multiple choices of the parameter and which are merely particularities
of a small range of choices. In Section 4, I give a more thorough treatment of persistent
homology. This section also contains some results from experimenting with sampled
data in the R package TDA, which uses efficient algorithms to compute the persistent
homology of point-cloud data.

2 Simplicial Complexes and Homology

Intuitively, a k-simplex is the k-dimensional analogue of a triangle. A 2-simplex consists
of 3 affinely independent points and the interior of the triangle which they comprise; a
3-simplex, or a tetrahedron, is constructed similarly with 4 points. Simplicial complexes
(of dimension n) are simply collections of simplexes (of dimensions 0, . . . , n) which sat-
isfy certain intersection conditions. These concepts are laid out more formally below.
Note that the constructions in this section are fairly graph theoretic, as I believe this
provides the most straightforward introduction to simplicial homology.

2.1 Simplexes

We define a k-simplex as follows:

Definition Let {v0, . . . , vk} be a set of affinely independent vectors in Rn. The k-
dimensional simplex with vertices {v0, . . . , vk} is the set

∆k = {c0v0 + c1v1 + · · ·+ ckvk ∈ Rn : c0 + c1 + · · ·+ ck = 1, ci ≥ 0}.

The vectors {v0, . . . , vk} are affinely independent if v1−v0, v2−v0, . . . , vk−v0 are linearly
indepedent. For any point in ∆k, the real numbers c0, c1, . . . , ck are uniquely determined
and are called the barycentric coordinates of the point [2].

I don’t go into much detail here because for the purposes of this paper we will be work-
ing with simplicial complexes in a general topological space, rather than a real vector
space. However, a nice explanation of affine subspaces and affine independence is given
in Giblin’s Graphs, Surfaces, and Homology [10] for the reader who would like a more
rigorous grounding in this. Here, a solid intuition will suffice. Essentially, the condition
that {v0, . . . , vk} be affinely independent means that these vectors do not all lie on a
single (k−1)-dimensional plane. Simplexes are analogous to triangles, and we could not
construct a triangle from 3 points that all lie on a single line (nor a tetrahedron from
4 points on a single plane). A more illuminating way to think of the definition is that
the k-simplex on a set of k + 1 affinely independent vertices is the convex hull of those

3

vertices, or the smallest closed set containing all of the vertices. Naturally, for 2 vertices
this set is the closed line segment between them; for 3 vertices it is the closed triangle
defined by the vertices; and so on.

Note that in the definition, a k-simplex is determined entirely by the given k + 1 ver-
tices. So, while the realization of the 2-simplex with vertices v0, v1, and v2 as a triangle
is helpful for visualization, we could describe it equally well with the set {v0, v1, v2}.
From here on, we’ll refer to such a set as a vertex set. In general, we’ll refer to simplexes
with the notation (v0v1 . . . vk), and the vertex set containing the vi will be considered a
separate object.

This new notation gives rise to another important aspect of simplexes and simplicial
complexes: orientation. Describing simplexes by their vertex sets imposes a natural
ordering on the vertices. For any k-simplex, then, we have (k + 1)! distinct orderings
of vertices. A 1-simplex (which from the definition is a line segment) has two distinct
orderings, as its vertex set contains two elements. In this case, the two orderings also
give two orientations of the simplex, which we can visualize by placing a direction on
the line segment defined by the two vertices. For (v0v1), we have

v0 v1

and for (v1v0)

v0 v1

The association between ordering and orientation in the case of the 1-simplex is clear:
we have two orderings of vertices which each give a distinct orientation of the line seg-
ment between the vertices. But what about higher dimensional simplexes? (v0v1v2) and
(v2v0v1) are two distinct orderings of the vertices of a 2-simplex, yet they correspond to
the same orientation given that the vertices of the resulting triangle are read in a “clock-
wise” direction. On the other hand, (v0v2v1) gives an opposite, or “counterclockwise”
orientation. Thus, although there are six possible orderings of vertices for a 2-simplex, it
isn’t hard to see that there are still only two possible orientations, each corresponding to
the “direction” in which the vertices of the triangle are read. In general, any k-simplex
with k ≥ 1 has two possible orientations. Showing this rigorously requires use of some
details about affine subspaces which we have foregone. The main idea is that, given an
ordered vertex set {v0, v1, . . . , vn} any even permutation of these elements gives one ori-
entation, while any odd permutation gives the opposite orientation. Geometrically, we
can assign one rotational direction to the even permutations and the opposite rotational
direction to the odd permutations. Orientation becomes very important once we place
an algebraic structure onto simplicial complexes.

A final piece of important information regarding simplexes is the notion of a face. The
definition is as follows:

4

Definition A face of a simplex with vertex set V = {v0, v1, . . . , vn} is a simplex whose
vertices form a nonempty subset of V .

In this sense, then, v0 and v1 are both faces of the simplex (v0v1) above.

2.2 Simplicial Complexes

From simplexes, we are able to construct simplicial complexes, which are the structures
needed in order to approximate surfaces. We define a simplicial complex:

Definition A simplicial complex is a finite set K of simplexes for which the following
are true:

1. If s ∈ K and t is a face of s, then t ∈ K

2. If s, t ∈ K, then s ∩ t is either empty or is a face of both s and t

The second condition is often called the intersection condition, and it delineates pre-
cisely how simplexes can be combined into a simplicial complex. Simply, put, simplexes
must either share an entire common face (be it a point, an edge, a triangle, etc.) or
not be connected at all. So, for example, the figure below is not a simplicial complex
because the 2-simplexes (v0v1v2) and (v3v4v5) do not satisfy the intersection condition,
as the edge (v2v3) = (v0v1v2) ∩ (v3v4v5) is not a face of either 2-simplex.

v0

v1

v2

v3

v4 v5

The first condition of the definition gives us a connection between simplicial com-
plexes and graphs. Consider the following definition.

Definition The r-skeleton of a simplicial complex K, denoted Kr, is the set of sub-
complexes of K with dimension ≤ r.

Note that a subcomplex of K is simply a subset of K which is itself a simplicial complex.
In particular, we will be interested in the 1-skeletons of simplicial complexes. Take any
k-simplex with k ≥ 1; using the definition of a face, it is easy to decompose the simplex
into a union of 1-simplexes which can naturally be expressed as a graph. Here, we will
take some informal definitions regarding graphs. A graph is a vertex set V along with an
edge set E, where each edge in E corresponds to exactly two vertices in V . A connected

5

graph is a graph in which there exists a path between any two vertices in V . Note that
any graph G may be the union of multiple connected components, or subgraphs which
are disconnected from one another. These definitions will allow us to draw an important
conclusion about how we should interpret certain homological features (see Propositions
2.3 and 2.4).

Before moving on to these results, though, we need to describe an algebraic structure
on simplicial complexes, which I handle in the next section.

2.2.1 Algebra on Simplicial Complexes

With homology, we formalize the notion of holes and voids of a given dimension in a
space. Homology accomplishes this by identifying the boundaries of these holes and
voids. On a simplicial complex, the structures that bound holes are simplexes, and, in
particular, combinations of simplexes. In order to compute homology, we first must for-
malize the way we describe these combinations. This follows in a natural way. Consider
the following oriented complex:

v0 v1

v2 v3

e0

e4

e1e3

e2

The cycle v1 → v2 → v3 → v1 can be expressed as an integral linear combination of its
edges. Note that, following the order of the vertices listed, we would travel “backwards”
along edges e2 and e1, while going forwards on e4. We express these directions with a
coefficient of ±1 associated to each edge in the combination. For the cycle v1 → v2 →
v3 → v1, the proper expression is

e4 +−e2 +−e1.

Call such a combination a 1-chain, as it is a combination of 1-simplexes. In general, a
p-chain on a simplicial complex is an integral linear combination of p-simplexes. Note
that a p-chain need not be a cycle in general, but clearly only p-cycles are capable of
bounding holes (this is akin to the graph theoretic notion of a cycle on a graph bounding
a region). In general, a chain of p-simplexes σ1, . . . , σk is written

λ1σ1 + · · ·+ λkσk

where the λi are coefficients from a ring R. In the context of this paper, these coefficients
will always come from {−1, 0, 1}.

6

With this, we can construct homology groups.

2.3 Homology Groups

Up to this point, the notion of what a homology group really is, and what it actually
measures, has been left somewhat vague. This section will be devoted to explaining how
these groups function.

Recall the previous section’s discussion on holes and boundaries in a simplicial complex.
With the notion of a p-chain, we can formally describe the combinations of simplexes
which bound holes—namely, p-cycles. However, this is not sufficient to give the homol-
ogy of a simplicial complex, as we aren’t yet able to distinguish between p-cycles that
bound holes and ones that don’t. Consider the following simplicial complex:

v0

v1

v2

v3

e0

e3

e1

e4

e2

Take (v0v1v2) to be a 2-simplex, but do not consider the triangle on v1, v2, and v3 a
2-simplex. While these are both “triangles” in the geometric sense, they are actually
quite different as parts of an overall simplicial complex. The triangle with vertices v0,
v1, and v2 is a 2-simplex, meaning it contains the points in its interior. The triangle
with vertices v1, v2, and v3 is not a 2-simplex, and thus does not contain interior points.
Thus, the cycle e1 − e2 + e4 goes around a hole, while the cycle e0 − e4 − e3 does not.

The ability to distinguish bounding from non-bounding cycles is the final piece we need
to construct homology groups. The next sections are devoted to giving the algebraic
structure of this concept.

2.3.1 Chain Groups

Definition Let K be an n-dimensional oriented simplicial complex and αp be the num-
ber of p-simplexes of K; these simplexes will be given by σ1p, . . . , σ

αp
p . The pth chain group

of K, denoted Cp(K), is defined as the free abelian group on the set
{
σ1p, . . . , σ

αp
p

}
.

7

From the definition, the set
{
σ1p, . . . , σ

αp
p

}
is a basis for Cp(K), so that any c ∈ Cp(K)

can be expressed uniquely by some
∑ap

i=1 λiσ
i
p where λi ∈ Z for all i. These chain

groups allow us to treat p-simplexes differently in different dimensions. The trouble in
the bounding/non-bounding triangle example above arose because we were unable to
formally state that the 1-chain e0 − e4 − e3 was actually the boundary of a 2-simplex,
while the chain e1 − e2 + e4 was not. Chain groups, along with the next definitions, are
able to make this distinction.

Definition The boundary operator ∂p of an oriented p-simplex σp = (v0v1, . . . , vp) gives
the (p− 1)-chain

∂p(σp) =

p∑
i=0

(−1)i(v0 . . . v̂i . . . vp)

where v̂i denotes the omission of vertex vi.

To work out a quick example, consider the first figure in this section. The boundary
of the 2-simplex (v0v1v2) is

∂2(v0v1v2) = (v1v2) +−(v0v2) + (v0v1) = −e4 − e3 + e0

which is how we naturally described the boundary before. We generalize ∂p with the
next definition.

Definition The boundary homomorphism ∂p : Cp(K)→ Cp−1(K) for an n-dimensional
simplicial complex K is defined by

∂p
∑

λiσ
i
p =

∑
λi∂p(σ

i
p)

for 0 ≤ p ≤ n and is defined to be the trivial homomorphism elsewhere.

Perhaps the most important observation to make about the boundary homomorphism
is that ker ∂p is precisely the set of p-cycles of the complex K, which are the only
structures on a simplicial complex that might capture holes. Seeing this for the case
p = 1 is straightforward. If the 1-simplexes (v0v1), (v1v2), (v2v1) are subjected to the
boundary homomorphism as a 1-chain, we get

∂1(v0v1 + v1v2 + v2v1) = (v1 − v0) + (v2 − v1) + (v0 − v2) = 0.

This result movitates the following theorem, which gives a relationship between the image
of a boundary homomorphism and the kernel of the successive boundary homomorphism.

8

Theorem 2.1. The composition of any two consecutive boundary homomorphisms maps
all elements to 0. That is, for any p, ∂p−1 ◦ ∂p : Cp(K)→ Cp−2(K) is trivial.

Proof. When for p = 0 and p = 1, this follows immediately, as the ∂p is defined to be
trivial for p < 0.

Take p to be greater than or equal to 2. For some p-simplex σ = (v0v1 . . . vp) we have

∂p−1(∂pσ) =

p∑
i=0

(−1)i∂p−1(v0 . . . v̂i . . . vp).

This is true because ∂p(σ) is given as the (p − 1)-chain
∑p

i=0(−1)i(v0 . . . v̂i . . . vp). We
then use the definition of the boundary homomorphism to get the right-hand term of
the above equation.

Now, in general, applying the boundary operator to a p-simplex gives a (p−1)-chain
with (p+ 1) distinct summands (one summand for each omission of a vertex). Thus, for
each i in the outer sum above, we have an inner summation (from ∂p−1) of (p−1)+1 = p
distinct (p−2)-chains. Because i ranges from 0 to p, this gives p(p+1) summed terms in
the composition ∂p−1 ◦ ∂p. This is important, as it gives an even number of summands.
We propose that each (p − 2)-dimensional face of σ occurs exactly twice in this sum.
In general, such a face is given by (v0 . . . v̂i . . . v̂j . . . vp) where i < j and will appear in
terms

(−1)i∂p−1(v0 . . . v̂i . . . vp) = (−1)i
p∑
j=0

(v0 . . . v̂i . . . v̂j . . . vp)

and

(−1)j∂p−1(v0 . . . v̂j . . . vp) = (−1)j
p∑
i=0

(v0 . . . v̂i . . . v̂j . . . vp).

The coefficient of (v0 . . . v̂i . . . v̂j . . . vp) in the first sum is actually (−1)i(−1)j−1, because
once we remove vi to form (v0 . . . v̂i . . . v̂j . . . vp), every index k > i must be decreased by
one to account for the shift. Because j > i, the coefficient becomes (j−1). The coefficient
in the second sum is simply (−1)j(−1)i, giving a total coefficient of (−1)i(−1)j−1 +
(−1)j(−1)i = 0, thus proving that ∂p−1 ◦ ∂p = 0.

From this theorem, it follows immediately that img ∂p ⊆ ker ∂p−1. We say that the
chain groups Ci(K) along with boundary homomorphisms ∂i form the chain complex

· · · → 0
∂n+1−−−→ Cn(K)

∂n−→ Cn−1(K)
∂n−1−−−→ · · · ∂1(K)−−−−→ C0(K)

∂0−→ 0→ · · · .

2.3.2 Boundary, Cycle, and Homology Groups

The relation img ∂p ⊆ ker ∂p−1 provides a natural way to distinguish between bounding
and non-bounding p-cycles: non-bounding p-cycles are elements of ker ∂p that are not
elements of img ∂p+1.

9

Denote ker ∂p as Zp(K) (the pth cycle group) and img ∂p+1 as Bp(K) (the pth boundary
group). Note that Bp(K) is a subgroup of Zp(K). (Each of these groups, as subgroups of
the free and finitely generated group Cp(K), are also free and finitely generated, which
will be important later.) The quotient group Hp(K) = Zp(K)/Bp(K) is the pth homol-
ogy group of K. We are working solely with abelian groups, so Zp(K) and Bp(K) are
both normal subgroups of Cp(K).

By taking the quotient of Zp(K) and a subgroup Bp(K) we are essentially modding
out all p-cycles of K by the p-cycles that are actually boundaries of (p + 1)-simplexes.
The quotient group Hp(K) gives us what is left over—in particular, the non-bounding
p-cycles. The rank of the free part of Hp(K), sometimes called the pth Betti number
βp, gives the number of p-dimensional holes in K. A couple of basic results surrounding
these groups follow.

Proposition 2.2. For K an n-dimensional simplicial complex, the nth homology group
Hn(K) is a free and finitely generated abelian group.

Proof. If K is an n-dimensional simplicial complex, then Cn+1(K) = 0 and thus we have
img ∂n+1 = Bn(K) = 0. We then have Hn(K) = Zn(K), and Zn(K) is a free and finitely
generated abelian group, as it is a subgroup of Cn(K).

Elements of Hp(K) are cosets of the form z + Bp(K), where z ∈ Zp(K). Let each
coset be denoted by the homology class [z], so that any cycle z′ ∈ [z] is equal to z + b
for some b ∈ Bp(K). Two cycles z and z′ are homologous if and only if z − z′ ∈ Bp(K).
We can now reach some results about 0th homology groups.

Proposition 2.3. Two vertices v and v′ of a simplicial complex K are homologous if
and only if they lie in the same connected component of the graph K1 (the 1-skeleton of
K).

Proof. Suppose v and v′ lie in the same connected component of K1. Then there exists
a path between then, say from v to v′. This path can be thought of as a 1-chain in
the context of the simplicial complex K; call this 1-chain c. Then ∂1(c) = v′ − v, which
means v′ − v ∈ img ∂1 = B0(K), so the two vertices are homologous. Now, suppose v is
homologous to v′. We need to construct a path in K1 between the two vertices, and can
proceed by induction. For the case n = 1, suppose v′ − v = ∂1(c), where the number of
1-simplexes in c is |c| = 1. Then c is the required path between v and v′. Now, suppose
|c| is an arbitrary positive integer and let the hypothesis hold for all 1-chains of length
less than or equal to |c|. If ∂1(c) = v′− v then the 1-chain c must contain an edge e such
that e has v′ as an endpoint. Let e = (v′′v′). Then the 1-chain c− e is a path from v to
v′′ by the inductive hypothesis, and thus (c− e) + e = c is a path from v to v′.

10

Proposition 2.4. H0(K) is freely generated by the distinct homology classes [vi] of
vertices of K.

Proof. Note that because ∂0 : C0(K)→ 0, we have C0(K) = Z0(K) and thus it follows
that H0(K) = C0(K)/B0(K). From Proposition 2.3, there is a single homology class for
each connected component of K1. Thus, the group of homology classes H0(K) must be
generated by the distinct homology classes of the vertices of K.

Now, to show that H0(K) is freely generated by these classes. Let v1, . . . , vk be rep-
resentative vertices of each distinct homology class and suppose there exist integers λi
for 1 ≤ i ≤ k such that λ1v1 + · · · + λkvk = b for some b ∈ B0(K) (that is, the com-
bination of vi is equal to 0 in the homology group). We can write b = ∂1(c) for some
1-chain c ∈ C1(K). Thus λ1v1 + · · · + λkvk = ∂1(c). Write c = c1 + · · · + ck so that ci
only contains 1-simplexes in the connected component Ki corresponding to vertex vi,
so λ1v1 + · · · + λkvk = ∂1(c1) + · · · + ∂1(ck). Because ∂1(ci) will not contain any ver-
tices that are not in Ki, we may conclude that λivi = ∂1(ci) for all i. But this means
λivi ∈ B0(K), which can only be the case if λi = 0. Thus, having λ1v1 + · · ·+ λkvk = b
for some b ∈ B0(K) implies that λi = 0 for all i, so the distinct homology classes [vi] are
a basis for H0(K).

Using the structure theorem for finitely generated abelian groups, we can conclude
that H0(K) ' Zk, where k is the number of connected components of K1. Similarly,
the top-dimensional group Hn(K) is isomorphic to Zm, where m is the rank of Hn(K).
(This positive integer m corresponds to the number of distinct homological features of
dimension n on K, which may be loops, voids, etc.) These statements follow directly
from the result that H1(K) and Hn(K) are free abelian groups, which implies they con-
tain no torsion elements. Groups of dimension p with 1 < p < n are not necessarily
free abelian, and so could have torsion; this phenomenon could be interpreted as giving
some sense of the “twistedness” of the space, although we don’t explore that idea here.
Going forward, we will be concerned with finding the structure of each homology group
Hp(K), and possibly finding representative elements of these groups.

The next section deals with computations of homology groups. There, we will describe
some of the processes by which we can use the results of this section to analyze the
topological features of particular simplicial complexes, surfaces, and eventually of data.

3 Computation

In this section, we’ll examine two basic methods for computing the homology groups of a
simplicial complex. The first method uses the algebraic properties of the chain complex
to calculate the ranks of each homology group Hp(K). This problem amounts to doing
matrix reduction, and I give a small example to illustrate. The second method is an
incremental algorithm which depends only on the particular simplicial complex K. I
conclude the section by discussing the relative efficiency of each of these methods.

11

3.1 The Smith Normal Form Method

To this point, all definitions relating to homology have been formulated around finitely
generated abelian groups. In many cases, however, homological algebra is generalized
using R-modules rather than abelian groups. A left R-module over a ring R with unity
is an abelian group A with a function P : R×A→ A written P(r, a) = ra such that for
r, r′ ∈ R and a, a′ ∈ A,

1. (r + r′)a = ra+ r′a

2. (rr′)a = r(r′a)

3. r(a+ a′) = ra+ ra′

4. 1Ra = a [12]

The definitions for a right R-module and a module over a commutative ring R follow
similarly. Note that any abelian group is actually a Z-module, where we natrually
interpret na to be a added to itself n times. Thus, the construction of homology groups
in terms of abelian groups can equivalently be put in terms of Z-modules. In this paper,
I only consider modules over Z. However, some general results about R-modules, like the
ones that follow, can be applied to our situation, so I chose to introduce the definition
to make things clearer.

3.1.1 The Smith Normal Form and Presentations

Proposition 3.1. Let G be a free R-module with basis g1, . . . , gk and let H be another R-
module. Given h1, . . . hk ∈ H, there exists a unique module homomorphism ϕ : G → H
such that ϕ(gi) = hi for all 1 ≤ i ≤ k.

Proof. Define ϕ : G → H such that ϕ(gi) = hi. Extend ϕ linearly so that we have
ϕ(λigi) = λiϕ(gi) = λihi and further ϕ(λ1g1 + · · ·+ λkgk) = λ1h1 + λkhk for all λi ∈ R.
Because G is free, the λi of any element λ1g1 + · · ·+ λkgk ∈ G are unique. This implies
ϕ is well-defined, and thus is a homomorphism. This homomorphism is also unique.
Suppose ρ is another homomorphism satisfying the given conditions; then ρ = ϕ.

In our case, Proposition 3.1 implies that, because each Cp(K) is a free abelian group,
the boundary homomorphism ∂p is uniquely determined by the basis of Cp(K). These
bases are finite, so each homomorphism ∂p may be represented by a corresponding ma-
trix, where np is the rank of Cp(K). Recall that Zp(K) = ker ∂p and Bp(K) = img ∂p+1.
Thus, determining the structure (i.e., rank and basis elements) of these groups amounts
to calculating row and column spaces of the boundary matrices corresponding to each ∂p.

In general, this can be achieved by standard Gaussian elimination. However, recall
that in our case each ∂p corresponds to a matrix over a ring R (here, R = Z) rather than
a field; this means that the ususal row reduction algorithm is not necessarily sufficient to
reduce these matrices. In particular, without the condition that every entry in a matrix

12

is a unit, we are not always able to reach a pivot point in each row merely by scaling and
adding other rows. There is, however, a standard algorithm that reduces matrices over a
principal ideal domain (PID) to a canonical form. This form is called the Smith Normal
Form, and it has very nice algebraic properties connected to the structure theorem for
finitely generated R-modules. We exploit some of these properties in the computation
of simplicial homology groups. I first give a general sketch of the Smith Normal Form
as it relates to presentations of abelian groups, and then apply it to our situation with
an example.

Let R be a PID and G a finitely generated R-module with generators {g1, . . . , gn}.
We have a surjective module homomorphism ϕ : Rn → G by ϕ(r1, . . . , rn) =

∑
i = rigi.

If K = kerϕ, then the fundamental isomorphism theorem for modules gives G ' R/K.
We say that element of K are relations on G, in the sense that if (a1 . . . , an) ∈ K, then
ϕ(a1 . . . , an) =

∑n
i=1 aigi = 0. If K is finitely generated, we let {k1, . . . , km} be the

generators of K, where ki = (ai1, . . . , ain). We can naturally write the ki in an m × n
relation matrix A = (aij), so that ki comprises the ith row of A. (Note that doing this
fixes the orderings of the generating sets of G and K, so we treat these sets as ordered
henceforth.) The structure of this matrix A gives the structure of the R-module (re:
abelian group) G. We can always obtain a nice structure for A using the following
results.

Proposition 3.2. Let A be the relation matrix for a finitely generated R-module G
corresponding to K generated by {k1, . . . , km}. Suppose G is generated by {g1, . . . , gn}.
If P is an m×m invertible matrix and Q is an n× n invertible matrix with entries in
R, then:

1. PA is a relation matrix for G corresponding to a different generating set of K
{k′1, . . . , k′m}.

2. AQ is a relation matrix for G corresponding to a different generating set of G
{g′1, . . . , g′n}.

3. PAQ is a relation matrix for G correspoding to different generating sets of both K
and G.

I won’t prove the above statements here (for a full treatment, see [11]). However,
recall that left-multiplying A by an invertible square matrix corresponds to performing
row operations on A. Similarly, right-multiplying by an invertible square matrix is
tantamount to performing column operations on A. Essentially, Proposition 3.2 gives
us the ability to perform both row and column operations on a relation matrix while
preserving its relations. It is important to note that, just as row and column operations
on a linear transformation matrix correspond to changes of basis in the domain and
range spaces, respectively, row and column operations here change the generating sets
of K and G.

13

Proposition 3.3. Let A be a relation matrix for a finitely generated R-module G. If
there exist an invertible m×m matrix P and invertible n×n matrix Q over R such that

PAQ =


a1 0 · · ·
0 a2 0 · · ·
...

. . .

an
0 · · ·


then G ' R/a1 ⊕ · · · ⊕R/an.

Proof. From Proposition 3.2, PAQ is a relation matrix for the module G. The rows of
PAQ then generate the kernel K of the surjective module homomorphism ϕ : Rn →
G, where this homormorphism is the same as stated previously. By the Fundamental
Isomorphism Theorem for modules, we have that G ' R/K. Note that K also generates
the kernel of the surjective homormorphism γ : Rn → R/a1⊕· · ·⊕R/an by γ(r1 . . . rn) =
(r1 + a1, . . . , rn + an), so R/a1 ⊕ · · · ⊕ R/an ' R/K as well. This implies G ' R/a1 ⊕
· · · ⊕R/an.

A key connection with the Structure Theorem for finitely generated modules comes
from the next theorem.

Theorem 3.4. Let A be a matrix over a principal ideal domain R. Then there exist
invertible square matrices P and Q over R such that

PAQ =



a1
a2

. . .

am
0

. . .

0


where a1|a2| · · · |am. This matrix is called the Smith Normal Form matrix of A.

I won’t state the full proof of this here; the interested reader can see [13]. However,
the theorem rests on the following idea: in a PID any increasing chain of ideals (so that
the next ideal in the chain always contains the previous) eventually “stops.” As stated
in [1], if a set of ideals In is totally ordered under the inclusion

I1 ⊆ In ⊆ · · · ⊆ In ⊆ · · ·

then there exists an integer j so that Ij = Ij+1 = · · · . The algorithm to reduce matrices
to Smith Normal Form makes use of this fact by continuously taking the greatest common
divisor of entries in the matrix. This operation in a sense creates an increasing sequence

14

of ideals, which the above fact implies must cease at some point. Interested readers can
find a full treatment of the algorithm in [14]. For the purposes of the small examples
that follow, we won’t need the full power of the algorithm; the entries in the boundary
matrices we work with are in {−1, 0, 1}, and simply applying row and column operations
will suffice to reduce them to Smith Normal Form. Moreover, there are efficient packages
in Mathematica and R which are capable of reducing more complicated matrices to Smith
Normal Form which I use later. First, though, an important corollary.

Corollary 3.5. For any finitely generated R-module G where R is a PID there exist
a1, . . . am with a1|a2| · · · , |am and an integer k so that G ' R/a1 ⊕ · · · ⊕R/am ⊕Rk.

This is simply the Structure Theorem for finitely generated modules. For any R-
module G with R a PID we can construct a relation matrix A for G. Theorem 3.4
implies that this matrix is reducible to Smith Normal Form, and Proposition 3.3 then
implies that G is isomorphic to R/a1⊕ · · · ⊕R/am⊕ (R/0)k = R/a1⊕ · · · ⊕R/am⊕Rk,
where k is the number of 0 rows of the Smith Normal Form of A.

To see the connection of the Smith Normal Form to homology, recall first that the
finitely generated module (abelian group) Hp(K) is defined as Zp(K)/Bp(K). In this
module, elements of Bp(K) are effectively 0, so we can think of the matrix correspoding
to the boundary homomorphism ∂p+1 as a relation matrix for Hp(K). The nonzero ele-
ments of the Smith Normal Form of this matrix give the torsion elements of the direct
sum decomposition of Hp(K). However, because of the way Hp(K) is defined, we cannot
read off the rest of its decomposition from the reduced matrix of ∂p. The free part of
Hp(K) is given by rank(Zp(K))− rank(Bp(K)). Let np be the rank of the free module
Cp(K), lp be the rank of the matrix corresponding to ∂p. Then rank(Bp(K)) = lp+1 and
rank(Zp(K)) = np − lp. This gives

Hp(K) ' Znp−lp−lp+1 ⊕lp+1

i=1 Z/aiZ

where the ai are the nonzero entries of the Smith Normal Form matrix corresponding to
∂p+1.

In our case, homology groups will generally by free. Torsion components arise when
the simplicial complex K is non-orientable, a case I don’t consider in this paper.

Before moving on, note that in general boundary matrices for homology computations
are written as np−1 × np matrices. Continuing the analogy to the discussion on the
general Smith Normal Form, this means that in our case the relations now correspond
to columns of the boundary matrix while the generators correspond to rows. It is more
natural to express boundary matrices this way, and it does not effect the computations:
the transpose of an np−1×np matrix in SNF is the np×np−1 SNF matrix corresponding
to the same generators and relations, which is in line with the preceeding discussion.

15

3.1.2 A Constructed Example

To see this method in action, consider the hollow tetrahedron (a triangulation of the
2-sphere) described by the simplicial complex below.

v1v2

v0

v3

We set up the boundary matrix D2 corresponding to ∂2 as

D2 =

v0v1v2 v0v1v3 v0v2v3 v1v2v3
v0v1 1 −1 0 0
v0v2 −1 0 1 0
v0v3 0 1 −1 0
v1v2 1 0 0 −1
v1v3 0 −1 0 1
v2v3 0 0 1 −1

I’ve included the bases of C2 and C1 as the first row and column, respectively, of
D2. Doing this allows us to keep track of the changes of basis that result from row and
column operations on a matrix. In general, performing column operations on a matrix
changes the basis of the domain, while row operations give a change of basis for the
target space. In general, these changes of basis follow the same pattern as the row or
column operation. For instance, if ei and ej are basis elements of the domain and êi and
êj are basis elements of the range, we have the following:

1. Exchanging ri and rj (ci and cj) exchanges basis elements êi and êj (ei and ej)

2. Scaling ri (ci) by k scales the basis element êi (ei) to kêi (kei)

3. Adding kci to cj changes basis element cj to cj + kci

4. Adding kri to rj changes basis element êi to êi − kêj

Item 4 above is the only change of basis rule which requires an unnatrual step,
which step is probably familiar to linear algebra students. Using these formulas to track
changes of basis while reducing the boundary matrices is fairly straightforward, and it
allows us to write explicitly the bases of Zp(K) and Bp(K) (and Hp(K), if it is free). To
reduce D2, we can first perform column operations to clear a linearly dependent column,
and then move this column to the last spot:

16

→

v0v1v3 v0v2v3 v1v2v3 (v0v1v2 + v0v1v3 + v0v2v3 + v1v2v3)

v0v1 −1 0 0 0
v0v2 0 1 0 0
v0v3 1 −1 0 0
v1v2 0 0 −1 0
v1v3 −1 0 1 0
v2v3 0 1 −1 0

Now the first three columns of the matrix are certainly linearly independent, so
we may conclude that the final column gives a basis for ker ∂2. Thus, we can write
Z2 = 〈v0v1v2 + v0v1v3 + v0v2v3 + v1v2v3〉. Because we are working on a 2-dimensional
complex, we have H2 = Z2 (see Proposition 2.2) and thus H2 ' Z. This can be in-
tepreted as giving that the only 2-dimensional void in this complex is the one bounded
by the 2-cycle of all 2-dimensional faces of the tetrahedron.

To reduce the matrix to Smith Normal Form, we perform row operations and get:

→

v0v1v3 v0v2v3 v1v2v3 (v0v1v2 + v0v1v3 + v0v2v3 + v1v2v3)
v0v3 − v0v1 − v1v3 1 0 0 0
v0v2 − v0v3 + v2v3 0 1 0 0
v1v3 − v1v2 − v2v3 0 0 1 0

v0v3 0 0 0 0
v1v3 0 0 0 0
v2v3 0 0 0 0

From this reduced matrix, we similarly conclude that

B1 = 〈(v0v3 − v0v1 − v1v3), (v0v2 − v0v3 + v2v3), (v1v3 − v1v2 − v2v3)〉,

which is isomorphic to Z3. So, in fact, the first boundary group is generated by only
3 elements, which are the boundaries of the 2-simplexes v0v1v2, v0v2v3, and v1v2v3.
This makes geometric sense, as the fourth 2-simplex v0v1v2 shares exactly one edge
with each of the other 2-simplexes, so its boundary can be written as a combination
of the boundaries of these other 2-simplexes. We may also conclude that H1 has no
torsion elements, as the diagonal entries of the reduced matrix D2 are all 1, which gives
(Z/Z)3 = 0 as the torsion component of H1. To get the rest of H1, the Smith Normal
Form of D1 is needed. This matrix is

From this reduced matrix, we have B0 = 〈v1 − v0, v2 − v0, v3 − v0〉. We also have

Z1 = 〈(v0v3 − v0v1 − v1v3), (v0v2 − v0v3 + v2v3), (v1v3 − v1v2 − v2v3)〉.

This group is actually equal to B1, so we conclude that H1 = 0.

17

→

v1v2 v1v3 v2v3 (v0v3 − v0v1 − v1v3) (v0v2 − v0v3 + v2v3) (v1v3 − v1v2 − v2v3)

v1 − v0 1 0 0 0 0 0
v2 − v0 0 1 0 0 0 0
v3 − v0 0 0 1 0 0 0

v0 0 0 0 0 0 0

We can calculate H0 without using more matrices. Recall that for any simplicial com-
plex K, C0(K) = Z0(K). In our case, Z0 ' Z4 (for the 4 vertices of the complex) and
B0 = 〈v1 − v0, v2 − v0, v3 − v0〉 ' Z3. So H0 ' Z4/Z3 ' Z, which is as we would hope for
a simplicial complex with one connected component. In conclusion, from this analysis
we would write that the 0th Betti Number β0 is 1, β1 = 0, and β2 = 1.

It is not a coincidence that Z1 is generated by the same set as B1; in fact, I took
care in the process of reducing D1 to ensure that the basis of Z1 would contain the basis
of B1. I did this by making the column operations on D1 the inverses of the row opera-
tions on D2, a process outlined in [14]. This works in part because in D2, all entries in
a row sum to 0, while in D1 all entries in a column sum to 0, and we manipulate basis
elements of C1 by row and column operations in D2 and D1, respectively. This feature
of the reduced matrices is quite nice here, as it allows us to immediately conclude that
Z1 = B1, and thus H1 = 0. In general, we could write a basis for Hp by taking the basis
for Zp without the basis for Bp, which is a subset.

Note that manipulating boundary matrices so that Zp and Bp are described in terms
of the same basis elements is not always easy. While the Smith Normal Form of a ma-
trix A is unique, Theorem 3.4 does not state that the diagonalization matrices P and
Q are unique; thus, there are many different bases for Cp and Cp−1 corresponding to
the same Smith Normal Form of the boundary homomorphism matrix Dp. This is a
problem when working with programs like Mathematica, which is capable of reducing
matrices over PIDs to Smith Normal Form but does not track changes in basis during
the reduction process. Some packages in Mathematica will also give the matrices P and
Q, but even with these matrices it is not always possible to calculate the correct bases.
In large part this is due to the change of basis rule corresponding to adding rows to
each other (item 4 above). However, other efficient programs in C++ and R dedicated
to homology computations are capable of calculating Smith Normal Forms along with
appropriate bases; these will be discussed more in Section 4.

3.2 The Incremental Method

As stated before, the Smith Normal Form method relies heavily on the algebraic structure
of the chain complex. It also requires matrix reductions which may not be efficient given
the size of the complex. The following algorithm, due to Edelsbrunner and Delfinado,
requires little algebraic setup and is much easier to state than the Smith Normal Form
method. The algorithm assumes that we have a complex K which is totally filtered.

18

Definition A filtration of a simplicial complex K is a a sequence of nested simplicial
complexes

K1 ⊆ K2 ⊆ · · · ⊆ Kq = K.

A filtration is a total filtration if Ki+1 = Ki ∪ σi+1—that is, if each complex in the
filtration differs from the previous and next complex by a single simplex [2].

Because simplicial complexes can be described combinatorially, it is easy to put a
total filtration on a simplicial complex. In addition to assuming that K is totally fil-
tered the algorithm also requires that K is a subcomplex of a triangulation of S3, the
three-sphere. Essentially, this condition guarantees that the vertices of K lie in R3. The
reason for this restriction is that the algorithm runs by counting which p-simplexes are
a part of a p-cycle, and which aren’t. There are only general methods for determining
if a simplex is part of a cycle for 1-cycles and d − 1 cycles, where d is the dimension
of the simplicial complex. Thus, we are restricted to at most 3-dimensional complexes
while using this method. The incremental algorithm works by keeping a running tally
of the Betti numbers β0, β1, β2, and β3. It begins by setting β0 = β1 = β2 = β3 = 0. It
proceeds:

For each 0 ≤ i ≤ m, with k = dim σi, set bk = bk + 1 if σi is part of a k-cycle on
Ki. Otherwise, set bk−1 = bk−1 − 1.

The algorithm terminates once the process has been repeated for each i. The rea-
son that the algorithm works is fairly straightforward in low-dimensional cases. For
example, adding an edge between unconnected vertices would decrease β0 by 1, while
adding an edge between connected vertices (and thus creating a 1-cycle) would increase
β1 by 1. The difficulty in implementing the algorithm, as stated previously, comes in
determining which k-simplexes are part of k-cycles and which are not. By definition,
0-simplexes (vertices) are also 0-cycles, so adding a 0-simplex will always increase β0 by
1 (this is why we needn’t worry about the apparent β−1 that arises in the description
of the algorithm). Determining 1-cycles amounts to the problem of finding cycles on a
graph, which is well understood and for which there are a variety of methods. Finding
2-cycles turns out to be somewhat more challenging, and deserves a closer look.

We begin by defining Ki = K/Ki. We then create a graph Gi as follows: for each
3-simplex in Ki, create a vertex in Gi; if two 3-simplexes in Ki share a 2-dimensional
face, connect their corresponding vertices in Gi by an edge. Then a 2-simplex σi is part
of a 2-cycle if Gi−1 has one less connected component than Gi. Otherwise, σi is not part
of a 2-cycle. Thus, the problem of detecting 2-cycles can be reduced to a graph theoretic
problem which is well-understood.

To see how 3-simplexes are counted in the algorithm, recall that we require K to be
a subcomplex of a triangulation of S3. Thus, if β3 = 1, K must itself be a triangula-
tion of S3, since S3 is a single 3-cycle. (We know further that β3 is not greater than

19

1 because K is specified as a subcomplex of a triangulation of S3.) This concept is
more easily visualized in lower dimensional cases. For example, if we take the hollow
tetrahedron to be a triangulation of S2, we see that the faces of the tetrahedron, which
are 2-simplexes and thus triangulations of S1, bound S2. If K is embeddable in R3,
then it has no 3-cycles (which do not embed in R3) and thus β3 = 0. In terms of
the algorithm, then, the addition of a 3-simplex always decreases β2 by 1 unless K is a
triangulation of S3, in which case the addition of the final 3-simplex σm increases β3 by 1.

The following table demonstrates how the algorithm runs when applied to the tetra-
hedron from the earlier example. Each column represents the subcomplex Ki obtained
by adding the simplex σi to Ki−1 and the rows give the Betti numbers updated at that
subcomplex. Notice how adding a 1-simplex between vertices decreases β0 by 1, adding
a 2-simplex decreases β1 by 1, and adding the final 2-simplex v1v2v3 increases β2 by 1:

v0 v1 v2 v3 v0v1 v0v2 v0v3 v1v2 v1v3 v2v3 v0v1v2 v0v1v3 v0v2v3 v1v2v3
β0 1 2 3 4 3 2 1 1 1 1 1 1 1 1
β1 0 0 0 0 0 0 0 1 2 3 2 1 0 0
β2 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3.3 Efficiency

In practice, both of the methods described above are commonly implemented in ho-
mology computations. Once the boundary matrices are constructed, the Smith Normal
Form method amounts to Gaussian Elimination and requires O(m3) elementary row op-
erations, where m is the number of simplices in the complex K [14]. It should be noted
that the sizes of simplicial complexes, and thus the sizes of the boundary matrices, can
become very large very quickly. For instance, even relatively simple examples such as
the simplicial torus, which has twenty-seven 1-simplexes, eighteen 2-simplexes, and thus
a 27 × 18 boundary matrix D2, are difficult to manage. For complexes built on thou-
sands of data points, pure matrix reduction is often infeasible. To this end, much of the
current research in computational homology is being directed toward efficient reductions
of matrices to Smith Normal Form [6].

The incremental algorithm can actually compute the Betti numbers of K in O(m) given
certain restrictions on how the complex is stored [5]. However, the incremental algorithm
as I’ve described it here does not have the ability to compute explicit bases for Bp(K),
Zp(K), and Hp(K), which are very useful to have in applications.

4 Persistent Homology

To this point, we have discussed how to compute the homology of a given simplicial
complex. In topological data analysis, however, we generally begin with a set of point-

20

cloud data X = {x1, x2, . . . , xm} in Rn without any simplicial structure built on it. We
assume that the data X has been sampled from an underlying manifold P . Our hope
is that by constructing a simplicial complex on X that closely approximates P and
then computing its homology, we gain some insight into the the shape of P . In this
section, I discuss methods for constructing such complexes, a process which requires
choices of parameters. I then discuss the notion of persistent homology, which is a
way of dampening the effects of (possibly non-optimal) parameter choices on homology
computations of a set of point-cloud data X.

4.1 Constructing Complexes & Filtrations

There are many types of simplicial complexes defined for a set of point-cloud data X,
most of which are constructed based on some function of the distances between vertices
in X. These complexes can vary greatly in efficiency, both in the time required to
construct them and the space needed to store them. For a good introduction to different
types of complexes on point-cloud data, see [3]. In this paper, we use the simplest such
complex: the Vietoris-Rips Complex.

Definition Let X = {x1, x2, · · · , xm} and d be a metric such that (X, d) is a metric
space. The Vietoris-Rips Complex on X with the parameter ε, denoted V R(X, ε), is the
simplicial complex whose vertex set is X where a subset σ of k + 1 vertices in X spans
a k-simplex if and only if d(xi, xj) ≤ ε for all xi, xj ∈ σ.

In other words, the Vietoris-Rips complex constructs a k-simplex on any set of k+ 1
vertices which have pairwise distances less than or equal to ε. From this idea, it is easy
to see that if ε < ε′, then we have the inclusion V R(X, ε) ⊆ V R(X, ε′), as increasing
the value of the parameter ε in a Vietoris-Rips complex can add new simplexes but will
never remove existing simplexes. In this manner we can build a filtration of complexes
on X. For α ∈ R and k = 0, 1, 2, . . . , q, let Kk = V R(X, ε + kα); then a filtration of
simplicial complexes on the vertex set X is given by

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kq

We see that for small k, the complex Kk will be “finer” than complexes associated to
large k. In this sense, we get images of the simplicial complex approximating the un-
derlying space P of X at different resolutions. Note that in practice, if X ⊂ Rn, we
restrict the maximum dimension of simplexes included in V R(X, ε) to n; without this
restriction, the complex could include simplexes with dimension greater than n which
do not embed in Rn. Thus, we assume that P is at most n-dimensional [9].

The Vietoris-Rips Complex is indicative of methods for constructing simplicial complexes
on a data set that depends explicitly on pairwise distances between points. However, we
can also construct filtrations without calculating these distances, which becomes com-
putationally costly as the number of data points increases. Consider a set A ⊂ Rm such
that X ⊂ A and a real-valued function f : A → R. The sublevel set of f corresponding

21

to t, denoted f−1(−∞, t], is the set {x ∈ A : f(x) ≤ t}. Similarly, the superlevel set
corresponding to t, written f−1[t,∞) is the set {x ∈ A : f(x) ≥ t}. A complex can then
be constructed on the points of X in each sublevel and superlevel set. Increasing (in the
case of sublevel sets) or decreasing (in the case of superlevel sets) the parameter t then
creates a filtration of simplicial complexes. This method relies heavily on Morse Theory,
which deals generally with real-valued functions on manifolds. For a more thorough
grounding in Morse Theory as it relates to simplicial homology, see [7, pp. 140− 167].

Variations on the distance function are common choices for f in this setting. For in-
stance, given X = {x1, x2, . . . , xm}, the distance function for y ∈ A ∆(y) is defined

∆(y) = infxi∈X ||y − x||m

where ||y − x||m is the usual Euclidean distance between two points in Rm. Note that
when the metric d in the Vietoris-Rips Complex is the usual Euclidean metric, these two
constructions are quite similar. Other functions commonly used in this context are the
distance to measure function (DTM), the k-nearest neighbor density estimator (kNN),
and the Gaussian kernel density estimator (KDE). While these functions vary a great
deal in behavior, they all give some sense of where points in X are densely clustered and
where they are not, a feature which makes this method of filtration helpful for lessening
the effects of data points which may represent statistical noise.

4.2 Persistence

Once we construct a filtration, we can calculate its persistent homology. In the filtration

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kq

for any Ki,Kj with i < j the inclusion map of Ki into Kj induces a homomorphism
Ip : Hp(Ki) → Hp(Kj). This is true generally for continuous maps between topological
spaces due to the following proposition.

Proposition 4.1. A continuous map f from a simplicial complex K to another sim-
plicial complex K ′ induces a homomorphism between the pth homology groups of the
complexes.

Proof. Let f : K → K ′ be a map between simplicial complexes. To define an induced
homomorphism f∗ between the p-th homology groups of K and K ′, we begin by letting
f∗(σp) = f(σp). Extending this linearly to p-chains of Cp(K), we define f∗ so that
f∗(Σiλiσ

i
p) = Σiλif∗(σ

i
p). Note that f∗∂p = ∂pf∗: using the definition of the boundary

operator, we see

f∗(∂p(σp)) =f∗(Σi(−1)i(v0, . . . , v̂i, . . . , vp))

=Σi(−1)if∗((v0, . . . , v̂i, . . . , vp))

=∂p(f∗(σp))

22

In particular, this means that f∗ takes cycles in K to cycles in K ′, as for some p-cycle ζ ∈
K, f∗(∂p(ζ)) = f∗(0) = 0 = ∂p(f∗(ζ)). Because the composition of consecutive boundary
homomorphisms is the 0 homomorphism, we can conclude that f∗ maps boundaries in K
to boundaries in K ′ by a similar argument. So f∗ is a homomorphism between the p-th
boundary and cycle groups of K and K ′ and thus between Hp(K) and Hp(K

′) [11].

The induced homomorphisms between homology groups of a filtration then give us
a sequence of homology groups

Hp(K0)→ Hp(K1)→ · · · → Hp(Kq)

linked by the induced homomorphism between each Hp(Ki), Hp(Ki+1). As we move up
the filtration, we may gain or lose homology classes in the corresponding sequence of
homology groups. For example, if K corresponds to a complex consisting of two vertices
not connected by an edge and K ′ is equal to K with an edge added between the ver-
tices, we lose one homology class under the induced homomorphism that takes H0(K)
to H0(K

′), as K ′ has only one connected component while K has two (see Proposition
2.4)

From the sequence above, we define persistent homology groups.

Definition Given a filtration of a simplicial complex as above, for 0 ≤ i ≤ j ≤ q the j-th
persistent p-th homology group of Ki is the image of Hp(Ki) under the homomorphism

Ii,j∗ induced by the inclusion of Ki in Kj , denoted H i,j
p = img Ii,jp [7].

We can similarly define the corresponding Betti Number βi,jp as the rank of H i,j
p .

Computing persistent Betti Numbers involves matrix reductions similar to those dis-
played in Section 3. For more on computations of persistent homology groups, see [7]
and [14].

Let γ be a homology class of Hp(Ki). We say that γ is born at Ki if γ /∈ img Ii−1,ip , that
is, if γ is not in the image of the induced homomorphism taking Hp(Ki−1) to Hp(Ki).

If γ is born at Ki dies entering Kj if Ii,j−1p (γ) /∈ img Ii−1,j−1p but Ii,jp (γ) ∈ img Ii−1,jp .
The following diagram from [7] helps to illustrate this definition:

If γ dies entering Kj , it merges with an older homology class; otherwise, γ could

not be in the image of Ii−1,jp . If γ is born at Ki and dies entering Kj , we say that

23

γ has persistence j − i. This information is much more naturally encoded in the pth

persistence diagram of the filtration. Persistence diagrams are multisets of points in the
first quadrant of the plane; specifically, a homology class that is born at Ki and dies
entering Kj is represented in the diagram by the point (i, j). Thus, because we assume
j ≥ i, all points in the persistence diagram lie on or above the diagonal i = j line.
A point’s height off of the diagonal is the persistence of the corresponding homology
class. In practice, we can combine diagrams of various dimensions into a single diagram
by assigning a different symbol to each dimension of homological feature present in the
filtration, a process that is illustrated in the next section.

4.2.1 Persistent Homology Calculations with R

The R package TDA is based on the efficient C++ libraries GUDHI, Dionysus, and
PHAT, all of which were designed to compute persistent homology of point-cloud data
as well as perform other types of topological data analysis. Specifically, TDA adapts
features of these libraries to construct various types of simplicial filtrations on data,
compute the persistent homology of these filtrations, and print the resulting persistence
diagrams. Two experiments with sampled data are outlined below to display some of
these capabilities.

In the first experiment, 1200 points were sampled uniformly from two intersecting circles
using TDA’s sphereUnif function. Additionally, “noise” points were included inside and
around the circles. Then, using the gridDiag function, a filtration was constructed using
the superlevel sets of the kernel density estimator function defined on a grid containing
the sample. The persistence diagram of this filtration, as well as a plot of the original
sample, is shown in the figure below.

24

Points in the persistence diagram represent connected components, while red trian-
gles represent loops. The persistence diagram shows strong evidence for the existence of
the three distinct loops present in the plot of the data. However, we also see a strong
indication of a second distinct connected component, which is not present in the data.
This may be the result of a particular parameter choice in constructing the grid and
defining the KDE function, or it may be a peculiarity of this particular sample. Overall,
however, TDA returns the homology of the data more or less as we would hope. Note
that the clustering of points within the interval [0.04, 0.06] on the birth axis is most
likely a result of the superlevel set method of filtration; discrete or isolated points have
relatively low values in the KDE function, and thus would appear toward the middle or
end of a superlevel set filtration.

In the second experiment, 1200 points were sampled uniformly from the S3, again us-
ing sphereUnif. Again, gridDiag constructed a filtration, this time using sublevel sets
distance function described previously. The resulting persistence diagram is below.

We see evidence for a single connected component and a single 3-void, which is ex-
actly the homology of S3.

Generally, TDA handles small-scale calculations such as these very well. However, in my
experiments with TDA I’ve found that it can be quite sensitive to scaling and round-
ing of data, which in theory should not affect the outcomes of homology computations.
TDA also slows down substantially as the number of data points in a sample grows.
If anything, this speaks to the fact that most of the difficulty in computing persistent

25

homology comes in the initial step of creating a filtration of simplicial complexes on the
data. Doing this efficiently is generally difficult, and it continues to be a broad area of
research. In R, the sub-and-superlevel methods of filtration are the most efficient method
available (the alternative is the Vietoris-Rips complex, which for a complex consisting
of n simplexes requires the calculation of an n× n distance matrix).

For larger-scale problems, working directly with the C++ code from GUDHI, Diony-
sus, or PHAT may be preferable, as it offers the user more control over parameters and
over the method utilized to construct a simplicial filtration. Another similarly designed
software called JavaPlex is well-documented and also has bindings for use in Matlab.
These libraries are updated frequently, and together provide a wide range of tools for
topological data analysis to average users.

5 Conclusions

This paper has laid out the basic theory of simplicial persistent homology and has pro-
vided some basic methods for applying this theory to data analysis problems. However,
the breadth of tools available for topological data analysis in general, and persistent
homology in particular, spans far beyond the scope of this paper. Among these tools are
statistical frameworks for interpreting persistence diagrams. For example, [8] constructs
confidence sets for persistence diagrams, which separate significant homological features
from insignifcant ones using a generalization of confidence intervals, while [4] discusses
efficient methods of subsampling to compute persistent homology. The work from [8] has
been implemented in the package TDA, which is able to compute (1−α) confidence sets
for the persistent homology of a given data set and include a corresponding confidence
band on the persistence diagram, making interpretation much simpler.

While strides are being made in a statisticial direction, the majority of the difficulty
in applying persistent homology to data still comes in efficiently constructing simplicial
filtrations. (A good summary of available methods of filtration is given in [3]). A large
amount of research is still being devoted to finding filtrations that minimize computa-
tional costs while providing accurate approximations of the desired underlying space.
The Vietoris-Rips complex gives a good illustration of this trade-off: it genearlly gives
accurate approximations, but at such high costs so as to make it infeasible for most
real-world situations (as stated previously, computing pairwise distances between n sim-
plexes results in an n × n distance matrix). This area of study falls at the intersection
of topology and computer science, making it a new an interesting topic for research in
the years to come.

Most of all, though, more actual examples of topological analyses of data are needed
in order for the field to advance. The most commonly cited example of persistent ho-
mology applied to data, outlined in [7], is a multi-year study of data taken from black
and white photographs. The photographs were broken into 3 × 3 grids of pixels, with

26

each pixel containing a grayscale value representing the shade of that pixel in the image.
These grids were converted to vectors in R9, which were then analyzed using persistent
homology. While the mathematical analysis of the data is not particularly difficult to
follow, the resulting intepretations are. This problem does not seem to be specific to this
study, but rather is endemic of shape analyses of high-dimensional data in general. How
do we interpret any kind of statement about shape in such an unfamiliar environment
as 9-dimensional space? Questions like these lead Gunnar Carlsson to warn in [3] that
a qualitative understanding of the type of data being studied must be highly developed
before any kind of advanced analysis can take place. Overall, for persistent homology
analyses to be applied succesfully, we need to be able to think creatively and unconven-
tionally about what certain features of data might be telling us.

As the field grows, more examples of succesful analyses using persistent homology will
undoubtedly arise, which in turn will open new areas for expansion. Until then, research
on the theoretical side can continue to advance.

27

References

[1] Anderson, M., & Feil, T. (2014). A first course in abstract algebra: rings, groups,
and fields. CRC Press.

[2] Basener, W. F. (2006). Topology and Its Applications. A Wiley Series of Texts, Mono-
graphs and Tracts.

[3] Carlsson, G. (2009). Topology and Data. Bulletin of the American Mathematical
Society, 46(2), 255-308.

[4] Chazal, F., Fasy, B. T., Lecci, F., Michel, B., Rinaldo, A., & Wasserman, L. (2014).
Subsampling methods for persistent homology. arXiv preprint arXiv:1406.1901.

[5] Delfinado, C. J. A., & Edelsbrunner, H. (1995). An incremental sprangeltop algo-
rithm for Betti numbers of simplicial complexes on the 3-sphere. Computer Aided
Geometric Design, 12(7), 771-784.

[6] Dumas, J. G., Heckenbach, F., Saunders, D., & Welker, V. (2003). Computing simpli-
cial homology based on efficient Smith normal form algorithms. In Algebra, Geometry
and Software Systems (pp. 177-206). Springer Berlin Heidelberg.

[7] Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction.
American Mathematical Soc..

[8] Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., & Singh, A.
(2014). Confidence sets for persistence diagrams. The Annals of Statistics, 42(6), 2301-
2339.

[9] Fasy, B. T., Kim, J., Lecci, F., & Maria, C. (2014). Introduction to the R package
TDA. arXiv preprint arXiv:1411.1830.

[10] Giblin, P. (2013). Graphs, surfaces and homology: An introduction to algebraic
topology. Springer Science & Business Media.

[11] Hatcher, A. Algebraic topology. 2002. Cambridge UP, Cambridge.

[12] MacLane, S. (2012). Homology. Springer Science & Business Media.

[13] Morandi, P. J. (2005). The Smith Normal Form of a Matrix. Unpublished.

[14] Zomorodian, A. J. (2005). Topology for computing (Vol. 16). Cambridge University
Press.

28

