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Abstract

Persistent data structures allow large and complex data structures
to be copied and manipulated inexpensively. The persistent way
of representing data offers opportunities to more elegantly and
more efficiently implement certain algorithms and programming
patterns. Few persistent data structure libraries, however, are de-
signed with an emphasis on speed and performance compared to
their mutable cousins. We describe and present a C library for a
persistent graph data structure, which uses array compression tech-
niques and balanced wide-fanout tries to create a structure that en-
ables persistence without sacrificing performance. Compared to a
competitive C++ mutable graph library, we consistently achieve 30-
40% slower random read performance using up to 30% fewer bytes
in memory, with the benefit of highly space-efficient persistence.
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1. Introduction

Graphs are one of the basic data structures that we use to represent
a wide variety of data. A graph defines some number of nodes and
edges, which connect nodes together. Graphs have wide-ranging
applications, from computational models to databases, networking
and pathfinding. To get information about nodes or edges in a graph
within a program we typically use an array or some manner of key-
value store. A graph node’s value is usually a list of adjacent nodes,
which are either predecessors to that node or successors. The value
associated with an edge is typically just two identifiers for its pre-
decessor and successor. This paper explores storing graphs as a
persistent data structure. We will give a background on persistent
data structures, tries, and array compression techniques from the
Hash Array Mapped Trie, and then propose a structure for persis-
tent graphs using those concepts that we will see has strong per-
formance characteristics for various operations and highly efficient
use of memory.

2. Persistence

‘What does it mean for data to be stored in a persistent way? A piece
of data is persistent if it does not change. Consider a linked list in
memory, Jeff:
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There are a number of ways to make an edit to this structure. If
we wanted to change the frontal value of Jeff from 1 to 5, and we
do not need the original any longer, we may simply change it:

[geft f—{8] —{2] [—={3] |

If we want this notion of persistence to apply to Jeff, however,
Jeff cannot change. Instead, we need to come up with a way to
change the front value of Jeff to 5 while keeping the original version
of Jeff with 1 at the front intact. Enter “New Jeff™:

Now ][5 ]

Jeff
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Jeff, we notice, has not changed. New Jeff preserves the parts
of Jeff’s structure that they have in common. Persistent data struc-
tures, then, refer to structures like Jeff and New Jeff, which, after
being created, will always remain the same.

2.1 Why?

In a broad sense, persistent data structures offer a way to do quick,
cheap analysis on multiple versions of a large data structure. In a
mutable system, analyzing multiple versions of a data structure typ-
ically involves expensive wholesale copying of the structure, with
no easy way to reverse changes that have been performed. With
persistent data structures, copies of a structure can be very small
in size relative to the entire structure. Reverting changes to a per-
sistent structure is simple, since the earlier version can still be ac-
cessed and the new version easily deleted, as in the above exam-
ple. In some kind of GUI application such as Photoshop, or a 3D
modeling program, this persistent model can reduce the complexity
associated with implementing an “undo” functionality, since such
changes can be made inexpensively and simply to even a compli-
cated structure that might define a 3D model or other construc-
tion. Further, if systems that perform analysis on large data sets
are concerned with change to that data set over time, persistent
data structures can be a powerful tool both in terms of efficiency,
both in terms of memory and write performance. Persistent data
structures are also guaranteed to be thread-safe, since operations
on persistent structures will never write to the parts of their struc-
ture that they share with other versions. This characteristic makes
persistent data structures more easily and safely manipulated by
multiple processes and threads simultaneously. The preponderance
of consumer-level multi-core processors makes these performance
gains more generally available.




2.2 Trees and Reference Counting

Let us now consider an example using a simple binary search tree,
where we have D, and a separate copy D’:

D D’
B F
/ct& 2 ref ct: 2
A C E

ref_ct: 1 ref ct: 1 ref_ct: 1

For us to be able to make edits to D’ without changing D,
we must introduce the concept of reference counting. A reference
count keeps track of how many objects point to a given node. Here,
since B and F have reference counts greater than one, we know that
we can’t modify those nodes without changing another version of
the data structure. Therefore, when we insert G into D’, we will
copy any nodes that have reference counts greater than one and
adjust the tree as necessary:

D D’
B F F
A C E G
ref ct: 1 ref ct: 1 ref ct: 2 ref ct: 1

The same concept applies in deleting or modifying nodes.

2.3 Tries

The trie [tia1] is a manner of key-value store which takes the form
of a tree:

b
<val>
ba be
<val> <val>
g 1 V4 Q
bat bar bet ben
<val> <val> <val> <val>

In a tree data structure, we find values by comparing them to
values stored at higher levels and deciding what branch to descend
into. In a trie, values are looked up by keys, which define their
unique location in the trie. In this figure, the value associated
with “bet” is defined by its unique key: “b-e-t”. This system
enables fast lookup proportional to the length of the key. Our
structure will bear significant resemblance to this trie, but with
some modifications.

2.4 Array Compression

Later, when we introduce our data structure, we will need to repre-
sent a sparse array using the least amount of memory possible. We
will discuss here the array compression scheme that we use, which
is borrowed from Phil Bagwell’s hash array mapped trie:

011011101010 = ‘eastsignificant bit
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We here use a bitmap to represent which spots in the sparse
array (indices 2, 4, 6, 7, 8, 10, and 11) are currently occupied
by values. Let’s imagine we want to check what’s at the eighth
index of the hypothetical array. To verify whether this spot is
empty, we will first bitwise AND together the bitmap and a bitmask
solely composed of zeroes, with a one occupying the eighth least
significant digit. Since the bitmap contains a zero at that digit, the
result of that arithmetic will be zero. That result confirms that there
is a free spot in the array at that index. Now, if we want to insert
a new value into our compressed array, we need to find out what
spot in the compressed array we must insert into. To do so, we will
bitwise AND together the bitmap and a number whose eight least
significant bits are ones.

011011101010 «— value bitmap

lookup bitmask
P

000011111111 AND
0000111010105

e

l result of population count instruction

8th index
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New array spot

The number of ones in the result represents how many spots are
occupied in the compressed array prior to the one we want to insert
into (or, in other words, the array index of our desired spot). We will
now use the population count instruction, which is built in to most



modern processor architectures and returns the number of ones in a
binary number, to derive the index we need in our dense array, five.

Using this scheme we conserve the memory that would nor-
mally be occupied by empty array slots. This conservation is par-
ticularly important if we are updating this array persistently, since
creating copies of empty array slots would introduce large amounts
of waste.

3. Wide-fanout key-mapped trie

Armed with a knowledge of persistence, tries, array compression,
we may now introduce the structure that our library employs for
persistent graph storage. Our structure has the following character-
istics:

e Each value is given a unique numeric key either during or prior
to insertion according to the current balance of the trie, which
defines its position in the trie.

e Valus stored only in leaves.

¢ Wide fanout, to minimize trie depth and key length.

e Array compression, with bitmaps to indicate non-null positions.
e Values chunked together with their parent nodes.

e Nodes without children combined with their parents, to reduce
the number of pointers.

In our trie example from earlier, the branching factor was defined
alphabetically; at each node, the trie had 26 options on branches
to pursue. Here, we can define the branching factor of our trie by
defining how many digits of the numeric key we are assigning
at each level. To understand how this works, let us consider a
hypothetical insert with keys of length 8, considering two bits at
a time. Since we are considering two bits of the key at a time in
determining which branch of the trie to pursue, our fanout is four:

Root
11 10 01 00 \
000000711 00000001 00000000
<Value> <Value> <Value>

Here, we see that there is a free spot in the root at 10. We will
insert the value here.

11 10 01 00\
000000711 00000010 00000001 00000000
<Value> <Value> <Value> <Value>

For our next insert, there are no free spots for values, so we will
create a new child:

11 10 01 00\
00000011 00000010 00000001 Interstitial
<Value> <Value> <Value> Node
RO
" o9 o1
00000100 00000000
<Value> <Value>

When we look up one of our nodes by the key, the library will
examine the first two bits of the key, 10. Further, since all values
are stored in the leaves of the trie, we will actually store the bolded
values in arrays at the tail end of each parent node. Hence, our
current trie will actually appear like this in memory:

bitmaps: Child Pointers Values

c:0001 olola 00000011 | 00000010 | 00000001
vi1ll1l0 [~ |/ \ I\‘<Value> <Value> | <Value>
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BT, SN
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bitmaps: Child Pointers Values
c: 0000 o ala 00000100 | 00000000
v:0011 |- ‘,F' AN <Value> | <Value>
11 10 01 00

Our pointers to children are stored in arrays, as well as values
that occupy spots directly beneath nodes. For a fan-out of four, the
empty spots in these arrays will not waste very much memory. If we
are examining five bits of the key at a time, however, the branching
factor of our trie is 32. Representing sparse arrays of length 32 in
memory and copying them persistently will waste massive amounts
of memory if the arrays are mostly empty. Hence, we will use
our array compression scheme from earlier to represent our arrays.
Here is a complete picture of a hypothetical node in our structure,
with sparse arrays and bitmaps of size 12.
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3.1 Trie Balancing

To ensure good asymptotics when looking up values at random in
our graph, as might happen during a traversal of the graph, we want
to keep our trie as balanced as possible. Balance,” in the context
of tree-like structures, means that values are equally distributed in
branches. If the trie is uniformly deep, we have a uniform lookup
speed for all values. For our trie to retain balance, we have to create
keys for new values that place them in the appropriately least-
populated section of the trie. We employ a simple scheme which
could be optimized for greater performance. In this scheme, a node
stores the total size of everything beneath it in the trie structure.
Until a node is found with a free spot for a value, the library
descends into the least populated branch of the trie by checking the
total sizes of all available children. After each discrete insertion or
deletion from our trie, the total size value of the parent is adjusted
in accordance with the difference between the child’s old size and
the size after insertion or deletion. In this figure, a value of size 5
is inserted into the right-most branch of the trie, which has been
found to be least populated.

Ip_child:

tot_size: tot_size:
45 4245

<Value>
size: 5

subtrees

After the insert is performed, the total size value for the right
child is adjusted.

Ip_child:

tot_size:
45

tot_size:
47

<Value>
size: 5

At the next insertion, the library will instead find the left child to
be least populated, and will descend into that branch for insertion.

3.2 Buffers

With our nicely packed arrays, every time we wish to insert into our
trie structure, we need to resize the array of the node we insert into.
Since structs in C are not dynamically sized, the addition of a new

value necessitates re-allocating the entire struct instance to com-
pensate for the newly resized array. This results in huge amounts of
churning memory, which means very expensive writes. To reduce
the complexity and memory churn of the average write, we intro-
duce n-sized buffers at the end of our dense arrays. These buffers,
which may be resized by the application, represent free space in
which a node may store n values or children before the struct in-
stance will be full and in need of reallocation. This significantly
decreases the amount of memory being allocated and freed on each
insert on average. The exact effects of the various sizes of these
buffers are detailed in our Results section. Revisiting our diagram
from the previous section, we can see how the buffers behave in our
implementation:

/V0|1|2|3|4|5|6|7|8|9|10|11

Child Pointers Values

bitmaps:
v:i011011101010
c:100010011\00101234560123456

R 24

| buffer spaces for new children or values |
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3.3 Lazy Copying

Next we will discuss the exact flavor of persistence that our library
implements, “lazy copying.” Using lazy copying, an update to a
trie structure n will, by default, be performed in place, without
preserving the previous version. Creating a copy of n causes a copy
of n, n’, to be created, and increments the reference counts of its
children. Then, if an update to to either n or n’ changes a node
with a reference count greater than one, that node is first copied
to prevent other versions of the structure from being modified. A
high-level example of how this works is seen in the earlier Trees
and Reference Counting section.

Chunking together values with their parents will lead to redun-
dancy under lazy copying, we notice. If an update to a branch of
the trie requires that branch to be copied, and the nodes in that
branch are full of values, we will make many redundant copies of
the values in that branch. We consider this an acceptable tradeoff
considering the advantages in read-performance achieved through
chunking. Chunking reduces the number of pointers pursued for
each lookup by one. Since our trie has max depth of five under a
32-fanout configuration, this difference is significant, though we do
not provide results here that compare chunk and no-chunk config-
urations.

4. Results

We include tests that show our memory usage and write perfor-
mance for persistent updates under different configurations of the
library. Next, we include a comparison of write performance and
memory footprint for different values of VALUE_BUFFER_SIZE and
CHILD_BUFFER_SIZE. Lastly, for the time complexities of a ran-
dom traversal of a randomly generated Erdos-Renyi graph, we
compare to the Boost Graph Library included in C++.
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Our results here may seem unintuitive; for lower fanouts, our As predicted, with shallower trees, our reads are faster. Com-
tries are deeper on average. Hence, a persistent insert would require pared to the Boost graph library, we are between 30 and 50%
more copies to insert at the bottom of the trie. However, since our slower.

values are chunked together with parent nodes, every copy of a
node in the 64-fanout trie copies more values. Thus, our 64-fanout
configuration uses more memory for persistent updates.

16 T T T T
— Boost
14 Fan-out of 16
2.5 ; ; : ' . : — Fan-out of 32
—  Fan-out of 16 12} —  Fan-out of 64
— Fan-out of 32 "
2pl| — Fan-out of 64 ] g 10
o Ke)
[}
g g
—_ £
€ £
c
s 15¢ 1 Y 6
7 &
g 4
w© Lof 1
'é 2
0 L L L 1
05+ . 0 10000 20000 30000 40000 50000
Number of nodes in Erdos-Renyi graph (5 times as many edges as nodes)
0.

O L L L L L L
0 100000 200000 300000 400000 500000 600000 700000
Number of persistent inserts

For a single graph, our implementation is usually more memory-
efficient.
The following two graphs compare write performance and
Write time increases in proportion to the amount of memory memory usage for a branching factor of 32, with and without a
copied. single value buffer spot:
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We anticipated that our implementation of the value buffers at
the end of arrays would substantially increase write performance
while having a minimal impact on memory footprint. We suspect
that with a better implementation, we can achieve better perfor-
mance. We saw a write performance increase only with a value-
buffer of size one, in the 32-fanout configuration. All other buffer
configurations saw a negative impact on write performance as well
as memory footprint. Further research can shed more light on how
a more solid implementation of these buffers can improve write
performance while having a minimal impact on memory footprint.
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