

Senior Capstone

GlobeHub: An Interactive News Site
Project Located at: https://github.com/TheWizardOfTime , (@TheWizardOfTime)

 Submitted to Adviser: Prof. Steven Janke
 By Gianluca Nicolas Paterson
 For Senior Thesis Spring 2016 April 8th

https://github.com/TheWizardOfTime

Table of Contents:

1. Introduction

2. Specifications, Problems and Planning

3. Application Development

4. Future of the Project

5. Conclusions

Introduction

The end goal of my senior capstone project was to build a web application

that would deliver users with up-to-date, i.e. relevant news about a particular

country. The finished product was to be comprehensive in its design and

comprehensive for users, by providing a visually stimulating and appropriate

context through which news consumption could be associated i.e. you know where

your news is coming from. The idea for this capstone project stemmed from a

personal inability to fully grasp the association between news and its source.

JavaScript, HTML, and CSS languages were used for frontend development and the

Node.js Framework, coupled with Express.js and mongodb, for the backend

development.

Given my non-existent experience with any of languages or tools mentioned

above, I was concerned throughout development on how I would effectively utilize

all of these different languages. HTML and CSS seemed relatively straightforward,

and JavaScript was described, “in a nutshell, [as] a dynamic scripting language

supporting prototype based object construction, and the basic syntax is

2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model#Class-Based_vs._Prototype-Based_Languages

intentionally similar to both Java and C++ to reduce the number of new concepts

required to learn the language.” I formed my understanding gradually about each

language, and this made figuring out each individual problem all the more

straightforward throughout the development process as I would learn how to deal

with JavaScript, application design, and web development.

In the proceeding pages I will provide a detailed and concise explanation of

the design, implementation, development of my project, by addressing the main

problems I had to solve to achieve the current state of the application. In addition, I

will attempt to explain the resources and tools I have used to develop this

application work. That being said, I would like to provide a disclaimer of sorts for

anyone who is interested. My experience insofar has only touched the tip of the

web-development iceberg, so to speak. During development, I was incredibly

ignorant of the available methods of producing my application, and therefore I

would like to emphasize that the application is more of a proof-of-concept that an

application to be used in production. The process through which I discovered the

tools I would end up using in the development of my application happened

gradually, and even though I have been able to produce something that works for

my purposes, I do not claim to have followed any industry standards or practices by

any means. It is my hope that this paper will provide a comprehensive reference

(for all those interested in pursuing a project such as mine) about what developing

an application entails.

Specifications and Problems

In the initial proposal for this project, I had conceived an application where

news could be collected and displayed upon specifying a geographic location, i.e. a

pair of latitude and longitude coordinates. The interactive portion of the application

would involve a user clicking anywhere on a 3D rendered globe to form a query,

which would then be used to gather and display links to different articles. Once the

3

information was rendered, a user would be able to choose the desired reading

material. In order to change the query, a user would simply need to click

somewhere else on the globe. Additionally, a user would also be allowed to “watch”

over particular locations of interest, and quickly get news for a desired location

without the need to click on the globe. Additionally, to supplement the news

delivery feature, the application would display geographically relevant information

and display it as a “location profile”, in order to provide users with a context while

gathering news. Furthermore, users would also have the option to “pocket” any

article links to read for later. So far, all of these specifications have been met;

however, there are more features that I would have liked to implement for

application.

The exact means of developing the application were unclear during the initial

planning phase, and it was not immediately decided that the application would be

web based. Nevertheless, a breakdown of the specifications for the application are

as follows:

1. 3D Rendered Globe – An interactive UI display, which is a clickable and

rotatable sphere, with a comprehensive map, and a function of forming user

queries.

2. News Feed – A UI display for the news that is delivered, based on user queries

3. Watch List – A UI display and feature to keep tabs on a particular country

4. Pocket – A UI display and feature to save articles for later consumption

5. Country Profile – A UI feature to provide users with a context for a country in

question

Based on the application specifications, there were a few immediate problems I

needed to address in order to begin development. These problems were as follows:

1. A way to gather news links and information

4

2. A way to render a 3D globe on a computer

3. A way to display the globe and the news links to the user

4. A way to implement the functionality of the application

I feel it is important to mention that I did not address each problem one or in any

particular order in the beginning at a time, and that I did not have a concrete idea

as to how I would put this application together until I was well into production.

Nevertheless, these were the general problems I had to address throughout the

development of this application. From this point onward, I will refer to these

problems only by their numbering.

In regards to (1), it seemed to me that the best way to collect news and

information would be by using a web scraping tool. I decided on utilizing a

web-scraper because it would save me the trouble of having to register for a ton of

API keys for various news websites, and it gave me a more freedom in regards to

the type of news I would be able to gather. To begin my web-scrapping

experimentation, I used bbc.co.uk (BBC News) as a guinea pig, and scraped the site

for news based on country names utilizing the Java HTML parsing library, jsoup. The

library provides a very simplistic API for extracting and manipulating data from

HTML, using DOM, CSS, and jQuery-like methods and is a great training tool for

understanding how HTML is generally structured and utilized on the web.

Once acquainted with the functionality of an HTML parsing tool, it dawned on

me how cumbersome it would be to develop and maintain multiple web-scrapers

for multiple news sites. Moreover, I had considered developing my own “intelligent”

web scraper/crawler of sorts, but I imagined that doing so would be a substantial

project of its own and for my purposes I really only needed one way of getting news

from a variety of sources without having to spend a lot of time to do so.

5

Therefore, I turned my focus away from any particular news site, and instead

started searching for highly regarded News aggregators and RSS feeds to begin

web scraping. Fortunately for me, I found a particular aggregation site/web-service

with a well-implemented RESTful design called newsnow.co.uk (NewsNows). Within

the NewsNow specifications, its states that “[NewsNow] links to tens of thousands

of publications, from top news brands to alternative news sources” and updates its

feeds and information continuously. For me, this meant that I only needed to code

up one minimalistic web-scraping tool to provide diverse news within my

application. More importantly, this meant that it would be maintainable as well.

In conjunction to solving the mystery of which news aggregator(s) to use for

developing the application, I was also trying to address essentially (2) and (3), the

interactive portion of my website, simultaneously. In the beginning, I was not

opposed to the idea of using Java to create a 3D globe; however, I was quite

hesitant to dive into coding an interactive globe from scratch, or using any of the

Java 2D or 3D libraries, considering the amount of trouble I was already having in

finding a suitable way to scrap all of the news I wanted in an efficient way. It was

within this turmoil that I discovered a neat web-based 3D rendering library called

Three.js (THREE) An open sources project on GitHub, by Ricardo Cabello (@

mrdoob), “The aim of the project is to create a lightweight 3D library with a very low

level of complexity — in other words, for dummies.” This description was

reassuring, and through more research I was found multiple projects which had

been developed using THREE. A lot of man hours had been devoted in order to

develop and cultivate the Three.js graphics library. Moreover, most of the math and

GPU interactions have been abstracted away to provide a simple and powerful

solution to Web based OpenGL. Discovering THREE lead me to firmly decided that I

would develop my application for the web, using JavaScript, as well as HTML and

CSS, so I dropped any consideration of Java. After researching for quite a while, I

6

had compiled the necessary information which I would use to build the skeleton for

my application, and therefore It was time to move on to (4).

Based on my research, were many ways to go about hosting an application

and structuring a web-application/web-site. Popular server-side languages to use

include PHP, Ruby, Python, Scala, Java, and conveniently JavaScript. Each language

has its own dedicated community and its own benefits, however, I was not

interested in trying out each because I just wanted to begin development and not

make this project any more complicated than it already seemed it would be, so out

of convenience I decided to go with JavaScript and utilize the Node.js web

application framework.

To my understanding, the Node.js framework, otherwise called Node, is

essentially a server-side implementation of the JavaScript language and provides a

means for developers create scalable and event driven web applications. With a few

lines of JavaScript, you can implement your own server. To facilitate a smoother

development process and for the serve side of applications, people in the Node

community have worked together over the years to develop a package-manager,

called Node Package Manager (NPM) alongside Node. With NPM, developers can

publish their Node modules (essentially the equivalent of a Java Classes) to be used

in the development of any number of web-applications. In the industry, Node

applications are built around utilizing Node modules, and are essentially structured

through a Node module dependency tree.

Utilizing a node Module is as easy as follows:

7

The require(‘http’) statement at the top of the code is essentially how this feature of

node works. The more modules you require inside your node application, the larger

this dependency tree becomes. With this feature, I have been able to utilize

pre-existing modules to work through problems (1) through (4), and have learned

how to develop my own application specific modules for my application server. In a

nutshell, the NPM and Node.js paradigm has helped in the development of my

application, however, it has also caused quite a few issues. I will share my thoughts

on this paradigm in the Conclusions and Discussion section of my paper.

Application Development

To begin development, it was necessary to format my project in the fashion

of a Node.js application. Fortunately, this was taken care of using the Webstorm IDE

(Jetbrains ©), a web-development IDE that automatically structures application

projects according to a developer's desired frameworks. I simply obtained a student

subscription to Jetbrains, downloaded the Webstorm IDE, and had the IDE generate

a Node.js application project boilerplate. From here on, it was a matter of reading

up on the Node.js documentation and going through Node.js tutorials to utilize the

framework in practice. In the rest of this section, I will describe the development of

my application by defining the project in terms of the specifications and the

8

problems in more general terms. These terms are as follows and will be referenced

by their numbering:

 1. The Web Scraping

2. The Globe

3. User Interface (UI)

4. The Web-Server

5. Database

Web Scraping

Beginning with (1), I had already experimented using HTML parsing and DOM

manipulations tools, so I searched NPM for something similar to jsoup, and

stumbled upon cheerio.js. Cheerio.js is a fast, flexible, and lean implementation of

core jQuery designed specifically for the server, i.e. it was the perfect module to fit

my needs. Coding up the web-scraper involved combining two reliable and robust

Node modules, Cheerio.js and Request.js. Request.js was designed as a simple to

make HTTP calls, and even supports HTTPS and follows web-site redirects.

However, even with these two robust already made libraries ready to fit my needs, I

needed someway of passing queries to my scraper without having to think too

much about traversing the DOM of an HTML page in any “intelligent” manner. This

was accomplished by designing a JSON file to associate each country with a URI of

the NN website, and for the sake of simplicity and consistency, I decided to consider

only countries included in the United Nations ISO-3316 Country designations. The

reasoning behind this decision was that United Nations only provides these codes

to countries that are internationally recognized, so therefore the application would

only provide news for countries that are internationally recognized. Continuing with

the idea of having a non-intelligent web-scraper, I thought it would be worth while

9

as well to implement a URL validation module. Utilizing the same two modules in

my web-scraping module, upon the loading of the application determine whether

or not it was possible to load the necessary URL’s from NN and Extract the relevant

news data.

The Globe

Moving onto (2), while one of the most challenging aspects to work with has

been one of the more interesting and engaging parts of this project. Before I really

dive into my experience in creating the globe of GlobeHub, I would like preface this

section with note of warning that this section is indeed the longest as I will be

discussing more than just the implementation of THREE WebGL, but also aspects of

Internet and Browser Security and JavaScript as a language.

While THREE does abstract away most of the calculations surrounding

WebGL, learning to use THREE has also required that understand JavaScript as an

interpreted client-side language, and how to properly implement it for use in the

browser. Based on some research and scattered readings I came to understand

that while JavaScript is a synchronous programming language i.e. code is executed

in a predictable way or line by line, much of its use on the web is also on following

practices that are scalable and responsive. This relates to dealing with

unpredictable events i.e. asynchronous events, like a mouse click or DOM

manipulation. In order to match these event-driven interactions, JavaScript

supports an asynchronous callback programming model. This is made possible by

defining functions in JavaScript as first-class objects. This means that JavaScript

allows the passing of functions as arguments to other functions, which can later be

executed when there is time in the execution flow of the JavaScript engine in the

browser. When trying to base an entire application around WebGL using JavaScript,

this knowledge was especially useful when understanding why my own WebGL

loaders and JSON loaders would return undefined or lock up my application.

10

Other issues I experienced during this WebGL process mainly involved

Same-Origin-Policy (SOP) and Cross-Origin-Resource-Sharing (CORS) in browser

security. These two measures were encountered when trying to deal with writing

my WebGL pre-loaders, as well as dealing with (1) and (4). For very legitimate

reasons, browsers restrict http requests initiated from within web-scripts. With

SOP, this prevents “badguy.com” from being able to access to get access

“mycoolsite.com” and do malicious things. However, some sites are not necessarily

trying to make malicious requests to other sites, and this is where CORS comes in.

To explain further, if “justaregularguy.com” needed to make a request to

“mycoolsite.com”, then the domains would tell the browser to relax on the SOP, and

let them communicate with one another. Basically, all browsers simply restrict

script-based network calls to their own domain to make the internet a little safer for

everyone involved. Now that I have attempted to address these two issues I will

move on with how I made this 3D globe.

In the beginnings of my making my interactive globe, the code was as simple

as writing a few lines of JavaScript, much like the Node.js server-implementation.

There is a trend in development to making things as simple to use possible and I

am incredibly grateful for all of the brilliant developers out there who make it their

mission to provide easy to use simple coding abstraction. With the following lines of

code included inside an HTML script tag:

11

If all was implemented correctly, the code above would render the following image,

exactly as is, in the browser:

Taking baby steps, and with a ton of research, a lot of trial and error, and a lot of

googling asking questions on stack overflow, I learned how to combine a few other

JavaScript libraries together and succeeded in changing this simple blue lighted

sphere into something like this:

12

I began the process of learning how to produce the image above by plowing

through quite a few of the examples the documentation of THREE. Once I had the

basics down, and a grasp of how to utilize the data stored within the various

classes, I implemented the functional aspects of the globe for use in the application,

while also learning a ton about the powers of WebGL and JavaScript as a language.

The main problems I had to solve to make the globe pictured above were as

follows, and from this point onwards I will refer to them by their lettering:

a. Globe Interactivity

b. Cartesian Coordinates Conversions

c. Texture Mapping, and Cultural Boundaries

d. Pre-loader for Textures and THREE.Object3D (Models)

e. Optimizing performance (Used and Considered)

Addressing (a) was probably the most straightforward problem that I needed

to deal with during the development of this application. On GitHub, there were

already quite few open source libraries created by the developers of Three.js to

interact with 3D objects in Three.js. There are orbitcontrols (rotate the camera with

13

mouse clicks and drags), fly controls (move camera around in the scene to any

position), drag controls (drag objects around) so by testing out a few of them, I was

able to implement client-side camera rotation through mouse clicking and

dragging.

Figuring out (b) was solved by using the equations for converting Cartesian

Coordinates (x,y,z) to Spherical-Polar Coordinates (r,θ,φ). This was accomplished

by using one of the classes provided by Three.js, THREE.RayCaster class. The

THREE.RayCaster is used almost exclusively in Three.js to create picking rays for

interacting with 3D Meshes in Three.js. In fact, the source code for the camera

rotation libraries are built using the THREE.RayCaster. Using this class and its built

in methods, I was able to project a 3d ray from the mouse, through the camera,

into the rendering scene, and then check if that ray had intersected with my globe.

If the intersected object was indeed the globe, then I would pass in the (x,y,z) of the

point of intersection and convert that into the appropriate (r,θ,φ). To check that (b)

was working accordingly, I coded up a THREE.Mesh generator to render meshes

onto the surface of my globe only at (r,θ,φ) defined by both the Prime Meridian

and the Equator.

While (b) was effectively tested, I thought it would be prudent to

simultaneously address (c). If I wanted to create a convincing model of Earth to act

as the globe for my application, I needed to make sure that when texturing

(mapping an image to the surface of 3D Objects in Three.js) a mesh with an

appropriate image of the earth that my coordinate calculations would line up with

the texturing in a convincing way. To texture images, the Developers of Three.js

have yet again conveniently provided there own THREE.TextureLoader and

THREE.Texture classes. Essentially, you download an image file (.png, .jpg), and call

the THREE.TextureLoaders.load() method on the desired image file’s relative path.

Once the image is loaded, you can either pass it into a Texture Object pass then

pass that into our mapping properties of our desired 3D Objects THREE.Material

14

object property. You can also pass the loading function directly into a 3D Objects

Material object property as well, because JavaScript supports first-class functions.

Once the texture property is appropriately defined, the Three.js library takes care of

the rest of the rendering and texturing for you.

Upon discovering this functionality of Three.js, I did a little googling and

found a large collection of raster map data tailored towards visualizing Earth from

space. These were curated by a cartographer named Tom Patterson, and were

made for visualizations. In addition to standard texturing, these data maps also

came in formats to be used for Specular Mapping (simulating light intensity), and

Bump Mapping (simulating bumps and wrinkles i.e. depth). Three.js supports these

types of mappings, as well as a few others, when generating meshes, so I utilized

these images as well.

Before moving on, I would like to refer back to the beginning of this section,

where I made a point about describing a few aspects of modern-day web security.

Here is where that knowledge became invaluable in addressing issues I began

having while trying to host my application. Up until this point in my application, I

had been using a node-module by the name of ‘http-server’ to test the WebGL.

Which enabled me to load my own image files and JSON files with ease. I thought it

would be best to start implementing server-side functionality, so I decided to roll

my own server using a few of the node-core libraries. Unfortunately for me,

configuring my server to deal with CORS was unfruitful, and even by reading

source-code and documentation, I was not able to solve this issue. As a temporary

workaround, I disabled my browsers web-security, and continued working through

the application.

I was able to accurately test the mapping of coordinates to my sphere, and

provide an accurate spherical polar coordinate calculations and a great looking set

of textures. The globe looked great at this point, but adding a map of country

boundaries was going to make it look even better. Unlike mapping a solid image, I

15

approached this problem by applying a transparent one. This is made simple by

utilizing some of the built-in methods for texture mapping that Three.js provides.

With Three.js, applying transparency to a texture is as simple as mapping a texture

that is missing some coloring values within its pixels, and setting the transparent

property of the Material to true. This method was used in order to create the

illusion of rotating clouds over a globe, and with this method in mind I began

searching for a way to draw my own map to texture on my Earth as well.

Eventually, I stumbled upon a JavaScript library called D3.js a JavaScript

library for manipulating documents based on data, developed mainly by Mike

Bostock, a renowned computer scientist and data-visualization specialist. With

D3.js, manipulating HTML, SVG(Scalable Vector Graphics), and CSS is made easy, by

providing numerous methods for setting attributes or styles, manipulating DOM

nodes, and changing HTML or text content. To utilize D3.js, I combined its

functionality with a JSON format known as GeoJSON. GeoJSON is a format for

encoding a variety of geographic data structures. An example of GeoJSON is as

follows:

The JSON is additionally utilized to describe properties associated with a geometry

such as in the example above, where the geometry is associate with the name “null

island”. The resultant SVG formed from combining D3 and GeoJSON were quite

16

pleasant; however, loading a GeoJSON can be quite cumbersome, as some of the

file sizes for GeoJSON can get very large. In the case of a GeoJSON file describing

the geometries for an entire political map of the earth, this was definitely the case.

Coincidentally, Mike Bostock has also addressed this issue and had created

his own Extension for GeoJSON known as TopoJSON. TopoJSON accomplishes this

by removing redundancies in Geometry definitions. Using D3 and TopoJSON, and

following some tutorials for data-visualization in D3, I was able to generate an SVG

of the all political-boundaries of as defined by the associated governments of the

Earth. To convert the SVG to .png file to be used as a texture, I used a tool called

SVGCrowbar, which saves SVG as an SVG file to your computer and then passed the

SVG file into some JavaScript which converts an SVG image files into .png.

Once all this was finished, I was able to apply the technique for rendering

transparent textures to the .png of the Earth's political-boundaries, and produce

texturing on image shown previously. A more in-depth explanation and listing of

the tools I used to do all of this is available in the README.txt file located in the

“misc” directory of the GlobeHub project folder on GitHub. There was a bit of extra

finagling using some other THREE Extension libraries developed by Jerome Etienne,

called THREEX, to generate an atmosphere for the earth. These extension libraries

are meant to be used unobtrusively with THREE, so there was not much trouble in

getting the code to work appropriately.

Now that the globe was for the most part coded up, it was time to start

thinking about some of the structural design of my application. When it comes to

loading HTML, embedded images or graphics begins rendering as soon as the

HTML is loaded. In the case of my application, where WebGL was involved, this was

not going to fly. Watching a 3D Earth render is interesting, but it is not very

aesthetically pleasing. Therefore, I decided to write my own graphics pre-loader for

the application, as well as my own data-preloaded for the JSON. THREE also

provides its own THREE.LoadingManager class, to be used with the TextureLoader.

17

Its function is to provides a means of debugging issues that could be experienced

with loading files into THREE. Writing the pre-loaders was a problem of its own, and

it was the point where I needed to start thinking about JavaScript in an

Asynchronous way. Taking this into consideration and reading plenty of

documentation I decided to write the texture preloader first, as it was impossible to

render any Object in a meaningful way without loading the images for Texturing

first.

To do this I utilized the JavaScript Promise Object. The Promise is used for

deferred and asynchronous computations and is as a wrapper placed around

functions or code whose computations cannot be measured simply. In order to use

a promise, you place a code block inside a Promise, and then place a callback with

either the resolve() and reject() callback functions. Essentially, each call to

TextureLoader.load() is wrapped in its own Promise. If the loading fails, then the

Promise is given a callback to reject() with an appropriate error message, otherwise

it is given a callback to resolve() and is passed the loaded Texture. To keep track of

all Promises made, I stored every Promise into an Array. Once all Promise have

been decided (rejected or resolved), then a call to Promise.all() is made which takes

in the iterable Array. If all Promises made have been resolved, then a callback

function is passed an Object containing all of the loaded Textures necessary for the

application.

Once I figured out how to write one preloader, writing the was more

manageable, as I had come to understand the use of callback functions more

effectively and efficiently. I thought it would be interesting to try out different

methods for preloading, so I implemented each differently for my own learning. I

will not dive into the application code or design in this section any more as the

commented code provides a clearer explanation. With all of the pre-loading and

rendering taken care of It was finally time to try and optimize performance of the

WebGL.

18

The best way, I have found, to optimize WebGL performance involves coding

in GLSL. The basic usage of GLSL involves writing two separate programs, called a

Vertex Shader and a Fragment Shader. Simply put, a Vertex Shader is code that

interacts with a 3D Object vertices i.e. the points in 3D space that are used to form

Polygons (Triangles) that define a Geometry. The Fragment Shader computes the

desired RGB values within each Polygon and then the GPU renders those on the

screen. THREE abstracts all of this away within its THREE.Geometry and

THREE.Material classes, which together are combined into a THREE.Mesh to render

3D Objects. I did not really have a lot of time to get into writing my own GLSL code,

however this is the best way to guarantee good performance on within the

browser. GLSL code directly utilizes a computer GPU, and offloads a lot of the heavy

lifting for rendering images made in the browser.

Another method if simplifying browser complications that I looked into was

using JavaScript’s Webworker Object. A Webworker is essentially a way to thread

processes in the browser, using JavaScript. Unfortunately, I did not implement any

Webworker into my code due to time constraints, and my lack of understanding

how to do so effectively. To address optimization of WebGL, I have instead messed

around with the Polygon count and reduced lighting, as these are both easy to

change and can seriously slow down performance if used heavily.

User Interface

That last section was pretty long, so I will try to keep this one short.

Implementing (4) has been one of the more relaxing aspects of this project. HTML

and CSS are a pretty straightforward language to get a grasp on, and why for my

purposes there wasn’t to much diving into understanding a lot about the language,

there is a bit of a learning curve when trying to implement good design into an

HTML document, and this is based on conventions of when to use classes and ids

19

for CCS styling, and how to use as little code as possible to effectively deliver your

content. To learn these concepts, and I have not by any means done my research

about HTML, I basically looked through a ton of Example Three.js web-applications,

notably the The Google Chrome Arms-Globe Experiment for coding style and

implementation. The color scheming and CSS ideas for my web application come

mainly from the Promotional website for Hollywood motion picture Independence

Day: Resurgence (coming to a theater near you this Summer 2016).

To plan out a structure for the UI of the application, I basically decided I

would need one node for each feature. These are the WebGL node, and then the

applications main specifications i.e. the Pocket Node, the Feed Node, the Watch-List

Node and the Profile Node. I divided the page up based on each feature. To keep

the user interface minimalistic, there is a single button to expand and collapse each

of nodes on the page. Excluding the one for WebGL. Each button, maps to a jQuery

function that toggles the CSS positioning of each feature node in and out of the

user view window. Within each feature node, a button is present to access the

functionality of the feature. Below is a screenshot of the application UI design in

full:

20

Within each of these feature nodes displayed on the screen, content is meant

to be dynamically generated based on user input. This input is passed to through a

dialog box, and sent to the database on the server to be saved and processed, and

is then sent back to the client to be displayed. Currently, the application is able to

generate news at the click of a location on the globe, but due to dependency issues

and problems involving package binaries for my database implementation using a

mongodb ODM called Mongoose.js, I was unable to persist data through login

sessions. However, given more time to figure out issues with the binaries, and

understanding how to put together a server side implementation of Node.js

involving NPM package distributions, I am confident the issues could have been

resolved, and hopefully in the future I will take the time to fully implement these

features for my own purposes.

Web-Server

As stated in the sections of this paper entitled “Specifications Problems and

Planning”, I have been using Node.js as a framework to host a locally run

web-server for my application. When configuring and testing the UI and Globe

implementations, I still had not configured a server to work correctly with CORS,

and instead had been using a node module called “http-server”. The module's

purpose is to serve static HTML pages with CORS enabled and nothing more. In

order to meet my applications specifications, I would need to find a way to

implement CORS and make a server that could do more than just server static

content. And I did eventually write my own server implementation, however this

involved depending on the functionality of another Node module called Express.js

Express.js is essentially a Node Web-Application framework that provides a

robust set of features for building your web applications, and automatically comes

with CORS configured. Express.js is an incredibly useful framework for

21

web-developers interested in creating web-servers that are designed in a RESTful

way, as the Express.js API allows developers to route client requests in a simplistic

manner. Given that my website was designed to be a SPA, this feature was only

used to implement user authenticated login and registration functionality. With

CORS finally enabled, it was time to address the issue of connecting my UI and

Globe with my server-side web scraping module I had developed for the

application.

In any regular circumstance, a web developer is aware of how to use

JavaScript appropriately for client-server communications. This sort of JavaScript

programing is known as AJAX. AJAX stands for Asynchronous JavaScript and XML

and simply put, it is the use of the XMLHttpRequest Object to communicate with

server-side scripts. However, considering my luck so far in using Node libraries, I

thought it would be worth trying to find a convenient module to abstract all of this

away. Fortunately, I happened upon just the appropriate library, called Socket.IO.

Socket.IO enables real-time bidirectional event-based communication

between the client and server. What this meant for me was that I did not need to

depend on the use of routing pages to implement a server side. To use socket.io is

as simple as follows:

In our Node server code

io.on('connection', function (socket) {

 socket.emit('news', { hello: 'world' });

 socket.on('my other event', function (data) {

 console.log(data);

 });

});

In our HTML

22

<script>

 var socket = io('http://localhost');

 socket.on('news', function (data) {

 console.log(data);

 socket.emit('my other event', { my: 'data' });

 });

</script>

Essentially, sending a message between the client and server of an application is as

simple as writing two blocks of code like the ones above. Using Socket.IO provides a

means of pass data back and forth between the client and server for the entirety of

the application, and would be crucial for me in understanding how to implement

the Pocket and Watchlist features of my application, as well as the database.

Database

 With an understanding of the structure my application, all that was left to do

was implement a Database. In theory, this part of the application process should

have been fairly straightforward. Unfortunately, it ended up being the most

frustrating part of writing this application, which I will explain in the Conclusion of

my paper.

Given the amount of hype on the web for using NoSQL databases, I thought

it would be worth trying to implement my own. NoSQL is a class of database

management systems (DBMS) that do not follow all of the rules of a relational

DBMS and cannot use traditional SQL to query data. mongodb in particular is one

of these databases with a seemingly highly regard implementation, so I settled on

23

using it to implement some of the database features for my application, and of

course I would use Nodes wide-variety of package distributions to do so.

 Mongoose.js is a Node module used for providing a simple Schema based

solution for modeling application data for mongodb. To provide an example,

consider the following code below:

The code above is very similar in its syntax to the how JavaScript defines an Object. I

do not have any in-depth experience using mongodb outside of writing this

application, however mongoose is apparently an incredibly intuitive solution for a

lot of issues experienced by those who write and maintain a mongo database for

larger applications. From my understanding, this is because of the non relational

way in which mongodb stores its data, and to further explain what this means I will

try to provide an example related to my application.

Using the Schema examples above, let’s say that you want to embed a basic

Pocket with a few Articles. As time goes on and our application starts to grow and

gain new features, the definition of these things, our Pocket and Articles, being to

slowly evolve with our application. This evolution in data structure, combined with

the loosely-typed language of NoSQL, makes it very easy to accidentally save

data-types inconsistently within a NoSQL database such as mongodb. Thus, errors

that are made will be saved into your database forever, and unbeknownst to you

until your application decides to crash one day, and then you are forced to figure

24

out why, or sacrifice all of your data. Therefore, Mongoose provides a sort of safety

net between the application code and your database, by defining a default Schema

for the data passed into the database.

Given that this was just a senior capstone project, and not a full blown

web-application meant to be scalable (although it could be!), I thought it would be a

good learning experience to implement a mongodb database, and it ended up

being a learning experience with a little extra experience thrown in for good

measure. While trying to implement mongoose into my application, I encountered a

few issues with inconsistent dependencies in my applications dependency tree. I

was able to solve this issue eventually, which involved me frantically pouring over

stackoverflow and mongoose.js documentation until I discovered that it involved

inconsistent mongodb binaries for two separate modules within my Node

application, which had not been addressed in an update of mongoose. While I did

solve the issue, unfortunately for me I was unable to fully implement the database

dependent features by the capstone deadline i.e. the Pocket and the Watchlist.

Future of the Project

Given that this project was mostly constructed for educational purposes, I do

not believe I will get feedback or have any issues with people using this application

for anything other than a reference for creating their own application. That being

said, the design and implementation of the application could be greatly improved,

and I would like to explain how by again referring back to each main aspect of the

development process mentioned in the previous section.

Considering (1) while, I do not think Web Scraping is necessarily a bad way of

getting the data I needed for the application, it is not 100% legal. I would try and

move away from utilizing web scraping as a means of gather news. That being said,

I will try to provide a little bit of background on the legality of Web Scraping (at least

25

in the US). As long as the web scraping is not disruptive to the host of the content,

then the web scraper does not commit a crime as defined in the Computer Fraud

and Abuse Act.

Addressing (2), I had discussed a little bit about Optimizing WebGL performance in

the previous section which involved GLSL code. Understanding and implementing

some GLSL code into the application would be a great learning experience. Since I

did not have the time to do so, I would instead like to address a better method for

looking up a country's location on the Globe, which involves GLSL code. Based on

the methods discussed in a blog post about the programming behind the Arms

Globe Experiment, it is possible to approach locating a country by utilizing a lookup

table and a grayscale indexed map, and the applying a convenient “country

highlighting” graphic by using GLSL code. I did try and reproduce this, and was

successful using D3.js and TopoJSON, I reproduced a look up map for each country

and output a JSON file containing ISO-3166 country codes and the corresponding

look up grey-scale values.

 For the sake of convenience, I will address (3)-(5) all at once, since the UI and

Database are dependent on each other for providing the service of the application.

For (3), there is issue with the way my UI is implemented. I cannot seem to scroll

properly i.e. the focus of the mouse on the screen when trying to identify if a DOM

element is scrollable does not work. This is a problem in terms of usability. In

regards to (4), I would like to remove the dependence of my application on

Express.js, because for my purposes I do not need a such a framework, as I only

used Express.js as a means of implementing CORS. Finally, for (5), I would like to

use a separate implementation of a NoSQL database, as apparently mongodb

suffers from misleading documentation, and essentially a poor implementation. As

a Database meant to perform well for web applications that are meant to scale,

mongodb falls short. This is more accurately explained in the source, but I will

provide a concise description about why mongodb is not a reliable database. While

26

it claims to not have any consistency issues, mongodb allows document reads and

writes to see old values of the documents within the transactions. This is generally

bad when you are working with generally large sets of data, and is a general

concern given that many applications on the web are dependent on mongodb.

Discussion and Conclusions

Despite the issues with the Database, I believe this project has turned out

quite well. Since starting, I have gained a wealth of knowledge about the kinds of

tools that exist for developing web applications, and for application programming

in general. The sheer amount of potential with the tools available for anyone with

access to a computer today is astounding. The use of online repositories, such as

GitHub, have provided a standard on the web of developing programs that are

meant to be useful, well maintained, and open-source. More importantly,

communities can actively participate in the development of such programs and

discuss ways to make them more comprehensive. These discussion pave the way to

optimizing, and standardizing development.

That being said, Node and NPM are indeed an incredibly useful open-source

tools that have been developed with a lot of care. They provide a service which

facilitates rapid growth and development and open-ended discussion. However, the

Node-NPM paradigm, given its relatively recent appearance in the industry and

rapid growth in popularity, has not been provided with an environment that is

necessary to match the required robustness and comprehensiveness for

open-source tools today. Anyone who understands Node, or has read the

documentation, are liable to distribute their own modules for use in production.

The number of modules already distributed is enormous, and the vast majority of

them are underutilized, or essentially useless. There are no restrictions to the kind

of modules people are allowed to publish, and more importantly, would-be

27

developers are not accustomed to properly documenting and maintaining their

modules. This gives rise to alarming and immediate issue with NPM

All Node.js applications, which are essentially modules of their own, are

dependent on the robustness of each module they are built on top off. If a module

is not well maintained or robust, it has the potential to collapse the application

from within. More problematic, if someone should remove a module from NPM,

then any application built around or using the removed module will crash

immediately. This is a serious issue and given the size of dependency trees for

applications that run on Node, if even one dependency fails, the application fails.

This issue must be addressed by the greater Node community and hopefully a

suitable solution will be provided sometime in the near future.

I would like to conclude this paper by thanking my capstone advisor, Prof.

Steven Janke, for giving me an opportunity to pursue as free form of project as this.

The amount of exposure I have had over the past four months has been incredibly

valuable to me, and this will most definitely prove to be an asset for me in the

coming years.

28

Bibliography - (Informal)

Independence Day: Resurgence Website - http://www.warof1996.com/

Google Arms Globe Experiments - http://armsglobe.chromeexperiments.com/

Passport.js, User Authentication for Express.js - http://passportjs.org/

Mongoose.js, the Mongodb ODM - http://mongoosejs.com/

Socket.io Client-server communication - http://socket.io/

Express Web-Server Framework - http://expressjs.com/

Node.js Web Application Framework - https://nodejs.org/en/

Three.js , WebGL - http://threejs.org/

D3.js, Data Driven Documents - https://d3js.org/

GeoJSON - http://geojson.org/

29

http://www.warof1996.com/
http://armsglobe.chromeexperiments.com/
http://passportjs.org/
http://mongoosejs.com/
http://socket.io/
http://expressjs.com/
https://nodejs.org/en/
http://threejs.org/
https://d3js.org/
http://geojson.org/

TopoJSON, GeoJSON Extension - https://github.com/mbostock/topojson

SVGCrowbar - http://nytimes.github.io/svg-crowbar

30

https://github.com/mbostock/topojson
http://nytimes.github.io/svg-crowbar/

