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Abstract

In this paper, we describe a method for computing the dimension of linear systems on a graph, which are

related to linear systems of divisors on tropical curves. Tropical geometry is a discrete version of algebraic

geometry, where a tropical curve can be represented by a metric graph. By reducing an algebraic curve to a

graph, computing the dimension of a linear system can be thought of as a geometric problem. Specifically,

we can compute the dimension of the linear system as the distance to a surface in n-dimensional space

using the taxi-cab metric. Finally, we present examples of computing such dimensions of linear systems for

divisors on 2-vertex and 3-vertex graphs.
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1. Introduction

The dimension of linear systems associated with integer and real divisors on graphs has been
defined in the work of Baker and Norine, and James and Miranda. Matthew Baker and Serguei
Norine developed theory of integer divisors and linear systems on graphs as an analog to divisors
and linear systems on algebraic curves [1]. Work by Rodney James and Rick Miranda generalized
the concepts of linear systems and divisors to non-negative real-valued functions [4]. This concept
of dimension of these linear systems associated with divisors on graphs has been used in a volume
proof by An, Baker, Kuperberg, and Shokrieh [9] of Kirkhoff’s Tree Theorem concerning the number
of spanning trees of G.

Divisors on graphs are related to divisors on algebraic curves, since “tropicalizing” an alge-
braic curve results in a tropical curve which resembles a metric graph. Divisors on algebraic curves
are zeros and poles of polynomials and thus are integers. However, the integers do not have multi-
plicative inverses, and the method we describe for computing dimension makes use of multiplicative
inverses. The divisors we consider are real-valued since this enables the interesting geometric in-
terpretation of dimension of a linear system on an n-vertex graph G as the taxi-cab distance to a
solid region in Rn that contains divisor with empty linear systems. Note, however, that real-valued
divisors are a generalization of integer-valued divisors; for integer-divisors, the points separating
empty and non-empty linear systems form a lattice in Rn and this lattice is contained within the
corresponding surface for real-divisors of the same graph.
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The first three sections of this paper will introduce and develop necessary terminology, defini-
tions, and formulas. The next three sections will present a method for calculating these dimensions
for n-vertex graphs, and provide detailed examples applying this method for 2-vertex and 3-vertex
graphs. The final section attempts to provide some explanation of the relationship between divisors
on algebraic curves and divisors on metric graphs, by summarizing some of the relevant theory.

2. Divisors and Linear Systems on Graphs

Let G be a finite, connected graph without loops or multiple edges. The vertex set of G is
{v0, v1, ...vn}. Each edge of G is assigned a weight that is a positive element of R, where R a subring
of real numbers R. The weight of an edge connecting vi and vj is wij = wji. If there is no edge
connecting the vertices i and j, then wij = wji = 0. The degree of a vertex is defined as the sum
of the edge-weights of incident edges,

deg(vj) =
∑
i 6=j

wij

The edge-weighted Laplacian matrix ∆ is defined as the n + 1 by n + 1 matrix with vertex
degree on the diagonal and ij and ji off-diagonal entries are the negative corresponding edge-weight
values,

∆ =

{
deg(vi) if i = j
−wij if i 6= j

The edge-weighted reduced Laplacian ∆0 is the Laplacian matrix without the first row and
first column which are associated with the sink vertex v0. The reduced Laplacian is a monotone,
n× n matrix with full rank, meaning it has a nonnegative inverse [7] and is defined as,

∆r =


deg(v1) −w12 ... −w1n

−w12 deg(v2) ... −w2n

...
...

. . .
...

−w1n −w2n ... deg(vn)


As defined in [2], an R-divisor D on G is a function D : V → R. Divisors resemble vectors

and can be written similarly in the convenient form of tuples or vectors of length n + 1, where
placement is indicative of association with a given vertex. Divisors are defined as a formal sum of
values di ∈ R over the vertices,

D =

n∑
i=0

di · vi

The set of R-divisors D on G is denoted by Div(G). The degree of a divisor is defined as,

deg(D) =

n∑
i=0

di

For any x ∈ R, D > x means that di > x for all i = 0, 1, ...n. We say D > D′ if di > d′i for
i = 0, 1, ...n. A divisor is said to be effective if dDe ≥ 0 i.e. D > −1. Equivalently, if R is the
integer subring of R then D is said to be effective if D ≥ 0.



4 ELEANORE CAMPBELL

One special group of divisors are called the H-divisors. The H-divisors are the columns of the
edge-weighted Laplacian matrix. For j = 0, 1, ...n the divisor Hj is defined as,

Hj =

{
deg(vj) if vi 6= vj
−wij otherwise

A Z-linear combination of H-divisors is called a principle divisor P. The set of principle divisors is
the set of all integer linear combinations of the H-divisors,

PDiv(G) = {D ∈ Div(G) | D = z0H0 + z1H1 + ...zn−1Hn−1 where zi ∈ Z}

Note that all principle divisors have degree zero.

Two divisors D and D′ ∈ Div(G) are said to be linearly equivalent if and only if they differ
by a principle divisor, i.e. D − D′ ∈ PDiv(G), where subtraction is defined component wise. We
use the notation D ∼ D′ to indicate the linear equivalence of D and D′.

The linear system associated with a divisor D is the set of all effective divisors that are linearly
equivalent to D. In mathematical notation,

|D| = {D′ ∈ Div(G) | dD′e ≥ 0 and D′ ∼ D}
= {D′ ∈ Div(G) | D′ > −1 and D′ ∼ D}

If R is the subring of integers then we simply have,

|D| = {D′ ∈ Div(G) | D′ ≥ 0 and D′ ∼ D}

3. The N -Set

Another important group of divisors is the set of N -divisors. Following the definition of this
set given in [3], let (j0, j1, ..., jn) be a permutation of the vertices (0, 1, ..., n) where we have fixed
j0 = k. There are n! such permutations. A divisor ν ∈ N can be calculated for each permutation,
where ν is defined as,

νjl =


−1 if l = 0

−1 +

l∑
i=0

wjijl if l > 0

The N -set is generated by the ν-divisors, meaning N (G) is the set of all divisors linearly
equivalent to these ν-divisors. Say there are s unique ν-divisors,

N (G) = {D ∈ Div(G) | D ∼ νi for i = 1, 2, ...s}}

Divisors and their linear systems can be visualized in Rn+1-space. The N -divisors are sig-
nificant because they identify corners of cones delineating a boundary in Rn+1 between divisors
with empty and non-empty linear-systems. The dimension of the linear system associated with any
given divisor D depends on the location of D in that space. More specifically, the dimension can be
calculated as the taxi-cab distance from the region containing divisors with empty linear systems. If
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the divisor is already within the region of empty linear systems, then that taxi-cab distance is zero.
As James and Miranda demonstrate in [4], the dimension of a linear system can thus be defined as,

`(D) = min
ν∈N

{
n∑
i=0

max{di − νi, 0}

}
Because the N -divisors are translates of the ν-divisors by principle divisors, the surface of in-

tersecting cones delineated by the N -set is repetitive in nature. Thus the surface can be constructed
as the pattern of a certain fundamental region infinitely repeated across space. The fundamental
region is the centered on a special divisor called the canonical divisor, defined as,

K =

n∑
i=0

vi · (deg(vi)− 2)

Regarding the symmetry of the N (G)-set,

(1) The set N (G) is symmetric with respect to K, i.e. η ∈ N (G) if and only if K − η ∈ N (G).
(2) For any divisor D ∈ Div(G), |D| = ∅ if and only if there is η ∈ N (G) such that D ≤ η.

By definition, any pair of distinct η ∈ N (G) differ by a principal divisor. Considering three-
vertex graphs, the cross-product of the differences between any two pairs of η ∈ N is a cross product
between two principal divisors,

Pa =

 za1(w01 + w02)− za2w01

−za1w01 + za2(w01 + w12)
−za1w02 − za2w12

 and Pb =

 zb1(w01 + w02)− zb2w01

−zb1w01 + zb2(w01 + w12)
−zb1w02 − zb2w12


By carrying out the calculation of the determinant for any two principal divisor P1,P2 ∈ PDiv(G),

Pa × Pb =

∣∣∣∣∣∣∣∣∣
i j k

za1(w01 + w02)− za2w01 −za1w01 + za2(w01 + w12) −za1w02 − za2w12

zb1(w01 + w02)− zb2w01 −zb1w01 + zb2(w01 + w12) −zb1w02 − zb2w12

∣∣∣∣∣∣∣∣∣
The resulting vector can be simplified to,

Pa × Pb = r(1, 1, 1) where r = (za1zb2 − za2zb1)(w01w02 + w12w01 + w12w02)

Because of this symmetry and orientation of the surface generated by N , P ∈ PDiv(G) is always
perpendicular to the line K + t(1, 1, 1).

4. Reduced Divisors

Divisors that are linearly equivalent have equivalent relationships to the repeated pattern of
the surface constructed from the N -set in terms of distances to different faces of the cones. Thus,
any given divisor D can be reduced to a linearly equivalent, unique, “reduced” divisor Dr that lies
within the so-called fundamental region, i.e.,
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Dr = D + P
In [4] James and Miranda prove the uniqueness and existence of such reduced divisors, defining

a reduced divisor as follows:

Let V0 = V − {v0}. A divisor D is said to be reduced if and only if,

(1) D(v) > −1 for each v ∈ V0
(2) for every I ⊂ {1, 2, ..., n} there is a v ∈ V0 such that,

(D −
∑
j∈I

Hj)(v) ≤ −1

By this definition we see that a reduced divisor D is effective but sufficiently close to the boundary.
Specifically, a reduced divisor is close enough to the boundary that subtracting one of the smallest
principal divisors will make one of the components less than negative one.

᫶-Divisors

ᷙ-Divisors

Reduced DivisorsPrinciple Divisors  ᮂ-Divisors Canonical Divisor

Take integer-linear combinations Add principle divisors

᭼-Divisors

Effective Divisors

Figure 1. There are many different special subsets of the R-divisors. This diagram

illustrates how these different types of divisors are related to one another. Arrows indicate

a subset of divisors are used to generate a larger set. Brackets indicate a certain group

of divisors is a subgroup of another group.

Because of the symmetry of the surface generated by N , there is a certain vector P ′ that
represents displacement of any divisor D from nearest point on the line K + tv,

P ′ = K + tv −D where t is given by solving
d

dt

( n∑
i=0

(D(vi)−K(vi) + t)2
)

= 0

P ′ = sP where
1

2
< s <

3

2
and s ∈ R
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If s is less than one-half, then either there must be a smaller P that would make the equality
true, or D must already lie within the fundamental region meaning ci = 0. If s is larger than
three-halves, there exists another larger principal divisor that should be used instead.

Define a function φ : Div(G)→ Rn that takes the part of the divisor associated with v1, ..., vn
but not v0 where φ(D) = (D(v1), ..., D(vn)). The full Laplacian matrix is not invertible because of
linear dependence of the columns, but the reduced Laplacian is. Thus we want to derive relationships
involving the reduced Laplacian ∆r rather than ∆. This is where the φ-function is useful.

∆c =
[
H0 H1 . . . Hn

] c0...
cn

 =


deg(v0)c0 − w01c1 − . . .− w0ncn
−w01c0 + deg(v1)c1 − . . .− w1ncn

...
...

. . .
...

−w0nc0 − w1nc1 − . . .+ deg(vn)cn



P =
[
H1 . . . Hn

] c1...
cn

 =


−w01c1 − w02c2 − . . .− w0ncn

deg(v1)c1 − w12c2 − . . .− w1ncn
...

...
. . .

...
−w1nc1 − w2nc2 − . . .+ deg(vn)cn



φ(P) = ∆rcr =
[
φ(H1) . . . φ(Hn)

] c1...
cn

 =


deg(v1)c1 − w12c2 − . . .− w1ncn
−w12c1 + deg(v2)c2 − . . .− w2ncn

...
...

. . .
...

−w1nc1 − w2nc2 − . . .+ deg(vn)cn


We can then derive the following relationships, which form the foundation of a conjectured

method to compute reduced divisors,

P ′ = sP −→ φ(P) = φ( 1
sP
′)

φ(P) = ∆rcr −→ cr = 1
s∆−1r φ(P ′)

Dr = D + P −→ φ(Dr) = φ(D) + φ(P) = φ(D) + ∆rcr

P(v0) = −
∑n
i=1 φ(P(vi)) = −

∑n
i=1 ∆rcr(vi) = −w01c1 − w02c2 − . . .− w0ncn = −

∑n
i=1 w0ici

Dr(v0) = D(v0)− P0 = D(v0)−
∑n
i=1 ∆rcr(vi) = D(v0)−

∑n
i=1 w0ici

In practice, we can find cr by plotting 1
s∆−1r φ(P ′)(vi) where 1

2 < s < 3
2 for each vi, and

identifying the integer of the smallest magnitude which falls on the curve within the bounds on
s. More formally, we could find ci by writing an algorithm based on taking the minimum of the
absolute value of the integer part of the function and then obtaining the correct sign by computing
whether the ∆−1r P ′(vi) is greater than or less than zero. Once cr is found, the reduced divisor Dr

can easily be calculated.
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5. Dimensions of Linear Systems on 2-vertex Graphs

Let G be a finite, connected graph without loops or multiple edges, with two vertices and
edge-weight w > 0. The Laplacian of G is,

∆ =

[
w −w
−w w

]

The principle divisors are therefore PDiv(G) = {(nw,−nw) | n ∈ Z}. The linear system associated
with a divisor D ∈ Div(G) is,

|(a, b)| = {(a+ nw, b− nw) | n ∈ Z, a+ nw > −1, b− nw > −1}

Claim: |(a, b)| 6= ∅ if and only if
⌈
a+1
w

⌉
+
⌈
b+1
w

⌉
≥ 2

Proof: |(a, b)| 6= ∅ means there is at least one effective divisor linearly equivalent to (a, b), i.e.
(a+nw, b−nw) where a+nw > −1 and b−nw > −1. By definition of ceiling and floor functions,
n =

⌊
b+1
w − ε

⌋
< b+1

w ≤
⌈
b+1
w

⌉
= n + 1, where ε = 1 if b+1

w ∈ Z and ε = 0 otherwise. By this

inequality, n < b+1
w −→ b− nw > −1. Since a+1

w + 1 >
⌈
a+1
w

⌉
,

(
a+1
w + 1

)
+
(
n+ 1

)
>
⌈
a+1
w

⌉
+
⌈
b+1
w

⌉
≥ 2

Then a+1
w > −n −→ a + nw > −1. Thus, if

⌈
a+1
p

⌉
+
⌈
b+1
p

⌉
≥ 2 there exists n ∈ Z such that both

inequalities a+ nw > −1 and b− nw > −1 are true, i.e. the linear system associated with (a, b) is
non-empty. To prove the other direction of the implication made in the claim, consider,

⌈
a+1
w

⌉
+
⌈
b+1
w

⌉
< 2⌈

a+1
w

⌉
< 2−

⌈
b+1
w

⌉
a+1
w ≤

⌈
a+1
w

⌉
and b+1

w ≤
⌈
b+1
w

⌉
a+1
w ≤

⌈
a+1
w

⌉
< 2−

⌈
b+1
w

⌉
≤ 2− b+1

w

a+1
w + n ≤

⌈
a+1
w

⌉
+ n < 2−

⌈
b+1
w

⌉
+ n ≤ 2 + n− b+1

w
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By way of contradiction, assume that the linear system associated with (a, b) is non-empty and
thus there is at least one divisor such that a+ nw > −1 holds and b− nw > −1 is also true. Then,

a+ nw > −1 −→ a+1
w + n > 0

0 < a+1
w + n ≤

⌈
a+1
w

⌉
+ n < 2−

⌈
b+1
w

⌉
+ n ≤ 2− b+1

w + n

b+1
w − n > 0 −→ n− b+1

w < 0

0 < a+1
w + n ≤

⌈
a+1
w

⌉
+ n < 2−

⌈
b+1
w

⌉
+ n ≤ 2 + n− b+1

w < 2

0 <
⌈
a+1
w

⌉
+ n < 2−

⌈
b+1
w

⌉
+ n < 2⌈

a+1
w

⌉
+ n ∈ Z and

⌈
b+1
w

⌉
+ n ∈ Z

There is only one integer between zero and two, but
⌈
a+1
w

⌉
+ n 6= 2 −

⌈
b+1
w

⌉
+ n. Therefore, if⌈

a+1
w

⌉
+
⌈
b+1
w

⌉
< 2 then there is no n ∈ Z such that both a + nw > −1 and b − nw > −1 can be

true. Thus, the linear system associated with (a, b) is empty if
⌈
a+1
w

⌉
+
⌈
b+1
w

⌉
< 2.

Let ϕw(x) =
⌊ (x+1)

w

⌋
. Note that

⌈
a+1
w

⌉
+
⌈
b+1
w

⌉
≥ 2 is equivalent to saying that

⌊
a+1
w

⌋
+
⌊
b+1
w

⌋
≥

0. If the linear system is empty, then the dimension is defined to be zero. The dimension of the
linear system associated with a divisor D = (a, b) on a 2-vertex graph G can be calculated by the
following formula, derived by James and Miranda in [2],

`((a, b)) =


0 if ϕ(a) + ϕ(b) < 0
min{a+ 1− wϕw(a), b+ 1− wϕw(b)} if ϕ(a) + ϕ(b) = 0
a+ b− w + 2 if ϕ(a) + ϕ(b) > 0

Suppose we have the two-vertex graph G with edge weight w = 4.6. Then ∆r = 4.6 and so
∆−1r = 10

46 . Consider the divisor D = (10.4,−7). We can calculate the dimension of the linear
system associated with D via the formula given above,

ϕ(10.4) + ϕ(−7) =
⌊
(10.4 + 1)/4.6

⌋
+
⌊
(−7 + 1)/4.6

⌋
=
⌊
2.48

⌋
+
⌊
− 1.30

⌋
= 0

`((10.4,−7)) = min{10.4 + 1− 4.6 b(10.4 + 1)/4.6c,−7 + 1− 4.6 b(−7 + 1)/4.6c}

= min{11.4− 4.6(2),−7 + 1− 4.6(−2)} = min{2.2, 3.2} = 2.2

Alternatively, reducing a divisor and calculating minimum distance of the reduced divisor from
the η ∈ N that define the fundamental region gives the taxi-cab distance to the divisor surface and
the value for the dimension of the linear system.

K = (deg(v0)− 2,deg(v1)− 2) = (2.6, 2.6)

d
dt

(
(−7.8 + t)2 + (9.6 + t)2

)
= d

dt

(
153.+ 3.6t+ 2t2

)
= 3.6 + 4t = 0 −→ t = −0.9

P ′ = K + t(1, 1)−D = (2.6, 2.6) + (−0.9,−0.9)− (10.4,−7) = (−8.7, 8.7)

1
s∆−1r φ(P ′) = 1

s
10
46 (8.7) = 1.8913 1

s
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Figure 2. This plot shows the function 1.8913/s where 1/2 < s < 3/2, with horizontal

lines identifying where the function possesses integer values.

From the plot we can see that the integer with smallest magnitude, cr, is 2. Then,

φ(Dr) = φ(D) + ∆rcr = −7 + (4.6)(2) = 2.2

Dr(v0) = D(v0)−
∑n
i=1 ∆rcr(vi) = 10.4− (4.6)(2) = 1.2

Dr = (1.2, 2.2)

To calculate the dimension of D, we need η1, η2 ∈ N (G) defining the fundamental region,

η1 = (−1, 3.6) and η2 = (3.6,−1)

`(D) = minη∈N {
∑n
i=0 max{di − νi, 0}}

= min{max{1.2 + 1, 0}+ max{2.2− 3.6, 0},max{1.2− 3.6, 0}+ max{2.2 + 1, 0}}

= min{2.2, 3.2}

= 2.2
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Figure 3. Possible divisors on the 2-vertex graph G with edge-weight w = 4.6. Divisors

that fall in the shaded region behind the stair-step boundary have empty linear systems

and dimension zero. The set of points on the corners of the stair-steps are in the N -set.

The red point is D = (10.4,−7) and the purple point is the reduced divisor Dr = D+P =

(1.2, 2.2).The orange-shaded region is the fundamental region.

6. Use of the Graph-theoretic Riemann-Roch Theorem

The three-part formula seen in the example for the 2-vertex graph above, arises from the
graph-theoretic analog of the Riemann-Roch Theorem for algebraic curves. In [1], Baker and Norine
derived this Riemann-Roch Theorem for integer divisors on graphs from the classical Riemann-Roch
Theorem, and in [2] James and Miranda prove a Riemann-Roch theorem for real divisors on edge-
weighted graphs. Gathmann and Kerber also present a Riemann-Roch theorem, specifically for
tropical geometry in [10].

Theorem 6.1 (The Riemann-Roch Theorem for Graphs). For any divisor D ∈ Div(G)

`(D)− `(K −D) = deg(D) + 1− g

The genus g of the graph G is defined as,

g =
∑
i<j

wij − n+ 1

Note that by this definition the genus is not necessarily an integer, and furthermore, can be negative
when the edge weights wij are sufficiently small.

By this theorem, the problem of calculating the dimension of a linear system associated with
a divisor D on a 2-vertex graph can be split into three cases, based on whether the individual
pieces `(D) and `(K − D) are non-zero. If `(D) = 0 and `(K − D) = 0 and we get the first line
of the formula, if `(D) 6= 0 and `(K − D) 6= 0 then we get the second line, and if `(D) 6= 0 and
`(K −D) = 0 then we get the third line of the formula. Each of these cases corresponds to certain
categories of possible divisors, as can be seen in Figure 3.
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The first line of the the formula corresponds to divisors in the shaded region below and to
the left of N -set points which delineate a stair-like boundary. These are non-effective divisors.
The second line of the formula corresponds to divisors that lie close enough to the boundary that
the minimum taxi-cab distance to the stair-step boundary is not one of the N -set points at the
corners of the steps. The third line of the formula corresponds to all other divisors. One of the
advantages of this theorem in computing dimensions of linear systems associated with divisors is
that it simplifies the computation; by the Riemann-Roch theorem for graphs, if K − D ≤ 0 the
dimension `(D) is simply the deg(D)− g + 1.

7. Dimensions of Linear Systems on 3-vertex Graphs

Let G be the following graph, which is connected without multiple edges or loops:

v

v v2

0

1

4

2

7

The Laplacian of this graph is: ∆ =

11 −4 −7
−4 6 −2
−7 −2 9


The reduced Laplacian is: ∆r =

[
6 −2
−2 9

]

The inverse reduced Laplacian is: ∆−1r =

 9
50

1
25

1
25

3
25


The canonical divisor K = (deg(v0)− 2,deg(v1)− 2,deg(v2)− 2) = (11− 2, 6− 2, 9− 2) = (9, 4, 7)

Let j0 = 0, then the permutations (j0, j1, j2) of the vertices (0, 1, 2) are (0, 1, 2) and (0, 2, 1). By
the formula for νjl we get,

ν1 = (−1,−1+w01,−1+w02+w12) = (−1, 3, 8) and ν2 = (−1,−1+w02,−1+w01+w12) = (−1, 6, 5)

From the Laplacian, H1 = (11,−4,−7) andH2 = (−4, 6,−2). The principal divisors are PDiv(G) =
{P = z1H1 + z2H2 | z1, z2 ∈ Z}. Thus we get the N -set which defines the corners of cones forming
the boundary surface,

N (G) = {(−1+11n−4m, 3−4n+6m, 8−7n−2m), (−1+11n−4m, 6−4n+6m, 5−7n−2m) | n,m ∈ Z}
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Figure 4. This graphic shows regions in Rn+1 space of divisors with empty versus non-

empty linear systems. Divisors with empty linear systems, and thus dimension zero, fall

behind the surface in the solidly colored region. The points on the corners of the cones

are a subgroup N of the infinite N -set which correspond to the portion of Rn+1 space

being represented in this graphic.

Consider the divisor D = (20, 15,−10).

d
dt

(∑n
i=0(K(vi) + t−D(v0))2

)
= d

dt

(
531− 10t+ 3t2

)
= 6t− 10 = 0 −→ t = 5

3

P ′ = K + t(1, 1, 1)−D = (9, 4, 7) + ( 5
3 ,

5
3 ,

5
3 )− (20, 15,−10) = (− 28

3 ,−
28
3 ,

56
3 )

cr = 1
s∆−1r φ(P ′) = 1

s (− 14
15 ,

28
15 ), where 1

2 < s < 3
2
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Figure 5. These plots show the functions −14/15s and 28/15s, for the range 1/2 <

s < 3/2. Horizontal lines indicate where the functions possesses integer values.

From the plots above, we can see that cr = (−1, 2). Then,

φ(Dr) = φ(D) + φ(P) = φ(D) + ∆rcr =

[
15
−10

]
+

[
6 −2
−2 9

] [
−1
2

]
=

[
5
10

]
Dr(v0) = D(v0)− P0 = D(v0)−

∑n
i=1 w0ici = 20− (4 · (−1) + 7 · 2) = 10

Dr = (10, 5, 10)

The η ∈ N ⊂ N (G) defining the fundamental region, i.e. with minimum distance to K are:

(3, 0, 7), (10, 2,−2), (6, 5,−1), (10,−1, 1), (−1, 3, 8), (−1, 6, 5)

The dimension of D then is the dimension of Dr which can be calculated via the taxi-cab metric,

`(D) = min
η∈N

{
n∑
i=0

max{Dr(vi)− η(vi), 0}

}

= min {15, ..., 15, 16} = 15



COMPUTING DIMENSION OF LINEAR SYSTEMS ON GRAPHS 15

8. Algebraic Curve, Tropical Curve, Metric Graph

This theory about divisors on graphs was originally derived as an analogy to the divisors on
Riemann surfaces, which are one-dimensional complex manifolds. Essentially, a Reimann surface
is a topological space that at each point, locally looks like the complex plane, and therefore one
can define on a Riemann surface things that are definable on the complex plane, e.g. holomorphic
functions and meromorphic functions. As described by Miranda in [6], a divisor on a Riemann
surface X is a function D : X → Z where the set of points p ∈ X such that D(p) 6= 0 is a discrete
subset of X. Intuitively, a divisor is a way of representing zeros and poles of a meromorphic function.

Following Imre Simon’s development of tropical geometry as presented by Maclagan and
Sturmfels in [5], the Tropical Semiring is (R ∪ {∞},⊕,�), where the operations of addition and
multiplication are defined to be,

x⊕ y := min(x, y) x� y := x+ y

Addition is associative and commutative, and there exists an additive identity element. Multi-
plication is associative, and distributive laws for multiplication over addition hold. Division is
defined as classical subtraction, but there is no tropical subtraction. All ring axioms are therefore
satisfied except for the existence of an additive inverse, which is what makes the algebraic object
(R ∪ {∞},⊕,�) a semiring.

Let x1, x2, ...xn be variables representing elements in the tropical semiring. A tropical mono-
mial is any product of these variables, for example,

x3 � x4 � x3 � x1 � x2 � x3 � x4 = x1x2x
3
3x

2
4

By classical arithmetic this would be a linear function with integer coefficients,

x3 + x4 + x3 + x1 + x2 + x3 + x4 = x1 + x2 + 3x3 + 2x4

A tropical polynomial p(x1, ..., xn) is a finite linear combination of tropical monomials, and repre-
sents a function Rn → R. Having coefficients a, b... ∈ R and i1, j1, ... ∈ Z,

p(x1, ..., xn) = a� xi11 x
i2
2 · · ·xinn ⊕ b� x

j1
1 x

j2
2 · · ·xjnn ⊕ · · ·

By classical arithmetic this is,

p(x1, ..., xn) = min{a+ i1x1 + i2x2 + · · ·+ inxn, b+ j1x1 + j2x2 + · · ·+ jnxn, · · · }
Thus a tropical polynomial is the minimum of a finite set of linear functions, and therefore a
continuous, concave, and piecewise linear function.

The hypersurface V (p) of a tropical polynomial p is set of all points in Rn at which the
minimum of the finite set of linear functions given by p is attained at least twice, i.e. the set of
points at which p is not linear or the set of roots of the polynomial p. Thus the curve V (p) of the
tropical polynomial p is a finite metric graph.

As described in [5], there exists a relation between algebraic curves on Riemann surfaces and
tropical curves, via the transformation of an amoeba converging to its spine. Following Gathmann’s
explanation in [8], mapping a complex plane curve C on the open subset (C∗)2 to the real plane via
the function Log : (C∗)2 → R2 where Log(z1, z2) → (x1, x2) := (log |z1|, log |z2|) gives the amoeba
A. Every amoeba has a spine, which is essentially a tropical curve V (p) contained in the amoeba.
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A tropical curve V (p) can be derived from an amoeba by taking a sequence of amoebas converging
to their spine, shrinking the amoeba to zero width. To achieve this, suppose the map Log is given
instead by,

Log(z1, z2)→ (x1, x2) := (− logt |z1|,− logt |z2|) =
(
− logt |z1|

log t
,− logt |z2|

log t

)
Taking the limit as t tends to zero gives the tropical curve or spine of the amoeba. The coefficients
of the tropical polynomial p associated with the resulting tropical curve V (p) are the zeros and poles
of the coefficients of the algebraic curve C from which the amoeba was originally derived. Another
method of deriving tropical curves from amoebas involves considering the asymptotic directions of
the amoeba’s tentacles. The amoeba has tentacles that converge to rays in R2. The union of these
rays can be represented as a tropical plane curve V (p).

9. Conclusion

Dimension of linear systems associated with divisors on metric n-vertex graphs can be calcu-
lated via the taxi-cab metric. Linear equivalence allows any given divisor D to be reduced to a
unique reduced divisor Dr within a certain region in Rn+1 with known bounds and symmetry, thus
simplifying the problem of finding minimum distance over a set of points. This thesis conjectures
about a method by which to do this, which involves finding a vector P ′ with minimum distance
from D to the line K + tv where v is a unit vector, and then finding a principal divisor such that
P ′ = sP where 1

2 < s < 3
2 . Further research would include formal proof of the conjectured method

for reducing a given divisor, and evaluation of the computational complexity of this method.
Simplification is a common strategy in mathematics, whether in simplifying systems or iden-

tifying special subgroups of mathematical objects, or reduce to a problem that has already been
solved. Topicalization of algebraic curves is an example of this phenomenon. The hope is that by
simplifying the algebraic curve to a discrete tropical curve, new relationships can be discovered, and
insights can be gleaned about the original structure. In the case of divisors on graphs, particularly
real-valued divisors and dimensions of their linear systems, there is much yet to be discovered.
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