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Abstract

This study examined the behavior of a bullying epidemic on different social network structures using
ideas from network theory, graph theory, and stochastic epidemic modeling. Three aspects of the bullying
epidemic were investigated: the predictors for duration of the epidemic, the impact of different initial
conditions on the epidemic, and the impact of different network structures on the epidemic. Overall,
the more connected the network and the stronger the connection between each individual, the longer
the bullying epidemic last. Introducing a more popular student as the first bully to the population
would also lead to a longer duration for the bullying epidemic. These results suggest that teachers
could educate students on the negative consequences of bullying, which could weaken the connections
between susceptible students and the bully, and thus decrease the impact of the bullying epidemic in the
classroom.

1 Introduction

Bullying is defined as a form of aggression in which a bully physically and/or psychologically harasses and
abuses the victim repetitively. In a study of over 7, 000 sixth through tenth graders in the United States,
approximately 25% of the students admitted to bullying schoolmates at least once during the current school
term and nearly 10% were engaged in bullying at least once a week [3]. Bullying could be either direct or
indirect, and the five most common types of bullying are direct verbal harassment, physical attack, spreading
rumors, social exclusion, and cyberbullying [6]. It is worth noting that as the use of social networking sites
(SNS) continue increasing among adolescents; cyberbullying has become more notorious than before. In a
study of 677 high school students, over half of the students reported being a victim of cyberbullying within
the last year [1]. Compared to traditional bullying, cyberbullying could have more long-term effects on the
victims.

The negative consequences of bullying do not only impact the victims, but also the bullies themselves.
Youth who bully others tend to show higher levels of conduct problems and dislike of school, whereas the
victims demonstrate higher level of insecurity, depression, isolation, physical and mental symptoms, and low
self-esteem. There is growing evidence showing that the bullying victimization may lead to long-term mental
health consequences including sadness, anxiety, depression, self-harm, and suicidal attempts [2]. The bullies
risk addiction, injury and criminal convictions in their adulthood. [4, 5].

Last year, Katy Martinez and Professor Andrea Bruder studied the dynamics of the bullying behavior in
a population by designing an epidemic model of ordinary differential equations that models the behavior of
bullying. The SEBNR bullying model presented by Bruder and Martinez was created by taking inspiration
from a model used to analyze the spread of influenza. In this paper, we further applied the theory from their
research and studied the behavior of the bullying epidemic on social network structures. We constructed an
SEBNR stochastic model by taking inspirations from graph theory, network theory, stochastic modeling, and
probability. Furthermore, we examined this stochastic SEBNR bullying model on different social network
structures, which were constructed using data collected in a classroom setting at Colorado College, and
studied the behavior of the bullying model on various types of network structures.

2 Literature Review

2.1 Epidemic Models

A model is a greatly simplified representation of a real system. Epidemic models are used to gain general un-
derstandings of transmission dynamics through a population, to reach general qualitative conclusions, or for
real-time use in particular epidemics [11]. In order to construct epidemic models, the compartmentalization
of individuals based on their disease status is required. Notice that any of the details of the progression of the
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epidemic are neglected while constructing epidemic models. However, the simplification has proved to be suc-
cessful for a long time [7]. Using these assumptions, we could derive two sets of differential equations that are
the basis of almost all mathematical epidemiology models: the deterministic susceptible-infectious-recovered
(SIR) model, 

dS
dt = −βISN
dI
dt = βIS

N − γI
dR
dt = γI

and the susceptible-infectious-susceptible (SIS) model{
dS
dt = −βISN + γI
dI
dt = βIS

N − γI

Generally, we have three assumptions for both SIR and SIS models. The first assumption is homogeneity
of hosts, which means all individuals have the same characteristics. The second one is uniform mixing,
which means each individual has a equal probability to contact other individuals in the population. The
third assumption is no vital dynamics. In the SIR model, individuals begin as susceptible (S), then move to
the infected compartment (I) after being infected, and then finally move to the recovered compartment (R)
due to recovery from the infection. Comparing to the SIR model, individuals do not gain immunity to the
disease after recovery from infection in the SIS model. Thus there is no recovered class in the SIS model,
and recovered individuals move back into the susceptible class (S). In both models, N stands for the total
population. In the SIR model, N(t) = S + I + R. In the SIS model, N(t) = S + I. Parameter β is the
contact rate and I

N stands for the proportion of the infected individuals in the population. Therefore, βIS
N

is the rate at which susceptible individuals encounter infected individuals and become infected. We could
name λ = β I

N where λ is the force of infection, and the SIR model would simplify to
dS
dt = −λS
dI
dt = −λS − γI
dR
dt = γI

γ is the rate of recovery and γI stands for the rate at which infected individuals are removed from the I
class and either move into the R class (for the SIR model) or the S class (for the SIS model). The basic
reproductive number (R0) is the mean number of secondary infections caused by a single infected individual
in an entirely susceptible population [9]. To compute R0, notice S0 = N when the disease first begins
spreading. To begin the epidemic, we need

dI

dt
> 0

Therefore,
βIS0

N
− γI > 0

βI − γI > 0

Thus,

R0 =
β

γ

In general, if R0 ≤ 1, the introduction of one infectious individual will cause only minor outbreaks in large
populations. If R0 > 1, for a large population, major outbreaks will occur with probability 1− z∞, which is
strictly between 0 and 1. z∞ represents the probability of a minor outbreak within a very large population.
The larger R0 is, the less likely the outbreak will be a minor one [9]. Generally, we have two assumptions
for both SIR and SIS models. The first assumption is homogeneity of hosts, which means all individuals
have the same characteristics. The second one is uniform mixing, which means each individual has a equal
probability to contact other individuals in the population.
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2.2 Graph Theory

Graph theory is an important mathematical tool in a variety of subjects such as operational research,
electrical engineering, and architecture. A graph could be considered as an ordered pair G = (V (G), E(G)),
where V (G) is an nonempty finite set of nodes (or vertices), and E(G) a set of distinct unordered pairs of
distinct elements of V (G) called edges. A pair e = {v, w} is an element of E(G) if the vertices v and w are
connected. Thus we could write vw as an edge. For example, in Figure 2, the graph G1 = (V (G1), E(G1))
where V (G1) = {1, 2, 3, 4, 5, 6} is the set of nodes and E(G1) = {12, 23, 26, 56, 35, 34, 45} is the set of edges.
We could also assign numerical value to each edge in a graph to represent the strength of the connection
between each pair of vertices. These numerical values, named weights, are usually positive, real numbers.
The degree of a vertex v in a graph stands for the number of edges incident to vertex v. For example, vertex
2 in G1 has a degree of 3.

There are various categories of graphs. The most common type is the simple graph, in which a given
pair of vertices can be connected by at most one edge. For example, both graph G1 and graph G2 in Figure
1 and Figure 2 are simple graphs. If there are multiple edges joining one pair of vertices, the graph is a
multigraph. If we not only allow multiple edges joining one pair of nodes, but also allow the nodes to join
themselves by edges, which creates a self-loop, we call this type of graph a psuedograph. For the interest of
this paper, we will only study the simple graphs.

In a given graph, we say two vertices v, w are adjacent if they are connected by an edge vw. The total
number of vertices w that are adjacent to vertex v is called the degree of v and is denoted by kv. We denote
the mean degree of a graph as 〈k〉. For a graph with N vertices, we define

〈k〉 =
1

N

N∑
i=1

kv =
k1 + k2 + ...+ kN

N

which implies the following formula

〈k〉 =
2 | E(G) |

N

For example, in graph G1, k3 = 3 and 〈k〉 = 2|7|
6 = 2+3+2+3+3+1

6 = 14
6 .

A graph could also be represented by a matrix. For a graph G with vertices labeled {1, 2, 3, ..., n}, its
adjacency matrix A is the n× n matrix whose ij-th entry is the number of edges joining vertex i and j. If
graph G has edges labeled as {1, 2, 3, ...,m}, its incidence matrix M is the n×m matrix whose ij-th entry is
1 if vertex i is incidence to edge j, and 0 otherwise [8]. For example, the labeled graph G1 has the following
adjacency and incidence matrices:

A =


0 1 0 0 0 0
1 0 1 0 0 1
0 1 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0

M =


1 0 0 0 0 0 0
1 1 0 0 0 0 1
0 1 1 0 1 0 0
0 0 1 1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 1 1


A path in a graph G is a sequence of vertices P = (i1, i2, i3, ..., im) such that each of the pairs {i1, i2},

{i2, i3},..., {im−1, im} is an edge of G. For example, for the sequence (1, 2, 6, 5) is a path while the sequence
(1, 2, 5, 6) is not a path in graph G1. The length of path P = (i1, i2, i3, ..., im) is l = m − 1. A graph G
is connected if for every pair of vertices, there is a path between them [9, 10]. For example, Graph G1 in
Figure 1 is connected while G2 in Figure 2 is not connected since vertex 1 cannot be reached by a path from
vertex 2.

3 Methods

3.1 Network Theory

The studies of network structures mainly concentrate in two fields: social science and graph theory. In social
science, the use of network analysis helps to understand the spread of new ideas and innovations in a society.
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Figure 1: Graph G1
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Figure 2: Graph G2

Furthermore, social dynamics could usually be explained by analyzing the social networks that are behind
them. The study of graph theory provides useful tools to quantify and describe networks [7].

Multiple types of networks have been studied for epidemiology purposes. The most popular ones are
random networks, lattices, small world, spatial, and scale-free. Each of these networks distributes individuals
differently in space and forms connections between individuals in different fashions. In order to construct
a model that could largely capture the dynamics of social networks in real world, the scale-free network
is the most ideal out of these five types. Comparing to other types of network, the scale-free network
displays preferential attachment, which mimics the nature of certain individuals who have significantly more
connections or friends in comparison to others. Other types of networks such as lattices show little variation
in neighbor sizes. To construct a scale-free network, a new node is added into the existing network at each
time step. The new individuals will exhibit preferential likelihood, which means they are more likely to
connect with nodes that are adjacent to more vertices in the network. Thus, the degree of nodes displays
power-law distribution in the scale-free network. The popular individuals in scale-free networks are called
“hubs”. The major hubs are connected with smaller hubs, and the smaller hubs are connected to individuals
with even less connections. This process mimics the formation of social networks since people tend to make
friends with more popular individuals. Because of the heterogeneity in the degree of each individual, it is
interesting to investigate the spread of epidemics on the scale-free network. For the popular individuals
in the network, there are mainly two consequences in terms of the spread of epidemics. First, they are at
greater risk of infection. Second, they could transmit the disease to many others. Studies has shown that
infection is concentrated among individuals with the highest degree [7].

For epidemic models such as SIR and SIS, we assume homogeneity of hosts and uniform mixing. However,
in the scale-free network, there exists extreme heterogeneity of hosts due to preferential attachment. There-
fore, it is also important for us to look at fully connected networks while studying the spread of epidemics

on a network. We denote Kn for a complete graph with n vertices. Kn contains
(
n
2

)
= n(n−1)

2 edges. In the
complete graph, every pair of hosts (i, j) is connected by a unique edge, which means each individual has
a equal probability in contacting the other individuals. Thus, uniform mixing is presented in the complete
graph. Since there is no preferential attachment, each individual in the network has the same characteristics
and therefore the assumption of homogeneity of hosts holds[9].

3.2 Bullying Model

Kaityn Martinez and Professor Andrea Bruder proposed a model for bullying in schools by considering
bullying as an epidemic. In this model, the total population is categorized into five classes: susceptible
individuals (S), exposed individuals (E), bullies (B), non-bullies (N), and recovered individuals (R). The
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base model for this system is shown in Figure 3. Notice that in this bullying model, individuals in the E
compartment are considered as the victims of bullying. In this paper, we derived and studied the stochastic
bullying model using informations from this deterministic model. In the stochastic model, individuals in
compartment E are considered as the witnesses of the bullying behavior, but not necessary the victims
of bullying. The explanation for changing the definition for the E compartment is given in the Model
and Methods section of this paper. The deterministic model is constructed using the following system of
equations: 

P (t) = S + E +B +N +R
dS
dt = −βSB + dR− cS
dE
dt = βSB − kE
dB
dt = pkE + cS − αB
dN
dt = (1− p)kE − ηN
dR
dt = ηN + αB − dR

β stands for the rate of infection, d stands for the rate of recovered children losing their immunity to bullying,
c is the proportion of susceptible children becoming bullies without being bullied, k is the likelihood of
remaining in the exposed class, p is the probability of becoming a bully after being a victim of bullying, η is
the recovery rate for non-bullies, and α is the recovery rate for bullies.

In this model, uniform mixing and homogeneity of hosts are assumed. There are three classes that are
categorized as the diseased populations: E(t), B(t), and N(t). However, only B(t), which is the bully class,
is infectious. Both bullies and non-bullies recover and then move into the same compartment for recovered
individuals. However, the recovery rate is different for these two classes. Due to the social dynamics in
real life, immunity for bullying does not last for the recovered class in this model. The basic reproduction
number for this model is

R0 =
βp

α

By testing the value of R0, Martinez concluded that when R0 < 1, the model results in a disease free
equilibrium, which means the disease will die out. If R0 > 1, the model results in an endemic equilibrium,
which means the disease will remain permanently endemic in the population [12].

Table 1: Parameters and their Units

Parameter Meaning Units
β rate of infection 1

#ofindividuals×time
c proportion of susceptible population that spontaneously become bullies 1

time
p probability of becoming a bully after being bullied no units
k 1

k is the amount of time spent exposed to bullying 1
time

η 1
η is the amount of time spent as a non-bully 1

time

α 1
α is the amount of time spent as a bully 1

time
d proportion of children that lose their immunity to bullying 1

time

3.3 Stochastic Modeling and Probabilities

Two types of models are usually used for for epidemic modeling: the deterministic model and the stochastic
model. Although the deterministic model is widely used for epidemic modeling, there are several limitations
within the model. First, the outputs from the deterministic model depend completly on set parameter values
and initial conditions. For example, in the deterministic SIR model, we can determine the characteristics of
the epidemic by the value of R0, which is completely based on the value of parameters β (rate of infection),
and γ (rate of recovery). Thus, in deterministic modeling, the potential differences in the outputs that
are caused by random changes in the parameter values are completely neglected. Second, in deterministic
models, we have to assume that both the number of infected individuals and the number of possible contacts
with susceptible individuals is large. Therefore, the deterministic model does not perform well for modeling
the beginning and the end of an epidemic, where the number of infected individuals is relatively small. The
deterministic model is also not ideal for modeling epidemics on a network where the number of available
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susceptible individuals is small. Third, the approximation of individuals is continuous in deterministic
models, which could potentially cause mistakes. For example, Murray et al. [15] purposed a deterministic
model to predict the dynamics of rabies among foxes in England. Their model predicted that the number of
infected foxes would rapidly increase until the number of susceptible foxes was too low and then the disease
would die out. However in real life, it turned out that the disease never completely die out and was able
to regenerate from arbitrarily small amounts of residual infected individuals. Thus, the stochastic modeling
would be a better approach to predict the epidemics for the above scenarios [11][14].

To construct a stochastic model for analyzing the spread of a disease in a population, we first need to
use binomial models to estimate the probability for each individual to move from one class to another. To
construct a simple binomial model, let p be the probability of transmitting the disease during a contact
between a susceptible individual and an infected individual. Denote q = 1 − p as the probability of a
susceptible individual not being infected after contact with an infected host. q could also be named as the
escaping probability. Notice in the binomial model, each contact is assumed to be independent from each
other, which indicates that the previous contacts will not affect the successive contacts during the epidemic.
Let n be the number of contacts, then the probability of a susceptible individual escaping infection after n
contacts is qn = (1− p)n. Thus, the probability of a susceptible individual getting infected after n contacts
is 1− qn = 1− (1− p)n.

With the knowledge of the simple binomial model, we can now construct a chain binomial model. A chain
binomial model is derived from a simple binomial model by assuming the infection spreads from individual
to individual in a population in discrete time, producing chains of infections governed by the binomial
probability distribution. In this section we will study the Reed-Frost Model, which is a classic example
of the chain binomial model. In the Reed-Frost Model, we assume individuals pass through three states:
susceptible (S), infected (I), and recovered (R). When a susceptible individual is infected via contact with
an infected individual, he/she will become infectious for only the next time period, and then gain permanent
immunity. There is no vital dynamics in the population. Given St = st and It = it at the previous time
step, we write the transition probability of getting It+1 = it+1 new infected individuals at time t+ 1 as

Pr(It+1 = it+1 | St = st, It = it) =

(
st
it+1

)
(1− qit)it+1qit(st−it+1), st ≥ it+1 (1)

where (
st
it+1

)
=

st!

it+1!(st − it+1)!

is the number of ways to choose the supposed it+1 new cases out of the st susceptible individuals. The
number of susceptible, and recovered individuals at time t+ 1 are

St+1 = St − It+1 (2)

Rt+1 = Rt + It =

t∑
n=0

In (3)

The probability for the chain {i0, i1, i2, ..., iT } is thus given by

Pr(I1 = i1 | S0 = s0, I0 = i0)Pr(I2 = i2 | S1 = s1, I1 = i1)...P r(IT = iT | ST−1 = sT−1, IT−1 = iT−1)

=

T−1∏
t=0

(
st
it+1

)
(1− qit)it+1qit(st−it+1)

(4)

To demonstrate a simple example of the Reed-Frost model, consider a closed population of three individuals.
Suppose I0 = 1, S0 = 2. Then at t = 1, the infected individual infects one, both, or neither of the two
susceptible individuals. From Equation 1, we obtain

Pr(I1 = 1) =

(
2

1

)
(1− q1)1q1(2−1) = 2(1− q)q = 2pq

Pr(I1 = 2) =

(
2

2

)
(1− q1)2q1(2−2) = (1− q)2 = p2
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Pr(I1 = 0) =

(
2

0

)
(1− q1)0q1(2−0) = q2

Now, we can form four possible chains for the numbers of infected individuals at t = 0, 1, 2. The first one is
{1, 1, 1} and the chain probability for this chain is

Pr(I1 = 1)Pr(I2 = 1) = (2pq)

(
1

1

)
(1− q1)1q1(1−1) = 2p2q

The second one is {1, 1, 0} and the chain probability is

Pr(I1 = 1)Pr(I2 = 0) = (2pq)

(
1

0

)
(1− q1)0q1(1−0) = 2pq2

The third one is {1, 2, 0} and the chain probability is

Pr(I1 = 2)Pr(I2 = 0) = (p2)

(
0

0

)
(1− q2)0q2(0−0) = p2

The fourth one is {1, 0, 0} and the chain probability is

Pr(I1 = 0)Pr(I2 = 0) = (q2)

(
1

0

)
(1− q0)0q0(1−0) = q2

In this paper, the movement of individuals between each compartment of the model was determined by
selecting random numbers from either a Bernouilli distribution (also known as the coin toss distribution) or
a multinomial distribution. The Bernoulli distribution could be interpreted as a binomial distribution where
the probability of one success from a trial is

Pr(X = 1) =

(
1

1

)
p1(1− p)1−1 = p

For the multinomial distribution, suppose there could be k different outcomes. Denote the number of each
outcome i (i = 1, 2, ..., k) and let pi be the probability for each outcome, then for non-negative integers
x1, ..., xk,

Pr(X1 = x1 and ... and Xk = xk) =

{
n!

x1!...xk!
px1
1 ...p

xk

k , when
∑k
i=1 xi = n

0, otherwise

4 Model and Methods

4.1 Constructing Social Network Structures

Three different social network structures are studied in this paper: the complete graph K24 (Figure 3.c),
the friendship graph F1 where each edge has the same weight (Figure 3.a and 3.b), and the friendship graph
with different edge weight F2 (Figure 3.a and 3.b). All three network structures were constructed using
Mathematica, which is a mathematical computation software.

We were interested in studying the 24-node complete graph K24 because each node in the graph is
connected to all other nodes in the graph and the weights of the edges between each pair of nodes is
equal. These two characteristics of K24 are considered equivalent to the two model assumptions for standard
deterministic epidemic models: uniform mixing and homogeneity of hosts. The complete graph K24 was
constructed using built-in commands for creating complete graphs in Mathematica. K24 contains 24 vertices
and 276 edges. Every edge in K24 has a weight of 1.

The information used to construct F1 and F2 were obtained from responses to a 25-question survey, which
is attached in the Appendix section of this paper. 25 students from the MA325 Graph Theory class completed
the survey. In the survey, students were asked to rate their relationship with every other student in class on
a scale of 1 to 5. A rating of 1 means no interaction between the two individuals, 2 means the two people
know each other but barely have conversed, 3 stands for frequent conversations but never spending time
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together, 4 stands for occasionally spending time together, and 5 means spending time together frequently.
In F1 and F2, an edge was added between two vertices if one of the two students provided a rating 2 or above
for their relationship. In F1, every edge was assigned with a weight of 1. In F2, the weight of each edge was
determined based on the ratings of the relationships between each pair of students. The corresponding edge
weight for each pair of ratings is presented in Table 1. F1 and F2 are shown in Figure 3.a. Both F1 and F2

contain 24 vertices and 186 edges. Data from Student 2 was omitted when constructing F1 and F2 due to
the inconsistency between the ratings he provided and others provided about him. In F1 and F2, the most
popular individual is Student 21, with 22 connections in total. The least popular individual is Student 11,
which only has 7 connections in the network. On average, each student in the network had 7.75 connections.
An 11-person clique (a fully connected subgraph) was also observed in F1 and F2.

A modified version of F1 and F2 (Figure 3.b) was also created by removing 5 connections from Student
11. Both the modified F1 and F2 contain 24 vertices and 181 edges. The reason for the modification is
explained in Section 4.2. In the modified F1 and F2, each student has 7.54 connections.
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(a) Friendship graph F1 and F2. Both F1 and F2 have 24
nodes and 186 edges. In F1, each edge has a weight of 1.
In F2, each edge was assigned with a weight based on the
friendship survey rating. The edge weights in F2 ranges from
0 to 1.

(b) The modified friendship graphs F1 and F2. 5 connections of
Student 11 were removed. Both the modified F1 and F2 contain
24 nodes and 181 edges. In the modified F1, each edge has a
weight of 1. In the modified F2, each edge was assigned with a
weight based on the friendship survey rating. The edge weights
in the modified F2 ranges from 0 to 1.

(c) The complete graph K24. K24 contains 24 nodes and
276 edges. Each edge was assigned with a weight of 1.

Figure 3: Network structures F1, F2, modified F1, modified F2, and K24

Table 2: Corresponding edge weights in F2 for each pair of rating from the friendship survey

Ratings 1 2 3 4 5
1 0 0.125 0.25 0.375 0.5
2 0.125 0.25 0.375 0.5 0.625
3 0.25 0.375 0.5 0.625 0.75
4 0.375 0.5 0.625 0.75 0.875
5 0.5 0.625 0.75 0.875 1
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4.2 Implementing the Bullying Model on Network Structures

The bullying model was implemented on the three network structures F1, F2, and K24 using Mathematica.
The five compartments in this epidemic model are Susceptible (S), Exposed (E), Bully (B), Non-bully (N),
and Recovered (R). Again, in this model, the movements of individuals between each compartment were
determined by selecting random numbers from either a Bernoulli distribution or a multinomial distribution.

Recall that for a individual in the S compartment, he/she will have the probability of becoming exposed
to bullying if he/she is connected to a bully. The susceptible individual could either move forward to the
E compartment, or remain in the S compartment for the next time step. Thus at each time step, the
movement for individuals in the S compartment is determined by randomly selecting either a 0 or 1 from
a Bernoulli distribution, where 0 represents remaining in the S compartment and 1 represents moving to
the E compartment. For each individual in the S compartment, denote the probability of moving to the
E compartment as p1 and the probability for staying in the S compartment as 1 − p1. For K24 and F1,
p1 = 1 − p1 = 0.5. For F2, p5 equals the weight of the edge between the susceptible individual and the
bully. This assumption is supported by Albert Bandura’s Social Learning Theory, which indicates that the
closer the relationship between the child and the model, the more likely that the child will observe and
perform behaviors that the model demonstrates. Thus, it is safe to assume that the closer the relationship
between the bully and the susceptible individual, the more likely that the susceptible individual will learn
and perform bullying behaviors by observing the bully. [17]

The movement of individuals in the E compartment at each time step is determined by drawing a random
number from a multinomial distribution since the individual could either move to the B compartment, N
compartment, or remain at the E compartment at each time step. The probability for each of these outcomes
are p2, p3, and p4. For all three network structures, p2 = 0.2, p3 = 0.3, and p4 = 0.5. Similar to individuals
in the S compartment, the movement of individuals in compartment B, N, and R are also determined by
drawing either a 0 or 1 from the Bernoulli distribution at each time step. Individuals in the B and N
compartments could either move forward to the R compartment, or remain as a bully or non-bully for
this time step. Recovered individuals (R) could either become susceptible again or remain recovered. For
individuals in B, N, or R, the probability of moving to the next epidemic compartment is p5. The probability
for remaining in the same compartment is 1− p5. For F1, F2 and K24, p5 = 1− p5 = 0.5.

90 trials of simulations were conducted on F1 and F2, and 30 trials were conducted on K24. Each trial
lasted 100 days. 1 initial bully and 23 susceptible individuals were introduced to the population at day 1
of each trial. In order to investigate the impact of different initial conditions on the epidemics, 3 different
individuals were introduced as the initial bully for simulations on F1 and F2. Student 21, who was the most
popular individual in both F1 and F2 (degree 22), was introduced as the initial bully for the first 30 trials
of simulation on F1 and F2. Student 12 (degree 15) was introduced as the initial bully for the second 30
trials on F1 and F2. After removing 5 edges that were connected to Student 11, the modified Student 11
(previously degree 7, now degree 2) was introduced as the initial bully for the last 30 trials of simulations on
F1 and F2. We removed 5 connections from Student 11 because we were interested in investigating whether
the initial bully having a very low number of connections would significantly change the progress of the
epidemic. For the complete graph K24, since each individual had an identical number of connections (23
connections), individual 12 was set to be the initial bully for all 30 trials.

We were interested in investigating three different questions. First, on the same social network structure,
how would the different initial conditions affect the behavior of the bullying epidemic? Second, given the
same initial condition, how would the epidemic evolve differently on different network structures? Last, are
there any significant variables that could predict how long the bullying epidemic would last? Four variables
were collected from each simulation: the Number of Days to Eliminate Bullying, the Maximum Number of
Bullies in a Day, the Number of Exposed Individuals on Day 2, and the Weighted Average of Bullies per
Day. The units for these variables are presented in Table 2. The Number of Days to Eliminate Bullying
is determined by the total number of days it took to obtain no exposed individual or bully in the network
during each trial. The Maximum Number of Bullies in a Day was determined by the biggest possible number
of bullies observed in a day during each trial. The Number of Exposed Individuals on Day 2 was studied
because of its similarity to the basic reproduction number R0 from standard deterministic epidemic models.
This variable accounts for the number of exposed individuals observed on the second of each trail. The
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Weighted Average of Bullies per Day for each trial was calculated using the following formula:

weighted average =

∑100
i=1 number of bullies on day i

100 days

=
0 · (number of days with 0 bullies) + ...+ 8 · (number of days with 8 bullies)

100 days

(5)

Table 3: Parameters and their Units

Parameter Meaning Units
Number of days to Eliminate bullying The duration of the bul-

lying epidemic in each
trial.

day

Max Number of Bullies in a Day The maximum number of
bullies that was observed
in a single day during
each trial

bully

Number of Exposed on Day 2 The number of exposed
individuals on the second
day of each trail

bully

Weighted Average The average number of
bullies on a day for each
trial

bullies
days

5 Results

5.1 K24

For 2 out of the 30 trials conducted on K24, the bullying epidemic did not terminate during the 100-day
period. By setting Number of Days to Eliminate Bullying = 101 for these two trials, the mean of Number
of Days to Eliminate bullying for the 30 trials on K24 was 34.94 days. By removing these two trials, the
mean for Number of Days to Eliminate Bullying was 30.32 days. The average for the Maximum Number of
Bullies in a Day was 5.13 bullies. The average for the Number of Exposed Individuals on Day 2 was 11.8
bullies. The mean of the Weighted Average was 0.706 bullies/day.

5.2 F1

First, Student 21 (degree 22) was introduced as the initial bully and 30 simulations were conducted. For 2
out of the 30 trials, the bullying epidemic did not terminate during the 100-day period. By setting Number of
Days to Eliminate Bullying = 101 for these two trials, the mean for Number of Days to Eliminate Bullying
for the 30 trials on F1 was 32.23 days. By removing these two trials, the mean for Number of Days to
Eliminate Bullying was 27.32 days. The average for Maximum Number of Bullies in a Day was 4.83 bullies.
The average for Number of Exposed on Day 2 was 11.03 bullies. The mean for the Weighted Average was
0.62 bullies/day.

By introducing Student 12 (degree 15) as the initial bully, the bullying epidemic ended during the 100-
day period for all 30 trials. On average, it took 21.7 days to completely terminate bullying in the network.
The mean for the Maximum Number of Bullies in a Day was 4.23. The mean for the Number of Exposed
Individual on Day 2 was 7.43. The mean for the Weighted Average was 0.484 bullies/day.

Student 11 with 5 connections removed (degree 2) was introduced as the initial bully for the last 30
trials conducted on F1. The bullying epidemic was successfully terminated during the 100-day period for
all 30 trials. On average, it took 9.43 days to eliminate bullying. The mean for the Maximum Number of
Bullies in a Day was 2.0 bullies. On average, the Number of Exposed Individuals on Day 2 was 0.867, which
was significantly less than the means from the previous 60 trials. However, this is not surprising since after
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removing 5 connections, Student 11 was only connected to 2 students, which indicates that he/she could
expose 0, 1, or 2 students to bullying. The mean for the Weighted Average was 0.138 bullies/day.

5.3 F2

For the first 30 trials conducted on F2, Student 21 (degree 22) introduced as the initial bully. On average,
it took 21.33 days to completely eliminate bullying for the first 30 trials on F2. The bullying epidemic was
successfully eliminated for all 30 trials. The mean for Maximum Number of Bullies in a Day was 4.13. The
average Number of Exposed Individuals on day 2 was 10.5, and the mean for Weighted Average was 0.617
bullies/day.

For the second 30 trials conducted on F2, Student 12 (degree 15) was introduced as the first bully to the
network. The bullying epidemic was successfully terminated during the 100-day period for all 30 trials. The
Mean for Number of Days to Eliminate Bullying was 21.9 days. The mean for Maximum Number of Bullies
in a Day was 3.6. On average, 5.1 students became exposed to bullying on the second day of each trial. The
mean for the Weighted Average was 0.361 bullies/day.

With Student 11 (degree 2) introduced as the initial bully, bullying was successfully eliminated from F2

for all 30 trials. On average, it took 10.2 days to end bullying in the network. The average for Maximum
Number of Bullies in a Day is 1.967. The mean for Number of Exposed Individuals on Day 2 was 0.633. The
mean for the Weighted Average was 0.147 bullies/day.

Table 4: Results from introducing Student 21 (22 connections) as the first bully

Variable Network Structure Mean Standard Deviation
Number of days to termi-
nate bullying

F1

F2

K24

32.23
21.33
34.97

27.20
19.48
27.21

Maximum number of bul-
lies in a day

F1

F2

K24

4.83
4.13
5.13

1.64
1.36
1.48

Number of exposed on day
2

F1

F2

K24

11.03
10.50
11.8

2.30
1.96
2.16

Weighted Average F1

F2

K24

0.62
0.37
0.71

0.53
0.38
0.55

Table 5: Results from introducing Student 12 (15 connections) as the first bully

Variable Network Structure Mean Standard Deviation
Number of days to termi-
nate bullying

F1

F2

29.70
21.90

18.51
15.97

Maximum number of bul-
lies in a day

F1

F2

4.23
3.60

1.46
1.81

Number of exposed on day
2

F1

F2

7.43
5.10

1.76
1.30

Weighted Average F1

F2

0.48
0.36

0.35
0.31
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Table 6: Results from introducing the modified Student 11 (2 connections) as the first bully

Variable Network Structure Mean Standard Deviation
Number of days to termi-
nate bullying

F1

F2

9.43
10.20

12.56
14.00

Maximum number of bul-
lies in a day

F1

F2

2.00
1.97

1.60
1.43

Number of exposed on day
2

F1

F2

0.87
0.63

0.57
0.62

Weighted Average F1

F2

0.14
0.15

0.23
0.24

6 Discussions

6.1 The Behavior of the Bullying Epidemic on Different Social Network Struc-
tures

Compare to the total 180 simulations conducted on F1 and F2, the 30 simulations conducted on the complete
graph K24 had the largest means for all four variables collected: Number of Days to Eliminate Bullying,
Maximum Number of Bullies in a Day, Number of Exposed Individuals on Day 2, and the Weighted Av-
erage. Because K24 was fully connected (each individual had 23 connections) and each edge was assigned
with a weight of 1, bullies in K24 could cause more susceptibles’ exposure to the bullying behavior. The
increased number of exposed individuals could then allowed more movement from the E compartment to the
B compartment during each trial. Thus on average, more exposed individuals were expected to be observed
on the second day for trials conducted on K24, which explained the higher average for Number of Exposed
Individuals on Day 2. The mean for the Maximum Number of Bullies in a Day for trials conducted on
K24 was also expected to be higher than the mean from trials conducted on F1 and F2. The mean of the
Weighted Average was also larger for trials on K24 than on F1 and F2. This is due to the longer duration of
the bullying epidemic on K24, which implies that there were more days with 1 or more bullies observed in
each 100-day trial executed on K24.

Given the initial condition of Student 21 (degree 22) introduced as the first bully, simulations conducted
on F1 had higher means than on F2 for all four variables. This trend was also observed in trials conducted on
F1 and F2 where Student 12 (degree 15) was set as the initial bully. These observations were not surprising
since every edge in F1 was assigned with a weight of 1 while edges in F2 were assigned with weights ranging
from 0.125 to 1. In F1, each susceptible individual that was connected to a bully faced a probability of 0.5
of moving to the exposed compartment at each time step. In F2, this probability equaled to the weight of
the edge between the susceptible individual and the bully, and only 74 out of the 186 edges had weights of
0.5 or above. Since over half of the edges in F2 were assigned with weights less than 0.5, bullies in F2 could
potentially cause less susceptible individuals becoming exposed to bullying, which led to shorter duration of
the bullying epidemic. One unusual observation was that by introducing the modified Student 11 (previously
degree 7, now 2) as the initial bully, the 30 simulations on F2 had a slightly higher mean for Number of
Days to Eliminate Bullying than trials on F1. However, trials on F1 demonstrated larger means for the
three other variables: Maximum Number of Bullies in a day, Number of Exposed Individuals on Day 2,
and the Weighted Average of Bullies per day. This observation could be caused by the stochastic nature
of the bullying epidemic model. Since only 30 trials were conducted on each network structure using each
initial condition, the data gathered from these trials might not accurately describe the total population. In
order to better describe the overall population, more simulations should be conducted with each set of initial
conditions and network.

6.2 Predictors for the Duration of the Bullying Epidemic

In order to find significant variables that could predict the duration of the bullying epidemic on social
networks, three variables (Maximum Number of Bullies in a Day, Number of Exposed Individuals on Day 2,
and Weighted Average) were tested using regression analysis where the number of days to eliminate bullying
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in each trial was set as the dependent variable. Three regression analyses were conducted for testing each
variable. Data sets collected from trials conducted on F1, F2 and K24 with Student 12 (degree 15 in F1 and
F2, degree 23 in K24) as the initial bully were used for the regression analyses in this section.

First, Maximum Number of Bullies in a day was used as the independent variable. The p-values from the
regression analyses using data from F1 and F2 were less than 0.05, which indicated that the null hypothesis
could be rejected. Thus, in these two regression, the Maximum Number of Bullies in a Day is a statistically
significant variable. In the regression analysis using data from K24, the p-value was larger that 0.05 (p =
0.063) and thus the null hypothesis could not be rejected. The R-squared values from the analyses using
data from F1 and K24 were low (26% and 11%), which implied that only a small amount of the data in
the duration of the bullying epidemic could be explained by the linear regression models. In the regression
model with data from trials on F2, the R-squared value was slightly higher (R-sq = 44.19%). Based on the
findings above, we concluded that the maximum number of bullies in a day from each trial was not a good
predictor for the duration of the bullying epidemic.

The Number of Exposed individuals on Day 2 was tested for the regression. The p-values from the
regression analysis using data from F2 and K24 (p-value = 0.877 and p-value = 0.778) were very large, which
strongly suggest that there were no linear relationships between the independent and dependent variables.
This suggested that Number of Exposed individuals on Day 2 is not a statistically significant variable.
The extremely low R-squared values (0.09% and 0.29%) further confirmed this observation. The p-value
= 0.063 from regression using data from F2 was slightly larger than 0.05, thus the null hypothesis was failed
to be rejected. The R-sq = 11.81% suggested that only 11.81% of the data points of days to eliminate
bullying could be explained by number of exposed individuals on day 2. Based on the observations above,
we determined that there is little or no linear relationship between the duration of the bullying epidemic
and the number of exposed individuals on day 2 of each trial.

The Weighted Average was then tested as the independent variable. The p-value for all three regression
analyses was less than 0.001. Therefore, the null hypothesis, which has no linear relationship between
the dependent and independent variable, could be rejected. Thus the Weighted Average is a statistically
significant variable. The R-squared values from all three regression analyses were high (89.62%, 92.22%,
and 92.20%), which implied that most of the data points for the duration of the bullying epidemic could be
predicted using the linear regression models. Thus, the Weighted Average can nicely describe the duration
of the bullying epidemics using the regression formula. This is not surprising since the weighted average of
bullies per day for each trial was calculated by summing the bullies on each day and then divide by 100. Thus
the longer the epidemic last in a trial, the larger then weighted average would be for that trial. Although
there were strong correlations between the weighted average and the duration of the epidemic, the weighted
average did not provide useful information to predict the duration of the epidemic.

6.3 Impacts of Different Initial Conditions on the Bullying Epidemic

On F1 and F2, three different initial conditions were examined: Student 21 (degree 22), Student 12 (degree
15), and Student 11 with reduced connections (degree 2). 5 connections were removed from Student 11 since
we were interested in investigating whether introducing a highly unconnected individual as the initial bully
would significantly decrease the duration of the bullying epidemics and the first wave of exposed individuals
caused by the first bully in the network.

On F1, the mean for the duration of the bullying epidemic was slightly higher for trials with Student
21 (degree 22) as the initial bully than trials with Student 12 (degree 15) as the first bully. However, for
trials on F1, the average of the number of exposed individuals on day 2 with Student 12 as the initial
bully was significantly smaller than trials with Student 21 as the initial bully. The same patterns was also
observed for trials on F2. One possible explanation for these observations is that since Student 12 had 7
less connections than Student 21, he could expose less susceptible individuals to his bullying behavior on
the second day of each trial. Thus, a significant decrease in the mean of number of exposed individual on
day 2 was observed when changing the initial condition from Student 21 to Student 12. However, since on
average each student in the network had 7.75 connections, the students that were exposed on the second
day by Student 12 were still capable of maintaining the high number of bullies in the network, which would
then lead to more exposure to the bullying behavior inside the network throughout each trial. Thus, there
was not a significant decrease in the mean of days to eliminate bullying when switching the initial condition
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from Student 21 to Student 12. By introducing the modified Student 11 (degree 2) as the initial bully, only
0, 1 or 2 students could be exposed to bullying on the second day. Thus a significant decrease in the mean
of number of exposed individual on day 2 was observed for trials on both F1 and F2. Since Student 11 could
only exposed a maximum of 2 student on the second day of each trial, there could only be a maximum of
3 bullies on the third day of each trial. This greatly decreased the possibility for the bullying epidemic to
persist inside the network. Thus, a significant decrease in the average of days to eliminate bullying was
observed for trials on both F1 and F2 with Student 11 introduced as the first bully.

For trials on both F1 and F2, a slight drop in the mean of the maximum number of bullies in a single day
was observed when changing the initial bully from Student 21 (degree 22) to Student 12 (15 connections).
By changing the initial bully to Student 11 (previously degree 7, now degree 2), the average of the maximum
number of bullies in a single day dropped significantly for trials both on F1 and F2. Again, since both
Student 21 and Student 12 were capable of keeping a high number of exposed individuals on the second
day of each trial, the mean of the duration of the epidemic with both initial conditions were quite similar.
Therefore, similar mean for the maximum number of bullies in a single day should be observed with both
initial conditions. Since Student 11 was not capable of maintaining a high number of students exposed to
bullying on the second day, the average duration of the epidemic is much lower and a much smaller number
for the maximum number of bullies during each trial should be observed.

7 Conclusions

The stochastic SEBNR bullying model could be used to examine the dynamics of bullying behavior on any
social network structures. In this paper, we have shown that the more connected the individuals in the
network and the stronger the connection between each individual, the longer the bullying epidemic would
persist on the social network structures. On the same network structure, introducing different individuals as
the first bully to the network would lead to different behaviors of the bullying epidemic. The more connections
the initial bully has, the higher the chance that more students who were susceptible would become exposed
to bullying, and thus the longer the duration of the bullying epidemic on the network structure. However,
if two different students that are both highly connected within the network structure were introduced as
the first bullies, the difference between the duration of the bullying epidemic would be not very significant.
If compare simulations where a highly connected student and a highly unconnected student introduced as
the first bullies, the duration of the bullying epidemic would be significantly longer for simulations with the
highly connected student as the first bully.

What do we learn from these findings? First, these observations provide us suggestions on how to treat
bullying in networks such as middle school classrooms. Since bullying would last longer on more connected
networks, teachers could reduce the impact of bullying to adolescents by weakening the connections between
students. For example, the teacher could educate students on the negative impacts of bullying behavior.
After recognizing the negative consequences of bullying, susceptible students might weaken their connections
to the bully, which then decrease the impact of the bullying epidemic on the whole network. For students
that were already exposed to bullying, the education about bullying could lower their probability of turning
into a bully themselves.

In this paper, we only examined one set of probabilities for the stochastic SEBNR model and only 30
simulations were conducted for each initial condition on each network structure. In the future, more sets of
parameter values and initial conditions could be examined to develop a deeper understanding of the spread
of bullying on network structure. Also, in order to obtain results that could better describe the “truth” or
the population, more simulations could be conducted.
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A Appendix

The Friendship Survey.
Name:
Please select the option that best describes your relationship with him/her. Leave the question blank if

you are asked to rate the relationship with yourself.
1: I have never met or talked to him/her before. 2: I have introduced myself to him/her but I have

barely talked to him/her. 3: I talk to him/her regularly but have never hanged out together before. 4: I
talk to him/her regularly and have hanged out together a few times. 5: I am good friend with him/her and
we hang out regularly.

1. Describe your relationship with Student 1.
1 2 3 4 5
2. Describe your relationship with Student 2.
1 2 3 4 5
3. Describe your relationship with Student 3.
1 2 3 4 5
4. Describe your relationship with Student 4.
1 2 3 4 5
5. Describe your relationship with Student 5.
1 2 3 4 5
6. Describe your relationship with Student 6.
1 2 3 4 5
7. Describe your relationship with Student 7.
1 2 3 4 5
8. Describe your relationship with Student 8.
1 2 3 4 5
9. Describe your relationship with Student 9.
1 2 3 4 5
10. Describe your relationship with Student 10.
1 2 3 4 5
11. Describe your relationship with Student 11.
1 2 3 4 5
12. Describe your relationship with Student 12.
1 2 3 4 5
13. Describe your relationship with Student 13.
1 2 3 4 5
14. Describe your relationship with Student 14.
1 2 3 4 5
15. Describe your relationship with Student 15.
1 2 3 4 5
16. Describe your relationship with Student 16.
1 2 3 4 5
17. Describe your relationship with Student 17.
1 2 3 4 5
18. Describe your relationship with Student 18.
1 2 3 4 5
19. Describe your relationship with Student 19.
1 2 3 4 5
20. Describe your relationship with Student 20.
1 2 3 4 5
21. Describe your relationship with Student 21.
1 2 3 4 5
22. Describe your relationship with Student 22.
1 2 3 4 5
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23. Describe your relationship with Student 23.
1 2 3 4 5
24. Describe your relationship with Student 24.
1 2 3 4 5
25. Describe your relationship with Student 25.
1 2 3 4 5

B Appendix

Listing 1: Example Mathematica code for F2 with Student 21 as the first bully

1 gf = Graph[{1 <−> 3, 1 <−> 4, 1 <−> 5, 1 <−> 6, 1 <−> 7,
2 1 <−> 8, 1 <−> 9, 1 <−> 13, 1 <−> 16, 1 <−> 18,
3 1 <−> 19, 1 <−> 20, 1 <−> 21, 1 <−> 23, 1 <−> 24,
4 1 <−> 25, 3 <−> 4, 3 <−> 5, 3 <−> 6, 3 <−> 7,
5 3 <−> 8, 3 <−> 9, 3 <−> 10, 3 <−> 13, 3 <−> 14,
6 3 <−> 15, 3 <−> 16, 3 <−> 18, 3 <−> 19, 3 <−> 20,
7 3 <−> 21, 3 <−> 23, 3 <−> 24, 3 <−> 25, 4 <−> 6,
8 4 <−> 7, 4 <−> 8, 4 <−> 9, 4 <−> 10, 4 <−> 12,
9 4 <−> 13, 4 <−> 14, 4 <−> 15, 4 <−> 16, 4 <−> 17,

10 4 <−> 18, 4 <−> 19, 4 <−> 21, 4 <−> 22, 4 <−> 23,
11 4 <−> 24, 4 <−> 25, 5 <−> 6, 5 <−> 7, 5 <−> 8,
12 5 <−> 9, 5 <−> 10, 5 <−> 12, 5 <−> 13, 5 <−> 14,
13 5 <−> 16, 5 <−> 18, 5 <−> 19, 5 <−> 20, 5 <−> 21,
14 5 <−> 22, 5 <−> 23, 5 <−> 24, 5 <−> 25, 6 <−> 8,
15 6 <−> 9, 6 <−> 11, 6 <−> 13, 6 <−> 16, 6 <−> 17,
16 6 <−> 18, 6 <−> 20, 6 <−> 21, 6 <−> 23, 6 <−> 25,
17 7 <−> 9, 7 <−> 10, 7 <−> 11, 7 <−> 12, 7 <−> 14,
18 7 <−> 16, 7 <−> 21, 7 <−> 22, 7 <−> 23, 8 <−> 9,
19 8 <−> 10, 8 <−> 12, 8 <−> 13, 8 <−> 14, 8 <−> 16,
20 8 <−> 18, 8 <−> 19, 8 <−> 20, 8 <−> 21, 8 <−> 22,
21 8 <−> 23, 8 <−> 24, 8 <−> 25, 9 <−> 10, 9 <−> 12,
22 9 <−> 13, 9 <−> 14, 9 <−> 16, 9 <−> 17, 9 <−> 18,
23 9 <−> 19, 9 <−> 20, 9 <−> 21, 9 <−> 23, 9 <−> 24,
24 9 <−> 25, 10 <−> 12, 10 <−> 14, 10 <−> 16, 10 <−> 21,
25 10 <−> 22, 10 <−> 23, 11 <−> 17, 11 <−> 20, 11 <−> 21,
26 11 <−> 23, 11 <−> 25, 12 <−> 14, 12 <−> 16, 12 <−> 18,
27 12 <−> 19, 12 <−> 20, 12 <−> 21, 12 <−> 22, 12 <−> 23,
28 12 <−> 24, 13 <−> 16, 13 <−> 18, 13 <−> 19, 13 <−> 20,
29 13 <−> 21, 13 <−> 22, 13 <−> 23, 13 <−> 25, 14 <−> 15,
30 14 <−> 18, 14 <−> 19, 14 <−> 22, 14 <−> 24, 15 <−> 17,
31 15 <−> 18, 15 <−> 19, 15 <−> 21, 15 <−> 23, 16 <−> 18,
32 16 <−> 19, 16 <−> 20, 16 <−> 21, 16 <−> 22, 16 <−> 23,
33 16 <−> 24, 16 <−> 25, 17 <−> 20, 17 <−> 21, 17 <−> 25,
34 18 <−> 19, 18 <−> 21, 18 <−> 23, 18 <−> 24, 18 <−> 25,
35 19 <−> 20, 19 <−> 21, 19 <−> 22, 19 <−> 23, 19 <−> 24,
36 19 <−> 25, 20 <−> 21, 20 <−> 23, 20 <−> 25, 21 <−> 22,
37 21 <−> 23, 21 <−> 24, 21 <−> 25, 22 <−> 23, 22 <−> 25,
38 24 <−> 25
39 },
40 EdgeWeight −> {0.125, 0.25, 0.625, 0.625, 0.125,
41 0.875, 0.375, 0.875, 1, 0.625,
42 0.75, 0.875, 0.5, 0.375, 0.25,
43 0.5, 0.375, 0.375, 0.125, 0.125,
44 0.625, 1, 0.125, 1, 0.125,
45 0.125, 0.375, 0.375, 0.125, 0.125,
46 0.375, 0.125, 0.625, 0.125, 0.125,
47 1, 0.125, 0.25, 0.75, 0.875,
48 0.25, 0.5, 0.125, 0.125, 0.125,
49 0.375, 0.125, 0.625, 0.125, 0.5,
50 0.5, 0.125, 1, 0.25, 0.375,
51 0.5, 0.25, 0.25, 0.75, 0.125,
52 1, 0.125, 0.25, 1, 0.625,
53 0.125, 0.125, 0.25, 0.875, 0.25,
54 0.625, 0.25, 0.5, 0.5, 0.375,
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55 0.125, 1, 0.875, 0.25, 1,
56 0.125, 1, 0.125, 0.5, 0.5,
57 0.125, 0.5, 0.75, 0.625, 0.625,
58 0.125, 0.25, 1, 0.5, 0.75,
59 0.375, 0.875, 0.25, 0.125, 0.25,
60 0.5, 0.25, 0.25, 0.125, 0.25,
61 1, 0.125, 0.625, 0.125, 0.5,
62 0.125, 0.25, 0.375, 0.25, 0.5,
63 0.25, 0.25, 0.375, 0.125, 0.125,
64 1, 0.125, 1, 0.5, 0.875,
65 0.875, 0.125, 0.375, 0.125, 0.375,
66 0.5, 0.125, 0.25, 0.125, 0.5,
67 0.375, 1, 0.5, 0.75, 1,
68 0.25, 0.5, 0.125, 0.125, 0.5,
69 0.5, 0.5, 0.25, 0.25, 0.375,
70 0.125, 0.125, 0.125, 0.25, 0.875,
71 0.625, 1, 0.625, 0.25, 0.625,
72 0.625, 0.125, 0.5, 0.125, 0.125,
73 1, 0.75, 0.25, 0.75, 0.375,
74 0.75, 0.375, 0.25, 0.5, 0.125,
75 0.125, 0.75, 0.625, 0.875, 0.25,
76 1, 0.5, 0.625, 0.5, 0.125, 0.125
77 }, VertexLabels −> ”Name”]
78 M3 = WeightedAdjacencyMatrix[gf];
79 n = 0;
80 days = 100;
81 runs = 30;
82

83 Lf3 = VertexList [ gf ];
84 Lf3copy = Table[0, {s, 1, 24}];
85 Count3s1 = Table[Table[0, {w, 1, days}], runs ];
86

87 Do[
88 Lf3 [[1]] = 1;
89 Lf3 [[2]] = 1;
90 Lf3 [[3]] = 1;
91 Lf3 [[4]] = 1;
92 Lf3 [[5]] = 1;
93 Lf3 [[6]] = 1;
94 Lf3 [[7]] = 1;
95 Lf3 [[8]] = 1;
96 Lf3 [[9]] = 1;
97 Lf3 [[10]] = 1;
98 Lf3 [[11]] = 1;
99 Lf3 [[12]] = 1;

100 Lf3 [[13]] = 1;
101 Lf3 [[14]] = 3;
102 Lf3 [[15]] = 1;
103 Lf3 [[16]] = 1;
104 Lf3 [[17]] = 1;
105 Lf3 [[18]] = 1;
106 Lf3 [[19]] = 1;
107 Lf3 [[20]] = 1;
108 Lf3 [[21]] = 1;
109 Lf3 [[22]] = 1;
110 Lf3 [[23]] = 1;
111 Lf3 [[24]] = 1;
112 Do[
113 Lf3copy = Lf3;
114 Print [Lf3]
115 Print [Count[Lf3, 1]]
116 Print [Count[Lf3, 2]]
117 Print [Count[Lf3, 3]]
118 Print [Count[Lf3, 4]]
119 Print [Count[Lf3, 5]]
120 Do[
121 If [Lf3copy[[m]] == 1,(∗checks if invidual is susceptible ∗)
122
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123 Do[
124 If [M3[[m, j ]] != 0,
125 If [Lf3copy[[ j ]] == 3,
126

127 If [RandomVariate[ BernoulliDistribution [M3[[m, j ]]]] == 1,
128 Lf3 [[m]] = 2, Lf3 [[m]] = 1],
129 n = 0]
130 , n = 0], {j , 1,
131 24}] (∗when fliping coin for susecptibles , I determined p =
132 entry mj ∗ 1/
133 2 for both this graph and the complete network so that there are \
134 consistency∗)
135 ,
136 If [Lf3copy[[m]] == 2,
137 If [RandomVariate[MultinomialDistribution [1, {0.2, 0.3, 0.5}]][[
138 1]] == 1, Lf3 [[m]] = 2,
139 If [RandomVariate[MultinomialDistribution [1, {0.2, 0.3, 0.5}]][[
140 2]] == 1, Lf3[[m]] = 3, Lf3 [[m]] = 4]],
141 If [Lf3copy[[m]] == 4,
142 If [RandomVariate[ BernoulliDistribution [1/2]] == 1,
143 Lf3 [[m]] = 4, Lf3 [[m]] = 5],
144 If [Lf3copy[[m]] == 5,
145 If [RandomVariate[ BernoulliDistribution [1/2]] == 1,
146 Lf3 [[m]] = 5, Lf3 [[m]] = 1],
147 If [RandomVariate[ BernoulliDistribution [1/2]] == 1,
148 Lf3 [[m]] = 3, Lf3 [[m]] = 5]
149 ]
150 ]]]
151 , {m, 1, 24}]
152 , {q, 1, days}]
153 , {k, 1, runs}]
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