
An Introduction to Logic Algebras
A Senior Thesis by Nick Kramer

Presented to the Department of Mathematics

Colorado College, May 2016

Abstract

We utilize the setting of Universal Algebra to introduce a new class of objects called
logics, with the aim of generalizing the structure of familiar binary logic to a family
of finite and countably infinite multi-valued logics. In Section 2, we explore several
concepts and results parallel to those of more familiar algebraic structures and provide
as an example an independent proof of the first isomorphism theorem for logics. In
Section 3, we review some basic notions from Category Theory, which give us another
lens through which to view logics, then prove several categorical results about them.
In Section 4 we discuss implications of the idea of logics for various areas of mathe-
matics, for the sake of brevity providing only a skeletal outline of what these might be,
and in the last section we discuss the implications of logics on formal languages and
natural deduction, providing a framework through which one might create generalized
propositional logic.

Prologue : A Quick Introduction to Universal Algebra

It is not lost on most introductory algebra students that rings and groups share some com-
mon features (as do modules, semigroups, quasigroups, loops, lattices, boolean algebras and
so on). The question then arises whether these algebraic structures all fall into a more ab-
stract category of objects. Universal Algebra is the field that answers this question with a
particular definition, and is a useful tool for proving general results (such as isomorphism
theorems) about all such algebraic structures in one fell swoop.

Definition. An n-ary operation on a non-empty set A is any map from An → A. All such
operations are finitary. Any finite collection of operations is called a family of operations.

Definition. An algebra is an ordered pair A = (A,F) where A is a non-empty set, and F
is a family of finitary operations on A. We call A the universe of A.

Defintion. If two algebras have the same family F , they are said to be of the same type.

Example A. G = (G, ·,−1 , e) where G is a set, · is a binary operation on G, −1 is unary, and
e is a nullary, such that the following familiar axioms hold,

G1 (x · y) · z = x · (y · z)

G2 x · e = e · x = x

G3 x · x−1 = x−1 · x = e

is a type of algebra known as a group.

Example B. (L,∨,∧), where L is a set, ∨ and ∧ are binary operations on L such that the
following axioms hold,

L1 :

(a) x ∨ y = y ∨ x
(b) x ∧ y = y ∧ x

L2 :

(a) x ∨ (y ∨ z) = (x ∨ y) ∨ z
(b) x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3 :

(a) x ∨ x = x

(b) x ∧ x = x

L4 :

(a) x = x ∨ (x ∧ y)

(b) x = x ∧ (x ∨ y)

is a type of algebra known as a lattice.

What what about things like homomorphisms, kernels, quotients? Universal Algebra
provides us with generalized definitions of such concepts as well, and I will briefly enumerate
several which will be relevant to our discourse later on.

Definition. Let A,B be two algebras of the same type F . Then a function h : A→ B is a
homomorphism from A to B if for every n-ary f ∈ F , and for all a1,, an ∈ A we have,

h(fA(a1, ..., an)) = fB(h(a1), ..., h(an))

If such a homomorphism is also bijective, we say it is an isomorphism.

Definition. If h : A → B be a homomorphism, then we define the kernel of h, written
ker(h), by

ker(h) = {(a1, a2) ∈ A× A : h(a1) = h(a2)}

Definition. If A is an algebra of type F and θ is an equivalence relation on A that further
satisfies that for each f ∈ F and elements ai, bi ∈ A, if aiθbi for all 1 ≤ i ≤ n then

f(a1, ..., an)θf (b1, ..., bn)

then we say θ is a congruence on A.

Definition. Let A be an algebra and θ a congruence on A. Then the quotient algebra
A/θ of A by θ is the algebra with universe A/θ such that for all f ∈ F and a1, ...an ∈ A,

fA/θ(a1/θ, ..., an/θ) = fA(a1, ..., an)/θ

All of the above definitions I have taken nearly verbatim from [BurrSank], in which the
authors make the point that nearly all of the algebras which have been studied up to this
point have families of operations with maximum arity of two. In the pages that follow, I will
introduce a new type of algebra that has an operator of arity three, and one that, it will be
seen, helps to generalize certain structures of binary first-order logic.

1 Definition, Examples

Definition. A logic is an algebra L = (L, ◦, σ), with a ternary operation ◦ and a unary
operation σ such that:

L1 σ is a bijection

L2 for all a, b, c ∈ L:

(i) ◦(a, b, c) = ◦(a, c, b) = a if b or c = a

(ii) ◦(a, b, c) = ◦(a, c, b) = σ(a) otherwise

Some terminology:

1. L is the truth set, whose elements are truth values. The order of a logic is the
cardinality of L.

2. σ is the negation permutation.

3. ◦ is the operator function which assigns an assimilating operator to every truth
value. For notational convenience, we shall often write ◦(a, b, c) as b ◦a c.

4. Furthermore, if we have a finite truth set, we can enumerate the truth values by
{t1, ..., tn} and express the negation permutation as an element of Sn. Thus we
will often adopt the convention when dealing with finite truth sets of writing Lσ =
({t1, ...tn}, ◦, σ). The caveat of this choice is that one must be careful not to omit fixed
points, since the recorded negation permutations will also key a reader in to the order
of L.

Example 1.
L(12) = ({T, F}, ◦,¬). Suppose P is some object capable of “having” truth value. Then,

P ¬(P)
T F
F T

Then the ◦ function will yield the binary operators ◦T and ◦F which will behave as follows:

P Q P◦TQ
T T T
T F T
F T T
F F F

P Q P◦FQ
T T T
T F F
F T F
F F F

A notational switch from ◦T to ∨ and ◦F to ∧ reveals the familiar truth tables of first-order
binary logic.

Definition. A weak logic is an algebra (L = LD ∪ LI , ◦, σ) where

WL1 LD ∩ LI = ∅

WL2 ◦ : LD × L2 → L

and both L1, and L2(i) hold.

1. We call the elements of LD the dominant truth values and the elements of LI the
intermediate truth values.

2. Any logic that is not a weak logic is a strong logic.

This definition allows us to pull many existing multi-valued logics into our framework.

Example 2 (The Kleene Logic).
L(12)(3) = ({T, F} ∪ {N}, σ, ◦) where,

x σ(x)
T F
N N
F T

so,

◦T T N F
T T T T
N T N N
F T N F

◦F T N F
T T N F
N N N F
F F F F

Although our first two examples are familiar, there are many examples of logics which
have not already been seriously studied, many of which will be important to our discussion
later on. In particular, finite logics with monocyclic negation permutations, which we shall
call cyclic logics (Definition) will be important in generalizing the ideas of natural deduc-
tion and propositional logic. The most basic example of a finite cyclic logic of higher order
than the classical binary is the following,

Example 3.
L(123) = ({a, b, c}, ◦, σ):

x σ(x)
a b
b c
c a

◦a a b c
a a a a
b a b b
c a b b

◦b a b c
a c b c
b b b b
c c b c

◦c a b c
a a a c
b a a c
c c c c

Note that we could also have a logic with the same truth set, but a different negation
permutation that would behave entirely differently. For example,

Example 4.
L(1)(23) = ({a, b, c}, σ, ◦):

x σ(x)
a a
b c
c b

◦a a b c
a a a a
b a a a
c a a a

◦b a b c
a c b c
b b b b
c c b c

◦c a b c
a b b c
b b b c
c c c c

Lastly, although they will not feature heavily in this paper, perhaps it is worth providing
an example of a logic with a truth set that is not finite.

Example 5.
Lσ = (Z, σ, ◦) : for all n ∈ Z, σ(n) = n+ 1.

2 Logic Homomorphisms, Theorems.

Definition. Let Lσ and Lτ be two logics.

1. h : Lσ → Lτ is a logic homomorphism if and only if for all x, y, z ∈ Lσ,

(i) h(σ(x)) = τ(h(x))

(ii) h(◦1(x, y, z)) = ◦2(h(x), h(y), h(z)).

2. f : L1 → L2 is a logic isomorphism if and only if it is a bijective logic homomorphism.

Cycle-Type Theorem. Two logics are isomorphic if and only if their negation permuta-
tions have the same cycle type.

Proof: Suppose α : Lσ → Lτ and α isomorphism. Then for all x ∈ Lσ, since α(σ(x)) =
τ(α(x)), |x| = |α(x)|, so σ, τ have the same cycle type. Suppose σ, τ have the same cycle
type. For each cycle σi in σ, choose x not fixed by σi and define α : Lσ → Lτ such that α(x)
is not fixed by τj where |τj| = |σi| and α(σ(x)) = τ(α(x)). Clearly then α is a surjective

homomorphism. Suppose α(x1) = α(x2), then it must be that x1 and x2 belong to the same
permutation orbit, thus x2 = σm(x1) for some m. But then

α(x1) = α(x2) = α(σm(x1)) = τm(α(x1))

and thus x2 = σm(x1) = x1, so α is injective and thus an isomorphism.

Homomorphism Characterization Theorem. Suppose h : Lσ → Lτ is a logic homo-
morphism with σ = σ1σ2...σm, and τ = τ1τ2...τk, where each σi, τj are disjoint cycles.

(1) If for some x ∈ Lσ, h(x) not fixed by τj, then for all y ∈ Lτ not fixed by τj, there exists x ∈
Lσ : h(x) = y. We call this property intracycle surjective (Definition).

(2) If for some x ∈ Lσ, h(x) not fixed by τj, then for all n, h(σn(x)) is not fixed by τj. We
call this property cycle-wise well-defined (Definition).

(3) Either,

(a) There are m disjoint cycles in h(σ), or

(b) there exists σi, σj : h(σi) = h(σj) and |h(σi)| = |h(σj)| = 1.

Proof: (1) Suppose there exists y ∈ Lτ not fixed by some τj. If there exists x ∈ Lσ such
that h(x) not fixed by τj, then there exists m : y = τm(h(x)) = h(σm(x)), since h is a
homomorphism, so h : σm(x)→ y and is intracycle surjective. (2) Follows from the proper-
ties of logic homomorphisms. (3) It follows from (2) that there cannot be more m disjoint
cycles in h(σ). Assume there are fewer, i.e. there exists σa, σb : h(σa) = h(σb). By (1)
and (2), it is possible to choose x, y, z ∈ Lσ where x not fixed by σa, y, z not fixed by σb,
and h(x) = h(y). Since ◦(x, y, z) = σ(x), h(◦(x, y, z)) = h(σ(x)) = τ(h(x)). But also,
h(◦(x, y, z)) = ◦(h(x), h(y), h(z)) = h(x) since h(x) = h(y), and so h(x) = τ(h(x)) and thus
|h(σa)| = |h(σb)| = 1.

Let us now apply several of the definitions from Universal Algebra to our setting.

Definition. A congruence on a logic Lσ is an equivalence relation θ on L×L that further
satisfies

(i) if x θ y, then σ(x) θ σ(y)

(ii) if x1, y1, z1 θ x2, y2, z2 respectively, then ◦(x1, y1, z1) θ ◦(x2, y2, z2)

Definition. Let θ be a congruence on a logic Lσ. Then the quotient logic Lσ/θ =
(L/θ, ◦, τ) such that for all x, y, z ∈ L,

τ(x/θ) = σ(x)/θ

◦(x/θ, y/θ, z/θ) = ◦(x, y, z)/θ

It is elementary to check that any such quotient logic indeed satisfies the logic axioms.

Definition. If h : Lσ → Lτ is a homomorphism, its kernel is {(x, y) ∈ L2
σ : h(x) = h(y)}.

Lemma. The kernel of a logic homomorphism is a congruence.

Proof: Let h : Lσ → Lτ a homomorphism. Clearly the kernel is an equivalence relationship.
Furthermore, suppose (x1, x2), (y1, y2), (z1, z2) ∈ ker(h). Then τ(h(x1)) = τ(h(x2)) but since
h is a homomorphism, h(σ(x1)) = h(σ(x2)) so (σ(x1), σ(x2)) ∈ ker(h). A similar argument
shows (◦(x1, y1, z1), ◦(x2, y2, z2)) ∈ ker(h).

We are now equipped to prove the First Logic Isomorphism Theorem. Note that since
logics are algebras, all results of Universal Algebra should hold, including all isomorphism
theorems, and thus one might invoke this fact and forgo proof. That shall be exactly our
strategy for the Second and Third Logic Isomorphism Theorems, but it is the author’s opin-
ion that at least one independent proof of an algebraic result in the setting of logics will be
an illuminating exercise.

First Logic Isomorphism Theorem. Let h : Lσ → Lτ be a logic homomorphism, and
π the natural homomorphism π : Lσ → Lσ/ker(h). Then there exists α : Lσ/ker(h) → Lτ
defined by α(x/ker(h)) = h(x) that is an isomorphism.

Proof: For convenience, let us relabel ker(h) = κ. Since π is a homomorphism, α(σ(x/κ)) =
α(σ(x)/κ) = h(σ(x)). Since h is a homomorphism, h(σ(x)) = σ(h(x)) = σ(α(x/κ)). A
similar argument shows α(◦(x/κ, y/κ, z/κ)) = ◦(α(x/κ), α(y/κ), α(z/κ))), so α is an homo-
morphism. For any h(x) ∈ Lτ , α(x/κ) = h(x), so α is surjective. If h(x) = h(y) then by the
definition of the kernel x/κ = y/κ. So α is injective.

Second Logic Isomorphism Theorem. If φ, θ are congruences on a logic L, such that
θ ⊆ φ, then the map

α :
L/θ

φ/θ
→ L/φ

defined by

α

(
x/θ

φ/θ

)
= x/φ

is an isomorphism from L/θ
φ/θ

to L/φ.

Proof: L is an algebra.

Definition. A sublogic of a logic L is any subset of its truth set which itself forms a logic.

Third Logic Isomorphism Theorem. If K is a sublogic of L and θ is a congruence on L
then

K/θ �K∼= Kθ/θ �Kθ

Where Kθ is the sublogic generated by Kθ = {x ∈ L : K ∩ x/θ 6= ∅}.

Proof: L is an algebra.

3 Logic Arithmetic, The Category of Logics

Suppose we want to delve more into the question of how to build new logics from old ones.
It may have been noticed, for example, that we have yet to touch on the concept of direct
product, one that seems fundamental to any algebraic structure. Thus far, we have success-
fully commandeered many concepts form Universal Algebra in helping us to understanding
this new and interesting mathematical structure, and certainly there would be nothing to
prevent us from continuing through the many results of UA (of which a generalization of
direct product is but one) and adapting them to our particular setting. It is my hope, how-
ever, that at this point we are already developing some flavor for what this process would
feel like, and so for the sake of keeping things interesting, let us take a quick detour from
Universal Algebra into the world of Category Theory, an even more abstract framework
through which to view combinations of mathematical structures. I will begin by presenting
some fundamental notions from the discipline, then show how we can use these to help us
better understand the world of logics, and offer an alternative lens through which to view
the concepts of sum and product.

Definition. A category consists of the following pieces:

1. objects, such as A,B,C, ...

2. maps between objects, A
f−→ B,B

g−→ C, ...

3. identity maps (one per object), A
1A−→ A ...

4. compositions of maps which assign to each pair of maps another map, i.e. if

A
f−→ B

g−→ C then we have A
g◦f−→ C

that obey the following laws

C1 : f ◦ 1A = f and 1A ◦ f = f

C2 : h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Example 6. Set is the category of sets (which are its objects), with set containments as its
maps.

Example 7. Grp is the category of groups, with group homomorphisms as its maps.

Definition. In a category,

(a) The product of two objects A and B is another object P such that

(i) there exist maps from P into both A and B

(ii) and if there is another object X with maps into both A and B then there exists a
unique map from X into P such that the composition of this map with the maps
from P into A and B yield the maps from X into A and B.

(b) The coproduct is the same definition with the maps reversed, i.e. another object C
such that

(i) there exist maps from both A and B into C

(ii) and if there is another object Y with maps into it from both A and B then there
exists a unique map from C into Y such that the composition of the maps from A
and B into C with this map yield the maps from A and B into Y .

Example 8. In Set and Grp, the product and coproduct of any two objects is just their
direct product and direct sum, respectively.

Definition. In a category,

(a) An initial object I is an object for which

(i) there exists a map into any other object,

(ii) and if there exists another such object X with maps into every object, then there
exists a unique map from X into I, such that composing this map with the map
from I into a given object will yield the map from X into the object.

(b) A final object is the same thing but with the maps reversed, i.e. an object O for which

(i) there exists maps from any object into it,

(ii) and if there exists another such object Y that can be mapped to by every object
then there must exist a unique map from O into Y , such that the composition of
the map from a given object into O with this map yields the map from the given
object into Y .

Example 9. In Set, the initial object is just the empty set, and all singleton sets are final
objects. In Grp, the trivial group is both the initial and final object.

This is as far into category theory as we need to venture for our purposes. We are now
ready to apply these ideas to the world of logics.

Definition. The set of all logics form a category which we will call Log. Its objects are
logics, and its maps are logic homomorphisms.

Definition. Let Lσ,Lτ be two logics. We define,

1. their sum Lσ + Lτ = (Lσ] Lτ , µ, ◦) : µ(x) =

{
σ(x) if x ∈ Lσ
τ(x) if x ∈ Lτ

2. their product Lσ × Lτ = (Lσ × Lτ , µ, ◦) : µ((x, y)) = (σ(x), τ(y))

Proposition. Logic multiplication and logic addition, as defined above, give the categorical
product and coproduct of two logics, respectively.

Proof: Let Lσ and Lτ be two logics. Clearly there are two projection homomorphisms πσ,
πτ from Lσ × Lτ to Lσ, Lτ respectively defined by πσ((s, t)) = s, πτ ((s, t)) = t. Suppose
now there exists another logic Lµ that has homomorphic mappings into Lσ and Lτ via the
homomorphisms f and g, respectively. Let α be the homomorphism from Lµ into Lσ × Lτ
defined as follows,

α(x) = (f(x), g(x))

then it is clear that πσ ◦ α = f , πτ ◦ α = g, so Lσ × Lτ is indeed the product of Lσ and Lτ .
Now let us examine the embedding maps ησ, ητ from Lσ and Lτ into Lσ + Lτ , defined

by ησ(s) = s and ητ (t) = t. Suppose there were to exist another logic Lν mapped into by
both Lσ and Lτ via the homomorphisms j and k respectively. Let β be the homomorphism
from Lσ + Lτ into Lν defined by

β(x) =

{
j(x) if x ∈ Lσ
k(x) if x ∈ Lτ

then it is clear that β◦ησ = j, β◦ητ = k, so Lσ+Lτ is indeed the coproduct of Lσ and Lτ .

Logic Decomposition Theorem. All logics can be decomposed as the sum of cyclic logics.

Proof: Since all permutations can be written as the product of disjoint cycles, for a given
logic Lσ, where σ = σ1σ2...σn all disjoint, it follows trivially that Lσ = Lσ1+Lσ2+...+Lσn

Definition. The null-logic L∅ is the 0-logic that has as its truth set the empty set. It has
no negation permutation nor operator function.

Definition. A unit-logic L1 is any 1-logic that has a singleton truth set.

Proposition. The null-logic is the initial object in Log.

Proof: The null-logic maps trivially into every other logic. Suppose we have a non-empty
logic Lσ where σ = σ1σ2...σn all disjoint. Let σ′ = σ′1σ2...σn where the cycle length of σ′1 is
one longer than σ1. Then via the Homomorphism Characterization Theorem (2) we know
that there can exist no homomorphism from Lσ to Lσ′ . Thus the null-logic is the only object
that maps into every other object, so any object that maps into every object must trivially
map into the null logic.

Proposition. Any unit logic or sum of unit logics is a final object in Log.

Proof: Any logic can map trivially into a unit logic via the homomorphism that sends every
element of the domain to the single element in the codomain. Suppose we have a logic Lσ
where σ contains at least one cycle of length greater than one. Then by the reasoning in the
previous proof, we know, for example, that there does not exist a homomorphism from any
unit logic to Lσ, so it is only to unit logics and sums of unit logics that any logic can be
mapped. But note that sums of unit logics fail to satisfy the uniqueness criterion in part (i)
of the definition.

4 Ramifications to Other Areas of Mathematics

Given our particular generalization of the structure of logic, it is not un-interesting stroll
through various mathematical topics, and wherever we encounter a binary, replace it with
an arbitrary number. The concept of ordering, for example, can be generalized in any metric
space with the following definition,

Definition. If (X, δ) is a metric space and A,B, α, β ∈ X, we say α <B
A β or equivalently

β <A
B α if and only if

δ(α,A)

δ(α,B)
<∗

δ(β,A)

δ(β,B)

and call X the ordering space and A,B the poles of the ordering.

We can thus define pairwise orderings on any number of poles. To help picture what a
three-valued ordering might look like, think of a triangle (closed or open) in R2 with vertices
A, B and C. Points in this triangle would be ordered with respect to any two given poles by
their distance from the two poles as given above. In turn, we can utilize this generalization
to construct,

Definition. Suppose X is an ordering space with n poles Pn. A relation ≤ on (X × X)
that satisfies for all α, β, γ, Pi, Pj ∈ X

(1) α ≤PiPj α

(2) If α ≤PiPj β and β ≤PiPj γ then α ≤PiPj γ

we shall call an n-valued partial ordering on X, and a set with such an ordering is an
Po(n)set. In particular we call it a weak Po(n)set. A Po(n)set that further satisfies,

(3) If α ≤PlPk β and β ≤PlPk α for all k, l, then α = β

is called a strong Po(n)set.

Example 10.

(a) Take X to be R2 with the usual distance function and A,B ⊂ R2, A ∩ B = ∅. Then X
is a weak Po2set.

(b) Take X to be R2 with the usual distance function and A,B,C ⊂ R2, all disjoint. Then
X is a strong Po3set.

Now, these two examples happen also to be totally ordered Po(n)sets, or n-chains, i.e.
they further satisfy,

(4) α ≤PiPj β or β ≤PiPj α

so they are easy to visualize. Note that 1 dimension is enough to visualize a 2-chain, but
when we try to visualize an arbitrary Po2set (for the sake of lattice theory, for example),
we must utilize two dimensions. Thus, unless one is terribly comfortable in four dimensions,
visualizing an arbitrary Po3set might be difficult.

If, on top of what we have so far, we further define,

Definition. If we have n poles P in a metric space X with S ⊂ X, then Picap(S) =

α such that for all p ∈ S, and for for all j 6= i, α ≤PjPi p and if q ≤PjPi S, then q ≤PjPi α,

which is just a generalization of the concept of infimum and supremum, we can go on to
discuss,

Definition. Suppose L is a Po(n)set. If, for all α, β ∈ L, there exists a Picap({α, β}) ∈ X,
for every pole Pi, then we call L an n-lattice.

Notice that just as in a conventional lattice inf(x, y) = x ∧ y, in general Acap(x, y) =
x ◦A y, as defined earlier in this paper. For the sake of brevity, we will end this particu-
lar exploration here, but point out that it might be of interest to study these multi-valued
lattices, if not just for their own sake, perhaps in conjunction with probability theory, and
thus construct a theory of multi-valued probability consistent with the notions of this paper.
Furthermore, it should be possible to generalize in a similar manner the concepts of union
and intersection, i.e.

Definition. if Lσ is a logic with A ∈ L, and P,Q are sets,

P ©A Q = {x : x ∈ P ◦A x ∈ Q}

and thus discover a particular generalization of Set Theory or Topology.

5 Formal Languages for Finite Cyclic Logics

Formation Rules
To build formal languages around multi-valued logics, one has to modify only slightly the
formation rules of those built around binary logic. We might attempt to do so, for example,
with the formation rules of SL, and construct a formal language SLσ built around an arbitrary
logic Lσ:

1. Each sentence letter ∈ {P,Q,R, Pi, Qj, Rk : for all i, j, k ∈ N} is a formula.

2. If φ is a formula, so is σm(φ), for all m ∈ N.

3. If φ and ψ are formulae, so is φ ◦x ψ for all x ∈ L.

4. Nothing else is a formula.

Definition. In deference to conventional logical notation, we take |φ|I to mean the truth-
value of φ under a given interpretation I.

In such a language, (just as in SL), any combination of formulae over a single binary
operation is associative and so we will sometimes adopt the following notation to deal with
long strings of formulae connected by the same binary operator:

◦x(P1, P2, ..., Pn) = P1 ◦x P2 ◦x ... ◦x Pn
Generalized DeMorgan’s Law If P and Q are two propositions in a cyclic logic L, with
x, y ∈ L, then, if σm(x) = y,

P ◦x Q = σn−m(σm(P) ◦y σm(Q))

Proof : In any given interpretation I, by definition |P ◦x Q|I = x or |P ◦x Q|I = σ(x). If
|P ◦xQ|I = x, then |P |I = x or |Q|I = x. Either way, at least one of |σm(P)|I , |σm(Q)|I = y,
and so |σm(P) ◦y σm(Q)|I = y and thus |σn−m(σm(P) ◦y σm(Q))|I = x. On the other hand,
if |P ◦x Q|I = σ(x), neither |P |I = x nor |Q|I = x. So |σm(P)|I , |σm(Q)|I 6= y, and so by
definition |σm(P) ◦y σm(Q)|I = σ(y) and thus |σn−m(σm(P) ◦y σm(Q))|I = σ(x).

Here, for the first time, it become evident why we are restricting out attention to cyclic
logics, since in a non-cyclic logic there does not necessarily exist an m ∈ N : σm(x) = y.

Functional Completeness. Let L be a logic and ∗ be a binary truth functor with outputs
specified by an arbitrary truth table. If ∗ is commutative, and the truth-value outputs of ∗
are all of the form x and σ(x) for some x ∈ L, then ∗ may be written in terms of binary
operators given by the operator function ◦.

Proof: Suppose P and Q are two formulae in SLσ conjoined by an arbitrary truth functor ∗
with outputs of the form x and σ(x) for some x ∈ L. Observe the following method.

1. Identify the y ∈ L : σ(y) = x

2. For every line of the truth table for ∗ (i.e. every interpretation I) that yields the output
x construct a φi = ◦y(σj1(P), ..., σjn−1(P), σk1(Q), ..., σkn−1(Q)) where the σjm(P), σkp

are all possible distinct permutations of P and Q excluding those for which
|σjm(P)|I , |σkp(Q)|I = y.

3. The formula ◦x(φ1, φ2, ..., φq) will have a truth table identical to ∗.

Example 11. Suppose L is a cyclic 3-logic with

x σ(x)
a b
b c
c a

∗ a b c
a a b a
b b b b
c a b b

Since the outputs of ∗ are of the form, a and σ(a) = b we can re-write ∗ in terms of the
operator function ◦ according to the procedure given above.

1. We identify c as the element in L such that σ(c) = a.

2.
φ1(from line 1) = ◦c(P, σ(P), Q, σ(Q))

φ2(from line 3) = ◦c(P, σ(P), σ(Q), σ2(Q))

φ3(from line 7) = ◦c(σ(P), σ2(P), Q, σ(Q))

3.

◦a(φ1, φ2, φ3) =
P Q ◦a(◦c(P, σ(P), Q, σ(Q)), ◦c(P, σ(P), σ(Q), σ2(Q)), ◦c(σ(P), σ2(P), Q, σ(Q)))
a a a
a b b
a c a
b a b
b b b
b c b
c a a
c b b
c c b

With this result in hand on could, if one so desired, define “conditional” truth-functors in a
given logic analogous to → or ↔. Suppose we characterize the behavior of → as follows,

|P → Q|I = F when |P |I = T and |Q|I = F, and |P → Q|I = T otherwise.

A natural generalization for a conditional truth functor →x for propositions in a given SnL
might be

|P →x Q|I = σ(x) when |P |I = x and |Q|I = σ(x), and |P →x Q|I = x otherwise.

Similarly, we might describe the behavior of ↔ in binary logic as either

1. |P ↔ Q|I = T when |P |I = |Q|I , and |P ↔ Q|I = F otherwise.

or perhaps we prefer

2. |P ↔ Q|I = |(P → Q) ∧ (Q→ P)|I .

But now we have encountered an interesting subtlety. In the binary logic we are used to,
the above definitions are equivalent (ie. the truth functors so described have equivalent truth-
tables). However, a quick foray into high-ordered logics will reveal this is not necessarily the
case. In the 3-logic given in Example 2, if we generalize the above characterizations to

1. |P ↔x Q|I = x when |P |I = |Q|I , and |P ↔x Q|I = σ(x) otherwise.

and

2. |P ↔x Q|I = |(P → Q) ◦σ(x) (Q→ P)|I .

then the truth table for 1 is given by,

↔x a b c
a a b b
b b a b
c b b a

and the truth table for 2 by,

↔x a b c
a c b c
b b c c
c c c c

which are certainly not equivalent. Clearly one must tread carefully when generalizing re-
sults from binary logic as there are many redundancies that untangle themselves only in
higher-order logics. If anything, this should be an encouragement to the reader, and perhaps
the first hint of a justification for why such logics would be worthy of further study.

The implications of this particular type of multi-valued logic are hardly limited to propo-
sitional languages, however. Note that, in a given universe of discourse U ,

∀x =
∧
U

x

∃x =
∨
U

x

and so it would be possible to generalize the concept of quantification as follows:

	Ax = ◦A({x ∈ U})

yet once again we shall leave the fleshing out of the details of this generalization for another
paper.

Thanks
I would be remiss if I did not extend my thanks to Michael Penn, Stefan Erickson and

Marlow Anderson of Colorado College, for their guidance and support in the process of
writing this paper.

References

[BurrSank] S. Burris and H. Sankappanavar A Course in Universal Algebra, Graduate Texts
in Mathematics, (78), Springer, 1981.

[LawvScha] W. Lawvere and S. Shanuel Conceptual Mathematics, Cambridge University
Press, 2009.

