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1 Introduction

The Jones polynomial is an important knot invariant introduced in 1984 by
Vaughn Jones. Up to this point, the Jones polynomial has been able to detect
triviality and it is one of the few invariants that has deep connections to quantum
mechanics. There are multiple ways to compute the Jones polynomial and in
this paper we will explore a method introduced by Zulli [Zulli, 1995] using
what he calls trip matrices. In particular, we will focus on using trip matrices
to compute the Jones polynomial of T(2,n) torus knots. These knots are an
important class of knots that are characterized by their ability to be drawn on
a torus. Jones proved an explicit formula for the Jones Polynomial of all torus
knots, but the proof relies on heavy machinery from Abstract Algebra. We
provide a more elementary proof of this formula for T(2, n) knots using these
trip matrices and basic Linear Algebra.

2 Background

2.1 Basics of Knot Theory

We provide a basic introduction to the relevant parts of knot theory for the
paper. For more information or details on the topic, see for example [Adams,
2004].

A knot is a closed loop in R3, having no thickness that does not intersect
itself. A fundamental question in knot theory is: Can you manipulate one knot
in R3 without cutting it to look the same as another knot in R3? This type
of manipulation is called an ambient isotopy. We say that two knots are
equivalent if there exists an ambient isotopy from one knot to another knot.
Thus, this fundamental question rephrased is: Are two given knots equivalent?

To visualize knots in R2, we draw a projection of the knot where the type of
crossing is indicated with a break in the string. See figure 3 for some examples.
On a projection of a knot, if the strand underneath goes from right to left the
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crossing is defined as positive (Figure 1) and if it goes from left to right it is
defined as negative (Figure 2).

Figure 1:

Figure 2:

We would like to be able to determine if two knots are equivalent by showing
equivalence of the projections. Reidemeister established this fact and showed
you only need three moves for equivalence.

Figure 3:

Reidemeister’s Theorem states that if we have two distinct projections of
the same knot, we can get from one projection to the other by a series of
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Reidemeister moves and planar isotopies [Reidemeister, 1972].
There are three Riedemeister moves. The first Riedemeister move is to twist

or untwist a strand in the knot, see figure 4.

Figure 4:

The second is to add two crossings or remove two crossings, see figure 5.

Figure 5:

The third Riedemeister move is defined as moving a strand from one side of
a crossing to the other, see figure 6.

Figure 6:

Because there is an infinite sequence of Riedemeister moves, you could try
to manipulate a given projection of a knot. The question of which knots are
equivalent is difficult, so we introduce the concept of an invariant.

An invariant is a property of a knot the remains unchanged through dif-
ferent projections of the same knot. Thus, in terms of diagrams, an invariant
must remain unchanged by the three Reidemeister moves. The first polyno-
mial knot invariant was introduced by Alexander in 1923. Several years later,
Jones introduced a different polynomial knot invariant known as the Jones poly-
nomial. We will focus on computing this for a special class of knots, torus knots.

Torus knots are knots that lie on an unknotted torus.

Definition 1. A T (m,n) torus knot wraps n times around a circle inside the
torus and m times around a line through the hole in the torus.

Torus knots, unlike other categories of knots, often have very nice properties
and some invariants can be easily computed. For example, below are some of
the properties:
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• T (m,n) is equivalent to T (n,m) for all n,m.

• Torus knots are chiral. That is, their mirror images are not equivalent.
Hence, T (m,n) denotes two different knots.

• The crossing number is known for all torus knots. In fact,
c(T(m,n))=min{m(n-1),n(m-1)}.

• The unknotting number for torus knots is also known which is
1/2(m-1)(n-1) [Murasagi, 1991].

2.2 Braids and Their Connection to Knots

Definition 2. An n-braid is a set of n-strands attached to a horizontal bar
at the top and at the bottom with the additional requirement that at any given
height along the braid, each strand only attains that height once.

See below for an example of a 2-braid.

Figure 7:

Braids and knots are very closely related since, given any braid, we may
close it to obtain a knot or link (where a link is simply several knots that are
linked together in some fashion). To close the braid, simply pull the bottom bar
around and glue it to the top bar. Somewhat surprisingly, the reverse is always
true which was proved by Alexander.

Theorem 1. Every knot or link can be represented as a closed braid [Alexander,
1923].

Due to Alexander’s Theorem, any statement about a knot can be trans-
formed into a statement about braids (or vice versa). The torus knots we will
study here have very nice closed braid representations. Before stating the propo-
sitions, we need some notation for the crossings in a braid. Each crossing, as we
look at the braid, from top to bottom will be denoted with a σi or σ−1i , where
σi denotes the ith strand crossing over the i+1st strand and σ−1i denotes the
ith strand crossing under the i+1st strand. The string of sigmas then describes
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the given braid. With this notation in mind, we are ready to state the following
proposition:

Proposition 1. The closure of a n-string braid (σ1σ2 · · ·σn−1)m is a knot if
and only if n and m are relatively prime. In this case, the closure of this braid
is the T(m,n) torus knot.

Proof. When we multiply braids together, we stack the sequence of crossings
on top of itself. Note that (σ1σ2 · · ·σn−1) takes each strand and moves it one
position to the left with the first strand moving to the furthest right position.
Thus, if we think of labeling each position as 1, 2, 3, ..., n, then after one word,
the strand that begins in position i will end in position i−1(modn). Thus, after
m-stackings, each strand will end m positions to the left or i-m(mod n).

If m and n are not relatively prime, then there exists k ∈ Z such that k|m
and k|n, i.e. m = bk and n = ak for some a, b ∈ Z, b < m and a < n. If we
consider the strand that begins in position 0 and trace it through the closed
braid, the first pass through ends at -m(mod n). Beginning here at the top of
the braid, on the next pass through, what was the strand in position 0 ends at
-2m(mod n), and then after another pass, (-3m)modn and eventually, strand 0
will be at position (-am)modn. Since m=bk, then -am(modn)= -abk(modn)=
-bn(modn)= 0(modn). Thus, strand 0 ends up back in position 0. This creates
a component of a link in the closed braid, proving that if m and n are not
relatively prime, then we get a link and not a knot. Thus, we do not pass
through all strands in this loop. If m and n were relatively prime, then we
would pass through all of the strands.

Recall the definition of a T (m,n) torus knot is a knot that wraps n times
around a circle inside the torus and m times around a line through the hole in
the torus.

If we place the center of our torus in the center of our braid closure, then
the crossings in our braid will be m and the number of strands will be n.

Figure 8:

2.3 The Bracket and Jones Polynomial

Let K be any knot. We can use the bracket polynomial, < K >, to calculate the
Jones polynomial. The bracket polynomial may be calculated in the following
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Figure 9:

manner. Looking at a diagram of a knot, we must first label the four spaces
surrounding each crossing with A’s and B’s. To do so, we follow the following
rules: the spaces counter clockwise from the over-strand will be labeled A and
the spaces clockwise from the over-strand will be labeled B. See the example
below with a labeling of the trefoil.

Figure 10:

Second, we must calculate the number of states, where a state, s, is obtained
by opening some sequence of A and B channels at each crossing. When we
open an A channel, we open a passage way in the crossing between the two
spaces marked with an A. When we open a B channel, we open a passage way
in the crossing between the two spaces marked with a B. Since at each crossing
there are 2 possible channels, there are 2c(k) total states where c(k) denotes the
number of crossings.

Third, we must find all possible states by splitting each crossing as an A
split or a B split in all possible combinations. (See Figure 11)

Fourth, we must find |s| by counting the number of circles in each split
diagram.

Figure 11:

6



Finally, to find the bracket polynomial, we plug this information into the
following formula.

< K >=
∑
s∈ζ

Aa(s)A−b(s)(−A−A−2)|s|−1 (1)

In the above formula, a(s) is the number of A channels open in each state, b(s)
is the number of B channels open in each state s and ζ is the set of all possible
states. This itself in not an invariant because it is changed by Reidemeister 1
move (see [Adams, 2004]). However if we adjust the formula slightly as follows,
we do obtain a knot invariant known as the Laurent polynomial,fk.

fk = (−A−3)w(k) < L > (2)

Here w(k) is the writhe and is calculated by subtracting the total number of
negative crossings from the total number of positive crossings. Next to find
the Jones polynomial, Vk, we must substitute t−1/4 for A into the Laurent
polynomial fk.

This is one of several ways to calculate the Jones Polynomial. In the next
section we will explore how the Trip matrix may be used to find |s|−1 and w(k)
in formula (1) and (2). This will allow us to compute the Jones polynomial using
basic Linear Algebra.

2.4 The Trip Matrix and How to Compute It

The trip matrix was introduced by Louis Zulli [Zulli, 1995] in an attempt to
calculate the bracket, Laurent and hence the Jones polynomial via Linear Al-
gebra. In order to find the trip matrix of a diagram of a knot we must first
adorn the diagram. At each crossing we place an arrow on each over-strand (in
any fashion) and place an arrow on the under-strand so that if we rotate the
over-strand arrow counterclockwise it will match the under-strand arrow. We
also number the crossings, the ordering of which does not matter because the
resulting Jones polynomial will be the same.

We will use this adornment to create a symmetric n × n matrix, T, filled
with 0’s and 1’s where n is the number of crossings in the diagram. This matrix
will be the trip matrix for this knot projection.

To fill in the Tij entry, where i is the row and j is the column, we must use
the following set of rules for each crossing.

If i 6= j, Tij is defined as the number of times (mod 2) that a traveler passes
through crossing i when starting at the overstrand of crossing j and traveling in
the direction of the overstrand arrow. We stop tracing when we hit the crossing
j again

For i = j, Tij is defined as, if upon completing the trip above, the traveler
finds the arrow on the under-strand urging him onward then Tij = 0. If the
traveler finds the arrow on the under-strand commanding him to go back then
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Figure 12:

Tij = 1. Note: The trip matrix T corresponds to the state where all A channels
have been opened.

Given a state s, create a new matrix Ts from T, where, if a B-channel is
opened at crossing i, the entry Tii should be toggled from a 0 to 1 or vice versa.
To find < L > and fk we use the main theorem from Zulli:

Theorem 2. [Zulli, 1995] (a) The writhe of K is the number of zeros on
the diagonal of T less the number of ones on the diagonal of T. (b) Suppose
the state s is obtained from the state AA · · ·A by toggling the labels in posi-
tions i1, i2, i3 · · · im. Let Ts be the matrix obtained from the matrix T by tog-
gling the entries in the corresponding positions along the diagonal of T. Then:
dim(NulTs) = |s| − 1

Using this theorem, we can easily calculate < L >, fk and Vk as described
in Section 2.4.

Example 1. Consider the T(3,2) torus knot also known as the trefoil. Below
is a chart with the trip matrix for the trefoil knot in figure 12 and the toggled
matrices.
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State S Ts dim Nul Ts

AAA

1 1 1
1 1 1
1 1 1

 2

BAA

0 1 1
1 1 1
1 1 1

 1

ABA

1 1 1
1 0 1
1 1 1

 1

AAB

1 1 1
1 1 1
1 1 0

 1

BBA

0 1 1
1 0 1
1 1 1

 0

BAB

0 1 1
1 1 1
1 1 0

 0

ABB

1 1 1
1 0 1
1 1 0

 0

BBB

0 1 1
1 0 1
1 1 0

 1

Remark 1. A quick look at the Null Space dimensions and the number of circles
created in the split diagram in Figure 11 shows they do in fact coincide. For the
reader interested in seeing the general proof, see [Zulli, 1995]

3 Results

With this background, we are now ready to examine the Jones Polynomial for
T(2,n) torus knots. First, we show what the trip matrices look like for this
family of knots.

Proposition 2. Any T(n,2) torus knot will have an n × n trip matrix T with
all 1’s off the diagonal and either all 1’s or all 0’s on the diagonal.

For example, for the T(3,2) knot, the corresponding trip matrix is either:1 1 1
1 1 1
1 1 1

 or

0 1 1
1 0 1
1 1 0

 . (3)

Proof. By Proposition 1, we know that the closure of the 2-string braid (σ1)n

is the T(n,2) torus knot. The mirror image then will look like (σ−1)n.
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First, we must prove that the non-diagonal entries of the trip matrix will
always be 1. We prove this by induction on the number of crossings. Base
Case: Let n = 3. Note for (σ1)n to be a non-trivial knot when closed it must
be prime and greater than or equal to 3 (by Proposition 1).

Figure 13:

Figure 14:

If we examine Figures 13 and 14, it is clear that starting at crossing j, each
i crossing will be passed through once before returning back to j, giving a 1 in
each Tij entry for i and j. Induction Case: Assume that this is true for odd
n, we must prove its true for n + 2. We add 2, so the number of crossings will
remain odd.

Figure 15:

We know that the claim is true for the first n crossings. Thus, the matrix
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looks like

Figure 16:

In Figure 15, it is shown that k + 1 and k + 2 will also be passed through
only once. Therefore, the crossing in k will also only be passed through once.

Next, we show that the diagonal entries of the trip matrix will always be
either all 1’s or all 0’s. If we draw a T(2,n) braid and pick the crossing orientation
so that the over-crossings are oriented downward.

Figure 17:

Figure 18:

This will force all of the under-crossings to be oriented upward or downward
if it is the mirror image knot, following the counterclockwise rule. This makes
it so that the diagonal will either be all 1’s or all 0’s because when we trace the
knot to create our trip matrix when we get back to our original crossing all the
arrow will be uniformly urging us backward or onward.

Corollary 1. The writhe of any T(n,2) matrix is either n or -n.
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Proof. By Theorem 2 (Zulli’s Theorem) w(T(n,2)) = the number of 0’s on the
diagonal less the number of 1’s on the diagonal. The previous proposition guar-
antees either all 1’s or all 0’s.

Lemma 1. Let T be a trip matrix for T(2,n) where all diagonal entries are 1’s.
The dimension of the null space for each toggled matrix, Ts will be n − (b + 1)
where b < n is equal to the number of B channels open in that particular state
s. When all of the B channels are open, the dimension of the null space of Ts
will be 1.

Proof. By Proposition 2, the matrix T consists of all 1’s Case 1 Suppose b <
n. We know that from the Rank-Nullity Theorem (see for example [Lay and
McDonald, 2016]), that n = dim Col Ts + dim Nul Ts. All of the columns
that are not toggled will be identical because they will be all 1’s. Thus, the
dimension of the column space will be at most b + 1 where b is the number
of columns that have been toggled and are thus not identically 1. We claim, in
fact that dim Col Ts = b + 1, since the nonidentical columns of the matrix are
linearly independent.

Suppose ~v1, ~v2, · · · , ~vb are the toggled column vector in Ts. Each ~vi will
consist of all 1’s except one 0 entry. Because the matrix Ts is obtained by
toggling only along the diagonal, then each ~vi will have a 0 in a different row.
Furthermore, since b < n, there is at least one row that has a 1 entry for each
~vi. Now, let

a1~v1 + a2~v2 + · · ·+ ab~vb ≡ ~0(mod2). (4)

Suppose, for contradiction that ai 6= 0 for some i. If b is odd then some
even collection of the ai must be 1 and the remaining ai must be 0 to ensure
that the row with all 1’s in each ~vi will be even (hence 0 mod 2). Suppose,
WLOG that a1, a2, ·, an = 1 where n is even and an+1 · · · ab = 0. Choose
the row in ~v1 that has the 0. Then, ~v2 · · ·~vb all have 1’s in that row. Thus,
a2~v2 + · · ·+ an~vn ≡ 1 since the sum is odd and an+1~vn+1 + · · ·+ ab~vb ≡ 0, thus,
a1~v1 + a2~v2 + · · · + ab~vb 6= 0. Thus, we cannot have a non zero coefficient. A
similar argument works if b is even, thus proving a1, ...ab = 0 and ~v1 · · ·~vb are
linearly independent.

Case 2: Suppose b = n. Thus, there are only zeros on the diagonal. In this
case, the last column will be a linear combination of the other two.



0
1
1
1
...
1


+



1
0
1
1
...
1


+



1
1
0
1
...
1


+ · · ·+



1
1
1
...
0
1


=



1
1
1
1
...
0


. (5)
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Now, the bottom number of 1’s will be even, so when added together mod 2,
we will get a 0. Every other row will have an odd number of 1’s resulting in a 1
when the sum is taken. Thus, the last column is in fact a linear combination of
the first n-1 columns. Thus, dim Col Ts ≤ n−1 and is in fact equal to n-1 since
the remaining vectors are the type in case 1. Thus, dim Nul Ts = n− (n− 1) =
1.

With the form of the trip matrix and the associated dimensions of the null
space for the toggled matrices, we have all the necessary ingredients to compute
Vk for T (2, n) torus knots. The proof consists solely of Linear Algebra and basic
algebra manipulations. We do, however, need a basic combinatorial result, the
Binomial Theorem.

Theorem 3 (Binomial Theorem).

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk (6)

Proposition 3. For the T(2,n) torus knots that have all 1’s along the diagonal
in the trip matrix where 3 ≤ n ≤ 1000,

Vk = t1−n/2(1 + t−2 − t−3 + t−4 − · · ·+ t−n). (7)

Proof. Let K = T(2,n) torus knot with a trip matrix with all 1’s, where n is an
odd number.

Recall that

< K >=
∑
s

Aa(s)Bb(s)d|s|−1.

Suppose s is a state with k′ B-channels open. Note that there are
(
n
k′

)
such

states since this is the number of possible ways to choose k′ crossings out of
n total crossings in which to open a B-channel. By Theorem 2, for this state
s, |s| − 1 = dim Nul (Ts) where Ts is the toggled matrix. By Lemma 1, dim
Nul(Ts) = n− (k′ + 1), for k’ in {0, 1, ...n− 1} and dim Nul(Ts) = 1 if k′ = n.
Thus, the formula for < K > becomes,

< K >=

(
n

0

)
Andn−1 +

(
n

1

)
An−1B1dn−2 +

(
n

2

)
An−2B2dn−3 + · · ·+

(
n

n− 1

)
A1Bn−1d0 +

(
n

n

)
Bnd1.

First, we multiply by (−A−3)w(k) which gives fk. Recall w(k) = −n by
Corollary 1. This gives us,

fk = −A4ndn−1 −A3n+n−1B1dn−2(n)−A3n+n−2B2dn−3
(
n

2

)
+ · · · −A3nBnd1.

Then substituting in B = A−1 gives,

fk = −A4ndn−1 −A4n−2dn−2(n)−A4n−4dn−3
(
n

2

)
+ · · · −A2nd.
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Finally, we substitute t−1/4 for A which gives us,

fk = −t−ndn−1 + (−t−n+1/2)dn−2(n) + (−t−n+1)dn−3
(
n

2

)
+ · · ·+ (−t−1/2)d.

Then, we substitute d = −A2 −A−2 and t−1/4 which gives,

Vk = −t−n(−t−2/4 − t2/4)n−1

+ (−t−n+1/2)(−t−2/4 − t2/4)n−2(n)

+ (−t−n+1)(−t−2/4 − t2/4)n−3
(
n

2

)
+ · · ·+ (−t−1/2)(−t−2/4 − t2/4).

Using the Binomial Theorem, we simplify to,

Vk = (−1)n−1
n−1∑
k

(
n− 1

k

)
− t−3n/2+1/2+k (8)

+ (−1)n−2(n)

n−2∑
k

(
n− 2

k

)
2− t−3n/2+3/2+k (9)

+ (−1)n−3
(
n

2

) n−3∑
k

(
n− 3

k

)
− t−3n/2+5/2+k (10)

+ (−1)n−4
(
n

3

) n−4∑
k

(
n− 4

k

)
− t−3n/2+7/2+k + · · · (11)

+ (−1)n−(n−1)
n−(n−1)∑

k

(
n− (n− 1)

k

)
− t−3n/2+n−1/2+n/2+k (12)

−
(

n

n− 1

)
t−1/2n−1/2 + t−1−n/2 + t1−n/2. (13)

All that remains to be shown, is that this simplifies to the stated Jones
Polynomial. First, notice that the lowest degree term is t−3n/2+1/2 which is
obtained from the first sum. The coefficient by setting k=0, for which we
get +1 on t(−3n/2+3/2), is obtained from the setting k=1 in the first sum and
k=0 in the second sum. Continuing in this fashion, we see that the coefficient
on t(−3n/2+(2M+1)/2) is obtained from the first M+1 sums. This coefficient is∑
i = 0M

(
n−=0+1)(−1)M

M−i
)
∗
(
n
i

)
). Using a computer, we computed this for all

0 ≤ M ≤ 1000 (See appendix for Code). This sum is 1 if M is odd and -1 if M
is even. Thus,

Vk = t(3n/2+1/2) + t(−3n/2+3/2) − t(−3n/2+5/2) + ...+ t(−n/2+1/2). (14)

Factoring out t1/2−n/2 gives the result.
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Corollary 2. The Jones polynomial of the other T(2,n) torus knot is Vk =
tn/2−1(1 + t2 − t3 + t4 · · · − tn)

Proof. Replace t by t−1 in the previous proposition.

4 Further Directions

In Adams The Knot Book [Adams, 2004] he poses an open question about trying
to find a more elementary proof of the explicit formula for T(m,n) torus knots.
In this paper we tackled a small portion of this question. We would like to come
up with a more general proof of the coefficients being equal to -1 or 1 in the
proof of Proposition 3 so that we can get the formula for the Jones polynomial
of T(2,n) torus knots for all n. This research can be taken further to generalize
T(2n,m) torus knots, with the goal of building up to the proof of T(m,n) torus
knots.

5 Appendix

Below is the Python code used in the proof of Proposition 3:
def binom(n, r):

p = 1
for i in range(1, min(r, n - r) + 1):

p *= n
p //= i
n -= 1

return p

for k in range(3, 1000, 2):
print(”k= ” + str(k))
for x in range(1, k):

rowList = []
for i in range(x, 0, -1):

currentCo = (-1)**i * binom(k, (i-1)) * binom((k-i), (x-i))
rowList.append(currentCo)

printSum = sum(rowList)
print(printSum)
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