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Abstract

Stochastic Modeling of the Quorum Sensing Network in Agrobacterium
tumefaciens Brendan Davis*, Leigh Nicholl, David Brown, and Phoebe Lostroh,
Departments of Mathematics and Biology

For years, prokaryotes were thought to be simple, single cell organisms without
communicate or interact. We now know bacteria, such as Agrobacterium
tumefaciens, use small, autoinducing molecules to sense population densities. This
“quorum sensing” (QS) model works on a positive feedback loop and signals the
bacteria to insert a tumor inducing (Ti) plasmid into the nucleus of a plant cell by
horizontal gene transfer. Here, we used a stochastic model to mathematically
evaluate the quorum sensing system. We found under certain conditions the model
acted as a “bistable switch”, turning the system “on” and “off” at random. When a
second cell was introduced to the model it increased the probability of the system
turning “on”. We also found that by manipulating various variables we could alter
the frequency of the QS network turning “on”. With this research, we are able to
better understand the coordination involved in the infection of host plants by
Agrobacterium tumefaciens. Thus, we can predict possible treatments for the
progression of tumors in plants that are infected by crown gall disease. This type of
model has implications to many other mathematical models in which this “bistable”
phenomenon may be observed, as well as applications to other quorum sensing

networks.



Introduction
Gram-negative and Gram-positive Bacteria

A large majority of the living organisms around us are microscopic organisms
that can’t be seen with the naked eye (Schaechter, Ingraham, & Neidhardt 2006,
p.3). The study of these microbes has become increasingly significant because of
their overwhelming existence - far greater in number than the organisms we can
actually see. All microbes can be classified into one of two categories: prokaryotes
and eukaryotes (Schaechter, Ingraham, & Neidhardt 2006, p. 3). What differentiates
the two types of microbes is the presence of a true nucleus. Eukaryotes pack DNA
into a membrane-bound nucleus where as prokaryotes do not. In fact, prokaryotes
do not have membrane-bound organelles, such as mitochondria and chloroplasts, as
well. Because of this distinction, prokaryotic organisms have a thick cell wall made
up of short glycan chains cross-linked by peptides, called peptidoglycan, to protect
from inside and outside pressures (Sauvage et al., 2008). Murein is a particular type
of peptidoglycan specific to bacteria (Schaechter, Ingraham, & Neidhardt 2006, p.
24). This structure is also responsible for the shape and structure of the cell itself.
The constituents that make up a cell wall may also cause the death of a prokaryote
by a host’s immune system. Commonly known as microbe-associated molecular
patterns (MAMPs), these antigen specific targets help distinguish healthy human
cells against foreign bacterial invaders, so a proper immune response can be elicited
(Schaechter, Ingraham, & Neidhardt 2006, p.408-411). Because it is so important to
prokaryotic cell survival, peptidoglycan may also be a target for many antibiotic

drugs (Schaechter, Ingraham, & Neidhardt 2006, p. 24). Different Bacteria have



structural modifications in the surrounding cell envelope in an attempt to protect
against these pressures (Schaechter, Ingraham, & Neidhardt 2006, p. 22).

Bacterial prokaryotes can be subdivided into two groups based on their
overall pattern of this outer envelope structure. A form of staining is used to
differentiate gram-positive and gram-negative bacteria by dying the former purple
and the later red (Schaechter, Ingraham, & Neidhardt 2006, p.23). This Gram stain,
named after the Danish microbiologist who developed it, is the result of
fundamental differences in the structure of the cellular envelope. In comparison to
gram-positive bacteria, gram-negative bacteria have a much thinner cell wall, which
is sandwiched between an inner and outer cell membrane made of a phospholipid
bilayer (Figure 1). Conversely, gram-positive bacteria lack an outer membrane, and
thus have a much thicker cell wall (Figure 1). With the varying structures that make
up these cell envelopes, the ability for each type of bacteria to secrete and allow
diffusion of molecules into the cell will vary as well (Miller & Bassler, 2001). Here, I
will focus on the secretion of a small, signaling molecule used to regulate gene
expression for a population of bacteria.

Quorum Sensing

Many cells, prokaryotic and eukaryotic alike, use signaling to communicate
among each other and control the expression of genes. Your own immune system
uses small soluble proteins, known as cytokines, to communicate between the cells
of the immune system and coordinate an effective immune response against foreign
pathogens (Parham, 2015, p.53). Until recently, bacteria were thought to exist as

individual cells without the ability to interact with surrounding cells (Miller &



Bassler, 2001). The exchange of molecules between cells was thought to be
characteristic of only eukaryotes. However, scientists have recently discovered that
bacteria have the ability to signal other cells to coordinate physiological activity as a
population - called quorum sensing. This phenomenon was first described in Vibrio
fischeri over forty years ago (Nealson & Hastings, 1979). A symbiotic relationship
between Euprymna scolopes (Hawaiian bobtail squid) and V. fischeri allows the
squid to camoflauge itself - utilizing the quorum sensing network of the bacteria,
which feed off the nutrient rich environment of the squid. E. scolopes collects the
bacteria throughout the day in a complex light organ within the mantle cavity on its
body. When the bacteria reach a population density threshold (quorum), they
coordinate the expression of a bioluminescent gene to light up the underside of the
squid (Miller & Bassler, 2001). The squid uses the light as counterillumination to
camouflage itself from predators. Since the discovery of quorum sensing, this form
of cell signaling to sense a population has been described in a wide range of
organisms. Many pathogens use quorum sensing to regulate the expression of
virulence genes that are important to the infection process. For instance,
methicillin-resistant Staphylococcus aureus (MRSA), a deadly, antibiotic-resistant
pathogen, uses quorum sensing to upregulate the expression adhesion molecules to
form a biofilm - a necessary component of infecting its host (Rutherford & Bassler,
2012). Agrobacterium tumefaciens utilizes quorum sensing to control the horizontal
gene transfer of a tumor inducing plasmid into its host plant cell in order to cause
crown gall disease (Haudecoeur & Faure, 2010). Quorum sensing is important to the

survival of many species of bacteria. By using small, diffusible molecules known as



autoinducers bacteria can act as a group to benefit from the population-wide
coordination of gene expression that regulates various physiological factors.
Autoinducers are small molecules that can be diffused in and out of cells to
regulate gene expression of itself and other physiological adaptation genes (Wilson
etal,, 2011, p. 292). In this way, quorum sensing works on a positive regulatory
feedback control loop, but for the system to turn on autoinducer molecules must be
constitutively expressed at low levels or else the quorum sensing system would not
work. However in some cases, regulation of the autoinducer may also be controlled
by an outside source as with Agrobacterium tumefaciens (Goryachev et al., 2005).
Because of the differences in cell structure between gram-positive and gram-
negative bacteria, there are different types of autoinducers that are secreted for
each (Miller & Bassler, 2001). The former uses peptide-mediated quorum sensing to
sense cell population density. In this way, gram-positive bacteria secrete small
autoinducing peptides (AIPs) across the cell envelope to signal other cells in close
proximity. In comparison, gram-negative bacteria secrete small, hydrophobic
homoserine lactone molecules (HSL) that are freely diffusible across the cell
membrane - it can be transported across without the help of a pump or channel.
This characteristic is essential to understanding the behavior of a quorum sensing
network because it causes equal concentrations of the autoinducer both inside and
outside a single cell. However, some cells may be able to create a concentration
gradient by actively transporting the autoinducer across the cell membrane in one
direction (Goryachev et al,, 2005). At low levels of constitutive expression, the

autoinducer will diffuse into the extracellular matrix and be lost or degraded, thus



not affecting the expression of target genes. However, when enough bacteria
accumulate the concentration of autoinducer reaches a threshold that allows the
population to turn “on” specific genes. This phenomenon can be modeled using
differential equations to understand the conditions necessary for a bacterium to
turn “on”. In this paper, I model the quorum sensing network of Agrobacterium
tumefaciens.

Agrobacterium is a genus of bacteria responsible for the infection of a wide
range of plants (Goryachev et al., 2005). Of these, the soil bacterium Agrobacterium
tumefaciens is the most extensively studied. A gram-negative bacterium, A.
temefaciens utilizes quorum sensing to cause tumors in various species of plants
(Haudecoeur & Fauer, 2010). The bacterium can sense plant wounds, which it feeds
on, by using chemotaxis to recognize exudates secreted from the wound (Goryachev
etal,, 2005). Upon recognition of an injured plant, the bacterium attaches itself to
the root and activates its virulence genes to induce the horizontal gene transfer of a
tumor inducing (Ti) plasmid into the host plant cell. The plasmid is incorporated
into the plant cell’s genome to cause overexpression of growth factors from
oncogenes (Gohlke & Deeken, 2014). Gall tumors resulting from vigorous
proliferation are the characteristic signs of crown-gall disease in plants caused by A.
tumefaciens. The Ti plasmid not only encodes for the oncogenes that cause the
tumor, but it also stimulates the plant to synthesize opines for the bacterium to feed
off of (Goryachev et al., 2005). These opines help to activate the quorum sensing
system in A. tumefaciens to cause a population wide infection of the host plant. The

autoinducer of the bactera, 3-oxo-ocztanoyl homoserine lactone (OC8HSL), further



promotes the conjugation of the Ti plasmid by up to eight-fold (Subramoni et al.,
2014). This quorum sensing network is necessary to establish a rapid and efficient
infection against the plant host, as well as limit conjugation by a single cell as it is an
energy consuming process and it would not be able to elicit a proper infection of the
host plant. A proposed model by Andrew B Goryachev et al. (2005), simulates the
regulation of the complex network (Figure 2). We examine this network in our own
model (Figure 3) to examine the differences between a deterministic model (Figure
4A) and a stochastic model (Figure 4B-D). By adapting Goryachev et al.’s model to a
two-cell model (Figure 5) and predicting various rates, we use stochastic
mathematical modeling to predict the probability of the bacterium turning “on” in
the presence of its autoinducer.
Mathematical Modeling

Until recently, mathematicians and biologists have been separated by a lack
of overlapping interest in the two fields. Biologists could have cared less about
differential equations, and likewise mathematicians refrained from studying the
interworking machinery of a cell that regulates gene expression. However,
mathematical biologists have learned to mesh the two fields together in order to
better understand the world around us. Mathematical models have a wide range of
application for biological systems. They can be used to predict the spread of swine
flu during the 2009 pandemic (Al Hajjar & McIntosh, 2010), examine the
progression of cancer cells (Gentry & Jackson, 2013), or even track the population

dynamics of a complex microbial ecosystem (Haruta et al., 2013). Variables can be



manipulated and the effects observed to, for example, see the effectiveness
vaccination might have during the H1N1 outbreak (Al Hajjar & McIntosh, 2010).

Most mathematical models do a fairly good job at estimating what may
happen in a given system; however, few take into account the variability that may
occur with any real-life biological system. Stochastic models allow a certain amount
of variation to leak into the model. At each time step, the model is reevaluated for
the next time step based on probability (Wilkinson, 2012, p. 3-20). This differs from
a deterministic model in which the results are entirely determinate on the variables
you feed the model. This, of course, is not accurate to a real life biological system in
which variability plays a huge role. You may wonder why more models don’t employ
stochastic variation to simulate their biological system. This is because stochastic
models, when run on a computer, can be very time consuming especially when
manipulating a whole range of variables. Deterministic models are therefore used
when minute details do not matter as much and you are more interested in looking
at the whole picture. With differential equations as the structure of our model, we
use stochasticity to make the system non-deterministic. This particular method is
especially important for our model, in which we care about the slight variations in
autoinducer density. These small variations may determine whether or not the
quorum sensing system turned “on” during a set time frame. With a stochastic
approach we can be more confident that our model is accurate to the quorum-
sensing regulation in A. tumefaciens.

In this paper, we use a set of differential equations to predict the “on”/”off”

switch of the quorum sensing network in A. tumefaciens. The differential equations



are produced by the input of a series of simple biochemical reactions that take place
as part of the large quorum sensing network. Most mathematical models of quorum
sensing use either a single-cell model or a large population wide network of cells
(Goryachev et al,, 2005). However, we hypothesize more information can be
obtained when using a two-cell model. At first we examine the characteristics of a
single-cell model (Figure 3) to better understand our two-cell model (Figure 5). We
used the basic single-cell structure of Goryachev et al.’s model (2005) to create a
model in which two cells are communicating back and forth by the means of an
autoinducer (Figure 5). By including rates of cell exchange and autoinducer
turnover we can manipulate these variables to examine the effects each has on the
overall network. We found that increasing the rate of these variables correlated
with an increase in the probability of the quorum sensing system turning “on” over
time.
Results

While manipulating different variables in the single-cell model, we noticed an
interesting phenomenon: the stochastic model behaved in such a way that it could
turn “on” and “off” spontaneously when looking at the variable of interest, TraRdim.
When compared to the deterministic model (Figure 4A), the stochastic models
(Figure 4B-D) seemed to have a level of randomness that could flip the system back
and forth between these two states. Essentially, the model had become “bistable”
under certain conditions. This meant that the model could exist in two different
states - “on” and “off” and it could spontaneously switch between these states,

remaining in one or the other for a seemingly random amount of time. This
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“bistable” behavior held true for multiple runs of the model. We were curious to see
what sort of variables may cause the system to turn “on” more frequently or which
ones could stop the quorum sensing network from ever turning on in the first place.
With this information, we moved to a two-cell model to observe the interacting
behavior between two bacteria.

For the two-cell model, we were curious in the effects of two specific
variables, which linked cells together in a quorum sensing model: cell exchange rate
and turnover rate. Each bacteria could be either “on” or “off” which was determined
by the level of TraRdim within each cell. As with the single-cell model, if the
population of this dimer exceeded 100 particles, the system was determined to be
“on”. If cells agreed with each other - both turned “on” (Figure 4B) or both remained
“off” (Figure 4C) - the bacteria were ‘synchronized’. However, if the cells behaved
differently over the 10,000-second time course they were independent and
therefore not synchronized (Figure 4D). The ‘probability of synchronization’
increased with an increase in both cell exchange rate and turnover rate (Figure 6).
At a low exchange rate, of one AAI particle per second, the amount of
synchronization steadily increased between 20% and 100% with an increase in
turnover rate. Though it eventually reached 100%, it should be noted all values of
cell exchange rate had 100% synchronization when the turnover rate was at its
highest. At a cell exchange rate of three particles per second, the cells synchronized
more, ranging from 50% to 100%. The only drop off from a steady increase at this
value of cell exchange occurred between a turnover rate increase from 0.03 to 0.04

in which the synchronization dropped from 80% down to 70%. For a high cell
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exchange rate of five particles per second, the cells synchronized even more so,
ranging from a minimum of 70% up to 100% with a steady increase.

A similar method was used to examine the likelihood of a cell turning “on”. If
the amount of TraRdim exceeded 100 particles for either cell in the time course it
was tallied as “on”. Cells had a higher ‘probability of “on™ with an increase in both
cell exchange rate and turnover rate, adjusted independently (Figure 7). As with
synchronization, the probability of turning “on” reached 100% at the fastest
turnover rate for all cell exchange rates. At an exchange rate of one particle per
second, the probability of a cell turning “on” steadily increased from 50% to 100%.
With the cell exchange rate set to three particles per second the probability ranged
between 55% and 100%. At the highest exchange rate of five particles per second,
the range fell between 65% and 100%. For each cell exchange rate, the probabilities
of turning “on” all increased steadily in their noted ranges as turnover rate
increased.

Discussion

Our stochastic models (Figure 4B-D) behaved drastically different than the
deterministic time course (Figure 4A) under the conditions of Goryachev et al.’s
2005 model (Table 1). Because of the “bistability” our model produced, we know
precise conditions must be at play for the quorum sensing system to turn “on”, and
consequently induce the transfer of the Ti plasmid to the host plant by horizontal
gene transfer. Without these conditions, Agrobacterium Tumefaciens would be
unsuccessful at infecting its host plant with crown gall disease. This phenomenon is

rather interesting in the realm of mathematical biology as most stochastic models
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behave in close coordination with its deterministic counterpart. A stochastic model
may perhaps leap away from the deterministic trend at times, but usually find its
way back shortly after.

Goryachev et al. found the model behaves more closely to the deterministic
model with a growing population (2005). This means the system becomes less
random at high densities of bacteria. However, we were curious if the quorum
sensing system could still work in an intermediate stage where population densities
are lower and the system becomes more random. In fact, we looked at the dynamics
between two single cells. We found under certain conditions, Agrobacterium
tumefaciens may actually be able to coordinate infection of a host plant cell at a low
population. This becomes increasingly true as the bacteria communicate at a faster
rate or there is a faster turnover of the autoinducer through the outside medium. It
may be apparent that if two cells are communicating better than they can
coordinate physiological activity better. However, it is somewhat unclear why an
increase in turnover rate may cause similar effects. The turnover rate is somewhat
like a hose spraying autoinducer past the cells at a certain rate. As you increase the
rate of flow from this hose, you would theoretically make it more difficult for any
autoinducer released from a cell to be diffused back into another cell. This was not
the case for our model in which an increase in turnover rate caused an increase in
both cell synchronization (Figure 6) and the probability of a cell turning “on” (Figure
7). An increase in both of these increases the power of the quorum sensing network
to elicit the transfer of a tumor inducing plasmid into the host plant. This may be a

result of our model and rate law for AAI supply which takes into account many
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variables; however, I believe the quorum sensing network may actually be more
effective with an increase in turnover rate. This essentially brings in more
autoinducing signal from other cells outside of the system so the cells can
communicate better. This does not alter the density of this signal outside the cell at
any given time, but rather changes the rate at which it is replaced. With this theory,
we can begin to think of possible treatments for crown gall disease by slowing down
or possibly stopping the quorum sensing in A. tumefaciens.

A second cell seemed to increase the probability of the quorum sensing
system turning on, especially when the cells were communicating at a faster rate or
when the turnover rate was high. In real life application, cell exchange rate can
increase because of the medium in which the bacteria are or because of the distance
between the two cells. Turnover rate may also be affected by the medium, as
diffusion may occur quicker in a less dense environment or vice a versa. As more
cells accumulate, the turnover rate is likely to increase as well for a given cell, thus
increasing the likelihood of the system turning “on”. This is the phenomenon of
quorum sensing!

Because our variables were estimates of the actual rates for cell exchange
and turnover, our model may be inaccurate to the real life quorum sensing network
of A. tumefaciens. Further investigation would be necessary to discover the actual
rates in a wet lab. We could employ these rates to our model to better understand
the coordination of the bacteria to infect its host plant. However, our estimates give

insight into the effects these rates may have on the overall network. The trends we
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observed could be realistic to the system unless the actual rates are vastly different
than our estimations predict.

In the realm of biology, this research is vital to the understanding of the
progression of crown gall disease by A. tumefaciens. Because some of the variables
we looked at were estimated without any actual raw data, we could measure these
values experimentally in a lab to better grasp the true application of our model to
the bacterium. However, we know the effect these variables can have on the quorum
sensing system to possibly find cures for crown gall disease. Using this model, we
can continue to assess the different variables that may increase or decrease the
likelihood of the quorum sensing system turning “on”. With this knowledge, we may
be able to disrupt one of the factors vital to quorum sensing to prevent the
conjugation of the Ti plasmid into a host cell. This is perhaps an effective way of
fighting crown gall disease in many species of plants infected by A. tumefaciens. One
possible treatment as a result of this research may be to coat the gall of an infected
plant in a thick, viscous liquid that may perhaps slow the progress of quorum
sensing by decreasing the turnover rate of the autoinducer. We could add this
variable to our model to observe the possibilities a treatment may have on the
model.

Materials and Methods
Quorum Sensing Model

The single-cell model (Figure 3) implemented in this research is based on

Goryachev et al.’s complex model (Figure 2). All rates of biochemical processes are

recorded in Table 1. These rates are mostly based from Goryachev et al.’s 2005
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paper and are for the most part referenced from other research done in labs. In this
model, the agrobacterium autoinducer (AAI) can diffuse in and out of the cell freely
or be actively transported across the cell membrane by an importer protein (Imp).
Octopine molecules (oct) in the environment are metabolized by the bacterium,
which promotes the transcription of the occ operon at a maximal rate. This operon
transcribes the importer mRNA (imp) and a traR mRNA needed for activation of
quorum sensing transcription. If AAl is not present within the cell, traR is further
translated into a misfolded protein and degraded. However, if AAl is available, TraR
forms a tight complex with the autoinducer as it is translated. Once bound to its
cognate autoinducer, TraR will not dissociate. Instead, this complex pairs with
another to form TraRdim, a dimer that activates transcription, and subsequently
translation, of many proteins necessary for conjugation of the Ti plasmid. The dimer
itself is not as stable as the complex formed prior, and therefore may dissociate at a
given rate. One operon regulated by TraRdim is the trb operon, which codes for an
enzyme necessary to create AAIL Tral, an acyl-homoserine lactone synthetase, uses
two proteins found in the cell (S) to synthesize AAL. We assume the substrates are
found in abundance within the cell at all times, so they do not limit the rate of
production of AAL TraRdim also regulates the production of traR by activating the
msh operon, a suboperon of the occ operon containing traR. These two positive
feedback loops are controlled by the negative regulation of TraRdim by TraM.
Transcription of the traM mRNA is activated by the dimer itself to produce TraM.

This protein essentially blocks TraRdim from binding DNA by forming a stable
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complex with the dimer. TraRdim cannot dissociate from TraM and eventually the
complex is degraded.

Goryachev et al. assumed the amount of AAI found outside the cell remained
constant (2005). However, we know AAI can diffuse in and out of the space around
the bacteria, thus entering and leaving the system at will. This was modeled by a
rate law:

Rate Law for AAI Supply = AAI Turnover Rate X AAI Influx Rate
In this rate law, the amount of autoinducer outside the cell is being replaced at a
given rate and there is a steady influx of AAI from outside the system. We also
incorporated the degradation of the AAI both inside and outside the cell because we
believe this may affect the overall behavior. Our model also included a second cell to
examine the effects an additional Agrobacterium may have on the system. Therefore,
we included a “cell exchange” rate that determined how many molecules of AAI
were transferred from one cell to the other in a second. I was interested in
manipulating the cell exchange rate and turnover rate to see how the cells reacted in
a stochastic model by examining the probability of the system turning “on”.
COPASI

Using a computer software program, we were able to model the rates of
various biochemical reactions within the quorum sensing network of A. tumefaciens.
COPASI is a program specifically designed to model biological systems. Each
“Species” of the model was given a name and reactions were set up to relate the
species to create the entire quorum sensing model. For instance, the reaction of the

importer protein (Imp) binding the “external” autoinducer (Ae) is set up as follows:
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Imp + Ae -> Imp_Ae. In this “Reaction” there are three “Species”: Imp, Ae, and
Imp_Ae. The rate of reaction is k4 as described in Table 1. COPASI is able to take
these reactions and create a set of differential equations for each species. This set of
differential equations can then be run over a set amount of time as a “Time Course”.
The time course can be deterministic, stochastic, or a hybrid of the two. At first we
observed the characteristic differences between a deterministic model and a
stochastic one using the variable of interest - TraRdim. The model was run using
10-second time interval steps for a total of 10,000 seconds (approximately 3 hours).
COPASI automatically updates the model every time step with a probability for the
next time step based on the rates given in order to create a “Stochastic (Gibson +
Bruck)” model. If COPASI is set to “Deterministic”, it simply creates a graph based on
the differential equations produced by the various biochemical reactions.

After initial observation, we included the addition of a second cell to the
system, which interacted, with the first cell by means of a cell exchange rate. The
second cell was entirely identical to the first cell, and thus included the same rates of
transcription, translation, and degradation (Table 1). For this model, it was run as
“Stochastic (Gibson + Bruck)” for 10,000 seconds with 10-second time interval
steps. We manipulated the “cell exchange” and “turnover” rates to observe the
interaction between the two cells, as well as the role outside AAIl may have on the
system. Again, we were interested in the effect these variables had on the
population of the dimer - TraRdim. Cell exchange rate was manipulated within the
range of 1 to 3 molecules per second, whereas turnover rate was within the range of

0.01 to 0.05 molecules per second to give a coordinate system between these two
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variables. These ranges were chose because of their ability to show large changes in
the model in these short ranges, thus giving us more information about the system
and specifically these variables. Cells were described as “synchronized” if they were
both “on” or both “off” during this time period. Every time a variable was
manipulated within the set range, the model was run ten times to count the amount
of times cells synchronized in those ten trials. The ‘probability of synchronization’
was determined by dividing the number of times synchronization occurred by ten
and multiplying by 100%. A cell was considered “on” in the 10,000 seconds if it
reached above 100 particles of the dimer, TraRdim, in that time. This level of dimer
was considered to be “on” by Goryachev et al,, 2005. The probability of the system
turning “on” was determined by the percentage of times the two cells turned “on” in
twenty trials at a given coordinate point. So if both cells turned “on” in a single trial
than two tallies were marked, if one cell turned “on” only one tally was marked, and
if no cells turned “on” than no tallies were marked. The same ten trials were used to
measure this value, but since two cells were examined for each run there were
twenty total possible trials that may be “on”. To calculate ‘probability “on™ the
number of tallies was divided by twenty and then multiplied by 100% for each
variable coordinate. Once trials began the model would not be adjusted until all ten
trials were tallied. Every run of the model was marked without ever starting over or
negating a trial as to give unbiased results. All other rates were kept constant at the
rates described in Goryachev et al., 2005 and in Table 1. An additional rate that
related the flux of autoinducer outside the cell, Ae_Supply, was kept at a constant

rate of 600 molecules per second. This value was consistent with the “bistable”
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region noted by Goryachev et al., 2005. He had shown this region of interest to be

around 40-60 nM or 480 to 720 particles of external AAL
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Tables

Table 1. Rates of biochemical reactions in the quorum sensing network of Agrobacterium tumefaciens.
Biochemical rate laws are as written in COPASI and are for both cells. Values are estimates given by
Goryachev et al., 2005. Items in red were manipulated for evaluation of the two-cell model.

Rate Value Action Biochemical Rate Law
Constant
1 Production of AAI " " " " o "
k1 0.3s by Tral (Cell 1) Tral{"Cell 1"} -> Tral{"Cell 1"} + Ai{"Cell 1"}
1 Production of AAI " " " " o "
k1 0.3s by Tral (Cell 2) Tral{"Cell 2"} -> Tral{"Cell 2"} + Ai{"Cell 2"}
Passive Diffusion of
-1 " n fn n
k2 0.14 s AAl Into the Cell Ae{"Cell 1"} > Ai{"Cell 1"}
Passive Diffusion of
-1 " n il n
k2 0.14 s AAl Into the Cell Ae{"Cell 2"} -> Ai{"Cell 2"}
Passive Diffusion of
-1 srn n n n
k2 0.14 s AAl Out the Cell Ai{"Cell 1"} -> Ae{"Cell 1"}
Passive Diffusion of
-1 srn n n n
k2 0.14 s AAl Out the Cell Ai{"Cell 2"} -> Ae{"Cell 2"}
1 Active Transport of " " n " " "
k3 0.4s AAI by Imp (Cell 1) Imp_Ae{"Cell 1"} -> Ai{"Cell 1"} + Imp{"Cell 1"}
1 Active Transport of " " n " " "
k3 0.4s AAI by Imp (Cell 2) Imp_Ae{"Cell 2"} -> Ai{"Cell 2"} + Imp{"Cell 2"}
Ay - Imp Binding AAl
k4 0.04 m*s (?e":l 1';” 'ng Imp{"Cell 1"} + Ae{"Cell 1"} -> Imp_Ae{"Cell 1"}
Ay - Imp Binding AAl
k4 0.04 m*s (?e":l 2';” 'ng Imp{"Cell 2"} + Ae{"Cell 2"} -> Imp_Ae{"Cell 2"}
3 - Imp Di iating AAI
k5 2103 51 (?e":l 1';S°°'a 'ng Imp_Ae{"Cell 1"} -> Imp{"Cell 1"} + Ae{"Cell 1"}
3 - Imp Di iating AAI
k5 2103 51 (?e":l z'fsoc'a 'ng Imp_Ae{"Cell 2"} -> Imp{"Cell 2"} + Ae{"Cell 2"}
5 1y - Formation of TraR imptrar{"Cell 1"} + Ai{"Cell 1"} -> TraR*{"Cell 1"} +
* 5 1 -1
k6 3.567107" m s Complex with AAI imptrar{"Cell 1"}
5 1y - Formation of TraR imptrar{"Cell 2"} + Ai{"Cell 2"} -> TraR*{"Cell 2"} +
* 5 1 -1
k6 3.567107 m s Complex with AAI imptrar{"Cell 2"}
k7 1.5*¥10% m*s* Transcription rate -> imptrar{"Cell 1"}
’ of the occ Operon
k7 1.5*%10% m*s* Transcription rate -> imptrar{"Cell 2"}

of the occ Operon
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k8

1.0%107°3 m™1*g?

Dimerization of

2 * TraR*{"Cell 1"} -> TraRd{"Cell 1"}

TraR (Cell 1)

k8 1.0%10° ml*s? ?:?Re{ig:ﬁi‘z’)” of 2 * TraR*{"Cell 2"} -> TraRd{"Cell 2"}

k9 1%¥10% 51 ?:Z;ijcﬁit::grc(’ze” 1 | TraRa{"Cell 1"} > 2 * TraR*{"Cell 1)

k9 1*10% s ?:ZSRZCE‘:::;‘F‘("CC(E” ) | TraRd{"Cell 2} > 2 * TraR*{"Cell 2')

k10 3.3*10% s ?;ggj‘zggﬁq)of TraRd{"Cell 1"} ->

k10 3.3%10% s ?;ggj‘zggﬁg)of TraRd{"Cell 2"} ->

k11l 8.3%10™ m™*s™ Formation 9f TraRd TraRd{"Cell 1"} + TraM{"Cell 1"} ->
Complex with TraM

k11l 8.3%*10" m™**s™'3 Formation 9f TraRd TraRd{"Cell 2"} + TraM{"Cell 2"} ->
Complex with TraM

k12 6%1073 s SqeRgl\:aAd(aCt(ie(ljlnl())f Msh | ptrar{"Cell 1} ->

k12 6%1073 s quRgl\:aAd(actgl’lnzj’f Msh | ptrar{"Cell 2} ->

K13 16%102 1 H:Esia(téc;ﬂ (;1; msh ilT}ptrar{"CeII 1"} -> imptrar{"Cell 1"} + Imp{"Cell

K13 16%102 2 H:Esia(téc;ﬂ (;1; msh izT}ptrar{"CeII 2"} -> imptrar{"Cell 2"} + Imp{"Cell

k14 1.0%10% s (Dcejlr i‘:ation ofimp | | o{Cell 1) >

k14 1.0%10% s (Dcejlr az‘;'ation oflmp | | o(Cell 2} >

as | aetotmest | feepienel | Tt tenlicel ) > el )+

as | aetotmest | fepenel | Tt tenlicel ) > el )+

a6 | naotmte [fmdsndnguan | Lottt B o>

a6 | nawotmte [fmmndnguan | Lottt 3 el

K17 9.26%10° <t TraRd Dissociating TraRd_tram{"Cell 1"} -> TraRd{"Cell 1"} +

tram (Cell 1)

tram{"Cell 1"}
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TraRd Dissociating

TraRd_tram{"Cell 2"} -> TraRd{"Cell 2"} +

%103 -1
k17 9.26710°7s tram (Cell 2) tram{"Cell 2"}
3 - Degradation of
* 3 -1 " n o
k18 1.6*10" s traM mRNA (Cell 1) traM{"Cell 1"} ->
3 - Degradation of
* 3 -1 " nm o
k18 1.6*10" s traM mRNA (Cell 2) traM{"Cell 2"} ->
Translation of traM
%102 -1 " m o n " n n
k19 1.92*10" s mRNA (Cell 1) traM{"Cell 1"} -> traM{"Cell 1"} + TraM{"Cell 1"}
Translation of traM
%102 -1 " m o n " n n
k19 1.92*10° s mRNA (Cell 2) traM{"Cell 2"} -> traM{"Cell 2"} + TraM{"Cell 2"}
5 TraM Degradation
* 5 -1 n nm o
k20 8*%107 s (Cell 1) TraM{"Cell 1"} ->
5 TraM Degradation
* 5 -1 n nm o
k20 8*%107 s (Cell 2) TraM{"Cell 2"} ->
) ) Transcription of trb
* 2 % -1 " n o n n
k21 1.6*10° m*s Operon (Cell 1) TraRd_trb{"Cell 1"} -> tral{"Cell 1"}
) ) Transcription of trb
k21 1.6¥107 m*s™ TraRd_trb{"Cell 2"} -> tral{"Cell 2"
m=s Operon (Cell 2) raRd_trb{"Cell 27} -> tral{"Cell 2°}
22 5 68%1072 ml*st TraRd Binding trb TraRd{"Cell 1"} + trb{"Cell 1"} -> TraRd_trb{"Cell
(Cell 1) 1"}
22 5 68%1072 mi*s TraRd Binding trb TraRd{"Cell 2"} + trb{"Cell 2"} -> TraRd_trb{"Cell
(Cell 2) 2"}
3 5 2%102 ¢! TraRd Dissociating TraRd_trb{"Cell 1"} -> TraRd{"Cell 1"} + trb{"Cell
trb (Cell 1) 1"}
3 5 2%1072 ¢! TraRd Dissociating TraRd_trb{"Cell 2"} -> TraRd{"Cell 2"} + trb{"Cell
trb (Cell 2) 2"}
3 - Degradation of tral
* 3 -1 n " o_s
k24 6.0%107 s MRNA (Cell 1) tral{"Cell 1"}
3 - Degradation of tral
* 3 -1 n " o_s
k24 6.0%¥107 s MRNA (Cell 2) tral{"Cell 2"}
k25 1.6%102 s Translation of tral 1\ el 10 > tral{"Cell 1} + Tral{"Cell 1"}
' mRNA (Cell 1)
k25 1.6%102 s Translation oftral |\ el 20 s tral{"Cell 2} + Tral{"Cell 2"}
' mMRNA (Cell 2)
4 - Tral Degradation
k26 1.0*10"s™ Tral{"Cell 1"} ->
> (Cell 1) ralf"cell 1%}
k26 1.0*10% s Tral Degradation Tral{"Cell 2"} ->

(Cell 2)
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tral Constitutive

* -4 % -1 _ n 1
k27 2.3%10" m*s Expression (Cell 1) > tral{"Cell 1"}
tral Constitutive
* -4 % -1 _ n 1
k27 2.3%10" m*s Expression (Cell 2) > tral{"Cell 2"}
i . Transcription of TraRd_msh{"Cell 1"} -> imptrar{"Cell 1"} +
* 2 % -1 —
k28 2:27107m"s msh Operon (Cell 1) | TraRd_msh{"Cell 1"}
i . Transcription of TraRd_msh{"Cell 2"} -> imptrar{"Cell 2"} +
* 2 % -1 —
k28 2:27107m%s msh Operon (Cell 2) | TraRd_msh{"Cell 2"}
3 1y - TraRd Binding msh TraRd{"Cell 1"} + msh{"Cell 1"} ->
* 3 1 -1
k29 297107 m s el 1) TraRd_msh{"Cell 1"}
3 1y - TraRd Binding msh TraRd{"Cell 2"} + msh{"Cell 2"} ->
* 3 1 -1
k29 297107 m s el 2) TraRd_msh{"Cell 2"}
3 .- TraRd Dissociating TraRd_msh{"Cell 1"} -> TraRd{"Cell 1"} +
*¥103 1 —
k30 247107 msh (Cell 1) msh{"Cell 1"}
3 .- TraRd Dissociating TraRd_msh{"Cell 2"} -> TraRd{"Cell 2"} +
103 1 —
k30 247107 msh (Cell 2) msh{"Cell 2"}
K31 6.418%10% <1 Degradation of AAI Ael"Cell 1"
: S| outside of Cell (cell | Aet"Cell1}->
K31 6.418%10% <1 Degradation of AAI Ael"Cell 2
: S| outside of Cell (cell | Aet"Cell27}->
4 - Degradation of AAl .
k31 6.418%10" 5! Ai{"Cell 1"} ->
> Inside of Cell (Cell 1) el 17}
4 - Degradation of AAl .
k31 6.418*10"s! Ai{"Cell 2"} ->
> Inside of Cell (Cell 2) {Cell 27}
} Diffusion of AAI Out
T 0.01-0.055" Ae{"Cell 1"} -
urnover > of System (Cell 2) ef’Ce b->
} Diffusion of AAI Out
T 0.01-0.055" Ae{"Cell 2"} -
urnover > of System (Cell 2) ef’Ce b->
Rate Law Turnover*600 s* Sup!oly of AAI From -> Ae{"Cell 1"}
Environment (Cell 1)
Rate Law Turnover*600 s* Sup!oly of Al From -> Ae{"Cell 2"}
Environment (Cell 2)
Cell 1 Diffusion From Cell " " " ;
Exchange 1-3s 1to Cell 2 Ae{"Cell 1"} -> Ae{"Cell 2"}
Cell 1 Diffusion From Cell " " " ;
Exchange 1-3s 5 to Cell 1 Ae{"Cell 2"} -> Ae{"Cell 1"}
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Fig 1. The comparison of gram-negative and gram-positive bacteria. Adopted from
Medical Microbiology. 4t Edition. (1996).
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Fig 2. Complex model of the quorum sensing network in Agrobacterium tumefaciens.
Adopted from Goryachev et al., 2005.

Fig 3. Single-cell model of the quorum sensing network in Agrobacterium
tumefaciens. This model is adopted from Goryachev et al., 2005.
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Probability of Synchronization
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Fig 6. Results of the two-cell model. The probability of cells synchronizing is given
by the amount of times the cells acted similar (both “on” or both “off”) in ten trials.

Probability of Turning "On"
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Fig 7. Results of the two-cell model. The probability of a cell turning “on” is given by
the average of the amount of times a cell turned “on” for twenty total trials.
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