Files

Abstract

Reproductive mechanisms play a vital role in a species' ability to proliferate and evolve. The complex and dynamic mating strategies that yeast species employ to effectively proliferate provide insight into how various reproductive models operate—comparing species with these unique capabilities can illuminate how sex and reproduction have evolved over time. The methylotrophic yeast Ogataea polymorpha, like many yeast species, exhibits asexual and sexual reproductive capabilities and can undergo mating-type switching before mating. Mating-type switching is a genetic process governed by the MAT locus, and recent investigations have characterized the structure and function of the locus in several species. However, unlike other species, the molecular mechanisms and specific environmental conditions required for mating and mating-type switching in methylotrophic yeast are poorly understood and contemporary testing protocols are time consuming. Here, we began creation of a high throughput assay to quantify mating and mating-type switching frequencies with flow cytometry. We designed three flow cytometry-based assays, including (1) utilizing nuclear DNA staining and cell cycle arrest to identify variations in ploidy indicative of mating, (2) bilateral mating with N- and C-terminus ends of Green Fluorescent Protein (GFP) in mating partners to track mating frequencies, and (3) molecular fluorescent tagging at mating-type specific genes of the MAT locus with genes for GFP and Red Fluorescent Protein (RFP) such that mating-type specific gene expression can be indicated via fluorescence to observe mating-type switching frequencies. Nuclear DNA staining protocols in O. polymorpha produced indistinguishable cell cycle histogram plots, indicating a need for an adapted DNA staining protocol for the species. Bilateral mating is effective at quantifying mating frequencies in Saccharomyces cerevisiae but fails to work effectively in O. polymorpha. Transformations for MAT locus molecular fluorescent tagging are in progress and have yet to be tested on the flow cytometer. Complete development of these assays will streamline the process of studying the genetic and environmental conditions in which yeast reproduce. Establishing more efficient methods to investigate the molecular dynamics of mating and mating-type switching will further our understanding of how reproduction has evolved across yeast species.

Details

PDF

Statistics

from
to
Export
Download Full History