
Generalizing the Rate Bound of the Hermitian-Lifted

Code

Na’ama Nevo

Fall 2022

Abstract

Hermitian-Lifted Codes were first described in a paper by Lopez, Malmskog, Matthews,
Piñero-Gonzales, and Wootters, which are advantageous for being locally recoverable
and evaluated on a large set of functions. The paper proves that the rate of the code
is bounded below by a positive constant for Hermitian Curve on q = 2l. This paper
generalizes the theorem to show that the rate of Hermitian-Lifted Codes is bounded
below by a positive constant when q = pl for any odd prime p.

1 Introduction

Codes are locally recoverable if an index of a codeword can be recovered by a subset of
the other symbols in the codeword. Locally recoverable codes have many advantages such
as protecting against data loss and allowing for data to be accessed in multiple ways, and
are therefore ideal to study to find ways to optimize their parameters. Algebraic codes,
which are also referred to as codes on curves, use geometric structures to increase the length
of codes while maintaining smaller fields. Lifted evaluation codes increase the number of
functions the code can be evaluated on, thus increasing the number of codewords.

This paper builds on a theorem from a paper by Lopez, Malmskog, Matthews, Piñero-
Gonzales, and Wootters, which describes a specific code construction called the Hermitian-
Lifted Code. The Hermitian curve is yq+1 = xq + x where q = pl for any prime p and any
positive integer l. The paper proves that when q = 2l, the rate of the Hermitian Lifted code
is bounded below by a positive constant independent of the size of l. This paper follows
a very similar proof to extend the theorem to show that when q = pl for all primes p, the
rate of the Hermitian-Lifted code is still bounded below by a positive constant, rather than
tending to 0.

Although the theorem proves a lower bound that is very close to 0, this result is significant
because it shows that the rate of this code is better than the rate of the one-point code C,
which tends to 0 as q increases. This implies that the set of functions included in the
Hermitian-Lifted code that are not in the set of functions for C is actually very large,
significant enough to increase the lower bound of the rate of the function. Additionally,
the lower bound found in this theorem is not a tight bound. The bound calculated in the
theorem finds a sufficient number of functions that yields a rate with a positive bound, but
does not aim to find all the functions or the actual dimension of the code. This discovery is
significant because the Hermitian-Lifted Code improves the rate of the Hermitian one-point
code while maintaining the same locality and availability.

1

The rest of the paper will first cover the necessary background on codes and algebraic
geometry codes, and then introduce the construction for Hermitian-Lifted Codes described
in [5]. In Section 4, we will prove the generalized version of the theorem proved in [5] by
following a very similar proof structure to the one used to prove the q = 2l case. Finally, we
will show an example of the proof in the p = 3 case and an example of a good monomial.

2 Important Background and Notation

2.1 Error Correcting and Detecting Codes

Error Correcting Codes are algorithms used to maximize accurate data transmission in
networks between a sender and receiver. Data transmission is often hindered by random
errors which can flip bits of a message to the wrong symbols. The goals of error correcting
codes is both to be able to detect as many errors as possible and to be able correct as many
errors as possible. Coding Theory investigates the limits of how effective and efficient a code
can be, motivating the continuous search for new strategies of encoding messages that yield
optimal detecting and correcting abilities.

Error detecting codes are prevalent in every day life. One of the simplest examples that
is commonly seen is the ISBN code used to identify books [6]. Books that were published
before 2007 are identified by a unique 10-digit sequence (13-digit ISBN codes were introduced
after 2007). However, only the first 9 numbers of the ISBN code provide information about
the book. The last digit is calculated based on the first 9 digits by the following formula:
for the first nine digits of an ISBN code a1a2a3 . . . a9, the last digit is calculated as a10 =
a1 + 2a2 + 3a3 + · · ·+ 9a9 mod 11. If a10 = 10, then it is represented as the character X.

This method is able to detect a single error in an ISBN code, where one digit is mistyped
with the wrong number. If the wrong digit is the last one, then the formula fails since there
is only one correct number between 1 and 10 that satisfies the formula and it will be evident
that there is a mistake. Additionally, if any of the first 9 digits are accidentally switched, the
mistake would also be detected: if the digit ai is accidentally typed as some other digit a′i
for i < 10, then the sum before modding out by 11 differs from the correct sum by i(a′i−ai).
Since both i and a′i − ai have values between 1 and 9, then the product cannot possibly be
divisible by 11. Therefore, the value of a10 would be incorrect and the formula would fail.

Although one incorrect digit can always be detected, the same is not true for two or
more mistakes. While the difference from the real sum cannot be divisible by 11 when there
is only one mistake, it is possible for the difference to have a factor of 11 when there are two
or more mistakes. This would result in the same value modulo 11, so the equation would be
satisfied despite the mistakes. Additionally, when a single mistake occurs and is detected,
it is not clear which digit caused the error so the code cannot be corrected.

A different intuitive strategy for detecting errors is to send a message multiple times.
Whenever the same symbol is sent in one position in each instance of the message, it is
safe to assume that the symbol is correct. If the symbol in one position varies between the
message instances, then an error is detected. The repetition strategy also allows errors to
be corrected: the symbol that appears the most times in each position would be chosen as
the most probable correct symbol. The main disadvantage of sending a message many times
is that it is an inefficient use of space. Messages would take a long time to send and most
of the transmitted information would be redundant.

Different types of codes vary in how many errors they can detect, how many errors
they can correct, and the amount of extra information that needs to be transmitted. The

2

challenge of coding theory is to find codes that can be most effective at correcting errors
while also minimizing the amount symbols that need to be transmitted. While the ISBN
code can only detect one error and correct none, it is useful for recognizing typing mistakes,
because ISBN codes are relatively short and can easily be recopied if there is a mistake. As
messages get longer and the likelihood of mistakes increases, it is ideal to have codes that
are both efficient and are capable of correcting the message in the event that there are many
errors.

2.2 Linear Codes

We will now introduce the formal definition of a code. A code C over an alphabet A is a
subset of An for a positive integer n. In other words, C ∈ An. In most of this paper, the
alphabet A will be a finite field. Every element of code is called a codeword, and the length
of the code is n, which is the number of symbols in each codeword.

For any two codewords x⃗ = (x1, x2, . . . , xn) and y⃗ = (y1, y2, . . . , yn), the Hamming
Distance between any x⃗ and y⃗ is defined as d(x⃗, y⃗) = #{i|xi ̸= yi} , which is the number
of spots that x⃗ and y⃗ have differing symbols. Every code has a minimum distance d, which
is the smallest Hamming Distance between any two distinct codewords in the code. The
minimum distance of a code determines how many errors in a message the code can correct.
If a message m ∈ An is transmitted but m /∈ C, then it would be assumed that the intended
transmission was the codeword in C with the smallest Hamming Distance from m. Thus,
correcting a message by finding the closest codeword is accurate only if the transmission
has at most d−1

2 errors.
The relative minimum distance of a code is defined as δ = d/n. Since the number of

errors in a transmission the code can accurately correct is limited by the minimum distance,
it is ideal for the relative minimum distance to be as close as possible to 1 to maximize the
correcting abilities of the code.

If A is a finite field, then a code C is a linear code if it is a vector subspace of An. Recall
that a vector subspace is closed under any linear combinations of elements in the subspace.
A vector subspace also has a set of basis elements, which is a subset of the vectors in the
subspace that can generate all the vectors in the set through linear combinations. The
minimum weight in a linear code is the smallest distance between a nonzero codeword and
the zero codeword, and the minimum weight is equal to the minimum distance. For a linear
code, the dimension of the code k is equal to the dimension of the vector subspace, or the
number of elements in the basis.

The information rate of a code is given by R = k/n. Out of the n symbols in a
codeword, only k symbols provide information about the message, while the other n − k
symbols are transmitted to assist with error detection. Therefore, maximizing the rate of
a code minimizes the number of extraneous symbols that need to be transmitted, which
increases the efficiency of transmission. A rate as close as possible to 1 is ideal.

Although maximizing both the relative minimum distance and the information rate
of a code is ideal, when the two values are maximized they have an inverse relationship.
Increasing one causes a decrease in the other, which means that there are trade offs when
constructing a code. Depending on the application, a code may be more useful with a higher
correcting ability, or it may be more useful with efficient transmission. Discovering different
types of codes that optimize each value in different amounts is important to find good codes
for a variety of contexts.

Linear codes with length n and dimension k can be represented by a k × n generator

3

matrix, where each row of the matrix one of the k basis elements of the code’s vector space.

Example 1. Consider the linear code C over the alphabet A = F2 = {0, 1} with the
following generator matrix. 1 0 0 1 1 1

0 1 0 0 1 1
1 0 1 0 0 1

It is easy to see that the code C has length n = 6 and dimension k = 3. Note that the

minimum distance of the set of basis vectors is not equal to the minimum distance of the
entire code, which often makes it very difficult to calculate the minimum distance of large
codes. Since this example is small and only has 8 codewords, we can use brute force to find
the minimum distance. Writing out and comparing all the elements of the code shows that
the minimum distance of C is 3.

Now consider that the message (1, 1, 0, 1, 0, 1) is received. Since this vector is not a
linear combination of any of the rows of the generator matrix, then the message cannot be
a codeword in C. Therefore, an error must have occurred in the transmission.

A minimum distance of 3 means this code can correct at most 3−1
2 = 1 error in a

codeword. Thus, in order to correct the error, we must find a codeword in C that has a
Hamming Distance of 1 from the received message. The codeword (1, 1, 0, 1, 0, 0) is generated
by adding the first two rows of the matrix, and has a Hamming Distance of 1 from the
received message. Then this codeword is the closest to the message, so the code algorithm
would assume that the intended message was (1, 1, 0, 1, 0, 0).

While the minimum distance can be used to correct messages that are not in the code,
there is no confirmation that the correction is accurate because the exact number of mistakes
in the transmission is unknown. In the event that more errors occured in a transmission
than a code is able to correct, then the closest codeword to the transmission would not
necessarily be the intended message. Maximizing the minimum distance allows room for
more errors to occur and be correctly fixed.

The need for a large minimum distance gives rise to the following question: what is the
greatest possible minimum distance a code could have given its parameters? The Singleton
Bound provides the answer to this exact question by bounding the minimum distance with
respect to the dimension and the length of the code.

Theorem 1. Singleton Bound Let C be a code with dimension k, length n, and minimum
distance d. Then d ≤ n− k + 1.

Any code with a minimum distance that has the maximum value provided by the Sin-
gleton Bound is called a Maximal Distance Separable Code, or MDS Code. One example
of an MDS Code is the Reed-Solomon Code. The Reed-Solomon Code is one of the most
widely used codes, with many applications including CDs and space transmission. In order
to define the Reed-Solomon Code, we will use the definition Lk = {f ∈ Fq[x]|deg f ≤ k}.

Definition 1. Let Fq = {α0, α1, . . . , αq−1} and let 0 < k ≤ q. Then the Reed-Solomon
Code is defined as

RS(k, q) = {(f(α0), f(α1), . . . , f(αq−1))|f ∈ Lk−1}.

The Reed-Solomon Code RS(k, q) is defined over the alphabet Fq, the finite field of
size q, and has a length of q and dimension k. Since the minimum distance is equal to the

4

minimum weight, the minimum distance d can be calculated by finding the minimum weight.
A function of degree k− 1 can have at most k− 1 roots. Since the length of each codeword
is q, then the minimum number of nonzero symbols in a codeword is q− (k− 1) = q− k+1.
This implies that d ≥ q−k+1 = n−k+1. By the Singleton Bound, the minimum distance
of d ≥ q − k = n − k + 1, so the minimum distance of RS(k, q) satisfies d = n − k + 1.
Therefore, RS(k, q) is an MDS code.

The code allows messages of length k to be sent and encoded. Consider the message
(m0,m1, . . . ,mk−1). Then the function f ∈ Fq[x] used to encode the message is f(x) = m0+
m1x+ · · ·+mk−1x

k−1, and the transmitted codeword would be (f(α0), f(α1), . . . , f(αq−1).
By solving a linear system of equations, the original message can then be decoded from the
results of the transmitted codeword.

Example 2. Consider using the code RS(4, 7) to send the message (3, 2, 1, 4). Working
over the field F7 = {0, 1, 2, 3, 4, 5, 6}, the function used to encode the message is f =
3+2x+ x2 +4x3. Therefore the codeword will be (3, 3, 1, 0, 3, 6, 5). The minimum distance
of RS(4, 7) is d = q − k = 7 − 4 = 3. Therefore, it can correct up to 1 error. In the case
that an error has occurred, the code can correct the error by solving a system of equations.

The Reed-Solomon code has an optimal relative minimum distance, which makes it a
very effective code in transmitting accurate messages across channels. For that reason, it is
widely used across a variety of applications. The drawback of an MDS code is that it only
allows for very short messages to be sent. In the example of the Reed-Solomon code, the
length of the message is limited by the dimension k, which is limited by the size of the field,
q. Therefore, to increase the length of messages, the size of the field must be increased as
well, which becomes computationally expensive. Since the minimum distance is q − k + 1,
decreasing the dimension increases the minimum distance. However, that simultaneously
decreases the length and the number of the messages that can be encoded. In cases where
many different types of messages need to be sent, using different types of codes that are
not MDS but that have more flexibility with the length of the message and size of the code
becomes necessary. This paper will describe algebraic codes that use different strategies to
increase the possible number of codewords a code can have.

2.3 Algebraic Geometry Codes

Algebraic Geometry Codes allow a wider variety of codewords to be sent than the Reed-
Solomon Code without increasing the size of the field by replacing values in the finite field
by points on a curve defined over a finite field. Increasing the size of the field slows down
computation time and can lead to storage issues. Whereas the length of a Reed-Solomon
code is limited by q, the size of the field, the length of codes on curves is instead limited by
the number of solutions on a given curve that are in the field. Additionally, there can be
more functions on the curve, allowing for not only longer codewords but more codewords.

The definitions in this section come from Judy Walker’s textbook, Codes and Curves [6].

2.3.1 Divisors and Riemann Roch Space of Functions

Before defining algebraic geometry codes, we will introduce the necessary components for
their construction. Algebraic geometry codes are constructed from a curve and field, which
together are used to generate a set of points and a set of functions that build specific
codewords. The curves used must be nonsingular projective plane curves, which we will
define next.

5

Definition 2. For a field k, the projective plane P2(k) is

P2(k) = (k3 \ {(0, 0, 0)})/ ∼,

where (X0, Y0, Z0) ∼ (X1, Y1, Z1) if and only if there is some nonzero element α in k that
satisfies X1 = αX0, Y1 = αY0, and Z1 = αZ0.

An equivalence class of points in the projective plane is written as (X0 : Y0 : Z0), which
includes all the points that are a nonzero element in k multiple of (X0, Y0, Z0). A projective
plane curve in this paper refers to the curve F (X,Y, Z) = 0 where F is a polynomial in
k[X,Y, Z] for a field k. Let K be a field that contains the field k as a subfield. A K-rational
point over the curve C is a point (X0 : Y0 : Z0) ∈ P2(K) that is a solution to the projective
plane curve, satisfying F (X0, Y0, Z0) = 0. We will denote the set of all K-rational points as
C(K).

The requirement for curves on codes is that they are nonsingular. A singular point
on a curve is a point where the function and all of its partial derivatives are equal to 0.
More specifically, if F (X,Y, Z) ∈ k[X,Y, Z], then (X0 : Y0 : Z0) is a singular point if
F (X0 : Y0 : Z0) = 0, FX(X0 : Y0 : Z0) = 0, FY (X0 : Y0 : Z0) = 0, and FZ(X0 : Y0 : Z0) = 0.
A nonsingular or smooth curve is a curve that does not have any singular points. The smooth
condition of a curve is necessary for many useful theorems about curves over finite fields
because a smooth curve does not have any nodes or self intersections. Therefore, nonsingular
curves have many advantages over singular curves when used in codes on curves.

Definition 3. Let f(x, y) be a function of degree d in k[x, y] where k is a field. Then the
homogenization of f is the function F (X,Y, Z) = Zdf(X/Z, Y/Z).

The homogenization of a function results in a function where every monomial has the
same total degree. Setting Z = 0 in a homogenized function leaves only the monomials
from the original function with the highest degree, which is the same process used to find
the limit of a function as it approaches infinity. A point (X0, Y0, Z0) where Z0 = 0 is thus
called a point at infinity, denoted P∞. Every other point is called an affine point.

Definition 4. (Divisor) Let C be a curve over Fq, and let Q be the set of points on C over
Fq. Then a divisor D on C over Fq is an element of the free abelian group with basis Q.

In other words, a divisor is a linear combination of the elements inQ. If all the coefficients
ofD are nonnegative, then we callD and effective divisor and say thatD ≥ 0. The support of
D, denoted supp(D), is the set of Q which have a nonzero coefficient in D. The intersection
divisor of two curves C and C ′, both over Fq, is the sum of all their points of intersection,
denoted C ∩ C ′.

Definition 5. Let F [X,Y, Z] be the polynomial which defines the nonsingular projective
plane curve C over Fq. Then the field of rational functions on C is

Fq(C) =

({
g(X,Y, Z)

h(X,Y, Z)

∣∣∣∣ g,h∈Fq [X,Y,Z]
are homogenous

of the same degree

}
∪ {0}

)
/ ∼,

where g/h ∼ g′/h′ if and only if gh′ − g′h ∈ ⟨F ⟩ ⊂ Fq[X,Y, Z].

The ⟨F ⟩ refers to the ideal generated by F where F [X,Y, Z] = 0.

6

Definition 6. Let C be a curve over Fq and let f = g/h ∈ Fq(C). Then the divisor of
f is div(f) =

∑
P −

∑
Q, where

∑
P is the intersection divisor C ∩ Cg and

∑
Q is the

intersection divisor C ∩ Ch.

In the function f = g/h, the intersection divisor Cg ∩ C is the zeros of f , while the
intersection divisor Ch ∩C is the poles of f . The divisor of f can be thought of as the zeros
of f minus the poles of f .

Finally, we can combine definitions 4, 5, and 6 to describe the set of functions that
forms the Riemann-Roch Space, also called the space of rational functions associated to
divisor D. The Reimann-Roch Space is an important component of the construction of
codes on curves.

Definition 7. Let D be a divisor of C over Fq. Then the space of rational functions
associate to D is

L(D) = {f ∈ Fq(C)|div(f) +D ≥ 0} ∪ {0}.

Recall that a divisor is effective, or greater than or equal to 0, when all the coefficients
of the points are positive. Since, the coefficients that are negative in div(f) are the poles of
f , then the set L(D) contains all the functions that have at most D poles in order for the
negative coefficients to cancel out.

2.3.2 Codes on Curves

Our original definition for the Reed-Solomon code was

RS(k, q) = {(f(α0), f(α1), . . . , f(αq−1))|f ∈ Lk−1}.

We can redefine this code using the new definitions introduced above. The Reed-Solomon
code can also be defined as

RS(k, q) = {(f(P1), . . . , f(Pq−1))|f ∈ L((k − 1)P∞)},

where L((k − 1)P∞) is the space of rational functions associated to the divisor (k − 1)P∞.
The set L((k − 1)P∞) includes all functions f which have at most k − 1 poles at P∞. This
is equivalent to including all functions that have degree at most k− 1. Therefore, the space
of rational functions associated to D when we set D = (k − 1)P∞ is equal to Lk−1, which
maintains the definition of the Reed-Solomon code.

As mentioned before, the Reed-Solomon code optimizes the minimum distance at the
expense of allowing long messages to be transmitted. We now introduce Goppa’s code
construction, which generalizes the Reed-Solomon code to allow for longer codewords and
messages. We will now be shifting the notation used in previous sections and will let X be
a projective, nonsingular plane curve over Fq and C be the code. Let D be a divisor on X.
For a curve X, defined over field k, and extension field K, X(K) denotes the set of points
on X defined over the field K. Then let P = {P1, . . . , Pn} ∈ X(Fq) be a set of n distinct
rational points on X over Fq. Now we can finally define an algebraic geometry code.

Definition 8. Given nonsingular projective plane curve X over field Fq, a set of points
P ⊂ X(Fq), and divisor D on X where P ∩ supp(D) = ∅, the algebraic geometry code
associated with X, P, and D is

C(X,P, D) = {(f(P1), . . . , f(Pn))|f ∈ L(D)} ⊂ Fn
q .

7

Algebraic geometry codes are linear codes. In Goppa’s code construction, the length
of the code is no longer limited to the size of the field q. Instead, the length of the code
is equal to the number of points n in the set P, which is restricted by 0 < n ≤ |X(Fq)|.
Therefore, curves that have more rational points and a larger set X(Fq) allow for longer
possible codewords. The size of the Reed-Solomon code is qk, which is the total number of
polynomials with degree at most k−1 over the q possible coefficients. In algebraic geometry
codes, the number of possible messages that can be sent, or the size of the code, is |L(D)|,
which is the number of functions in the Reimann-Roch space associated with D.

One of the simplest subsets of algebraic geometry codes is the one-point code, which uses
a multiple of one rational point as its divisor.

Definition 9. ([5]) Let X be a smooth curve defined over Fq. Let P be a point on X(Fq)
and m be a natural number. Let B = {P1, P2, . . . , Pn} be a set of points on X(Fq) not
containing P , and let D = P1 + P2 + · · · + Pn be a divisor. Let L(mP) be the Riemann-
Roch space of functions on X only with poles P with order at most m. The one-point code
C(D,mP) is the set {(f(P1), f(P2), . . . , f(Pn)) ∈ (Fq)

n : f ∈ L(mP)}.

The one-point code can be explained in terms of the original definition of algebraic
geometry codes: the one-point code is C(X,P,mP) where m is a natural number and
P /∈ P. The set L(mP) is the set of rational functions on X which do not have more poles
than mP .

Since we want to have codes with long words, we want to use curves that have a maximal
number of rational points. The Hasse-Weil bound uses the genus of a curve to bound the
number of points possible for a curve over a finite field, which can be used to check whether
curves are maximal. The genus of a curve is a positive integer measure of complexity of
curves. It is calculated by the formula (d − 1)(d − 2)/2 = d(d − 1)/2, where d is degree of
the curve.

Theorem 2. (Hasse-Weil Bound) For a smooth, projective curve X with genus g over finit
field Fq with cardinality q, the number of possible points on X over Fq is

q + 1− 2g
√
q ≤ |X(Fq)| ≤ q + 1 + 2g

√
q.

Note that the genus is only calculated for nonsingular curves. Having a positive genus
increases the upper bound of the number of points on a curve, which is another reason
nonsingular curves are ideal over singular curves.

The focus of this paper is on codes on the Hermitian Curve, which is a maximal curve
based on the Hasse-Weil Bound. In the next section we will describe properties of the
Hermitian Curve that make it an ideal curve to study.

2.4 The Hermitian-Lifted Code

2.4.1 The Hermitian Curve

The Hermitian Curve Hq is the equation xq + x = yq+1, defined over the field Fq2 where
q = pl for some prime p. We can check that this curve is maximal by using the Hasse-Weil
Bound. First, we calculate the genus using the formula. The degree of the Hq is d, so we
get that g = q(q − 1)/2, and q2 is the size of the field. The upper bound for the size of
Hq(Fq2) is then

q2 + 1 + 2(q(q − 1)/2)
√
q2 = q2 + 1 + q3 − q2 = q3 + 1.

8

Next, we need to calculate Hq(Fq2). By homogenizing the curve, we see that there is
one unique point at infinity at (0 : 1 : 0). Consider for the rest of the solutions that Z = 1.
Since Xq+1 = N(X) ∈ Fq for all values of X ∈ Fq2 , then there are q2 options for X with
only q corresponding unique solutions to Y , leading to q(q2) = q3 additional solutions. In
total, there are q3 + 1 rational points on the Hermitian Curve over Fq2 , so Hq(Fq) is equal
to the upper bound of the Hasse-Weil Bound. Therefore, the Hermitian Curve is maximal.
This property makes codes on the Hermitian Curve appealing to study because they have
the largest possible length of codewords and also a large genus.

Now we define the one-point code on the Hermitian curve. We take mP∞ to be the pole
divisor. The Riemann-Roch space L(mP∞) is given by {xiyj : 0 ≤ j ≤ q − 1, iq + j(q +
1) ≤ m}. Using the notation in the original definition of an algebraic geometry code, the
Hermitian one-point code is C(Hq,Hq(Fq2) \ {P∞},mP∞). We will use the notation Cq,m

to denote the Hermitian one-point code with divisor mP∞ and curve Hq.
The length of the Hermitian one-point code is q3. When m > 2g− 2 then the dimension

is equal to m − g + 1. In general, the dimension satisfies k = dim(L(mP∞)) ≥ m − g + 1.
The minimum distance is given by n−m.

2.4.2 Locality and Availability of Hermitian One-Point Code

Locally recoverable codes are codes that can recover a single erased point in a codeword
from a subset of the remaining points. A code C has locality r and availability t if for each
i ∈ [n] there are t disjoint repair sets for i in C each of size at most r. Locally Recoverable
Codes were first introduced by Balaji and Krishnan in [2].

The ability to recover a missing piece of data from the available data is extremely useful
for preventing the loss of information. For example, information stored in the cloud is all
stored somewhere in physical machines. Assume for simplicity that one symbol is stored
on each machine. Although the probability of any single machine being destroyed is low,
cloud storage is made up of many machines, making it likely that at least some machines
will malfunction. Having the ability to use a small group of other machines to recover the
erasure of a single point provides protection against inevitable accidents, mistakes, or natural
disasters. Without locally recoverable codes, information would frequently be permanently
lost due to random damaging events.

Curves and other geometric objects have structures that allow for convenient recovery
sets, such as the Hermitian Curve [3]. In the Hermitian one-point, the recovery sets are
the intersections of lines with the curve, where any point on a line can be recovered by the
remaining points on the line.

Theorem 3. ([5]) Hermitian one-point code has locality q and availability q2 − 1.

Proof. Let each index i correspond to a point Pi in Hq(Fq2) \ {P∞}. For any α, β ∈ Fq2 , let
Lα,β : Fq2 → (Fq2)

2 so that Lα,β(t) = (αt + β, t). For any line IM(Lα,β) passing through
Pi that is not tangent, then let Ri,α = (Hq(Fq2) ∩ IM(Lα,β)) \ {Pi}. Note that |Ri,α| = q
and there are q2 − 1 disjoint sets for each i.

Any codeword in Cq,m is a linear combination of xayb satisfying b ≤ q−1 and aq+ b(q+
1) ≤ q2 − 1. This gives

a+ b+ b
1

q
≤ q − 1

q

a+ b ≤ q − b+ 1

q

9

a+ b ≤ q − 1

This gives a univariate polynomial of degree at most q− 1. This means that if one point
is removed there are q points left on the line that can help recover it, which is sufficient.

The high availability of the Hermitian one-point code along with the fact that it has
the maximal number of rational points relative to its genus makes it a very appealing code
to study. The Hermitian-Lifted code shares many properties with the Hermitian one-point
code, but we will prove that it has the advantage of a higher rate.

3 The Code Construction

The Hermitian-Lifted code is similar to the Hermitian one-point code, but it extends the
set of functions that can be used to form codewords. Lifted codes were first introduced by
Guo, Kopparty, and Sudan [4]. The definitions in this section come directly from [5], where
the Hermitian-Lifted code was first described.

Definition 10. For polynomials f ∈ Fq2 [x, y] and g ∈ Fq2 [t] and for function L : Fq2 [t] →
F2
q2 we say that f ◦ L agrees with g on X if f(L(t)) = g(t) for all t ∈ Fq2 with L(t) ∈ X.

Recall that X = Hq(Fq2) \ {P∞}. The function L takes in a t and then outputs the
coordinate (αt + β, t) for the α and β corresponding to the specific L. So L(t) is a line on
the curve Hq over the field Fq2 and plugging that line into f yields g(t) which is a univariate
polynomial.

Definition 11. Given a prime power q, let

F =

f ∈ Fq2 [x, y] : for every L ∈ L there exists g ∈ Fq2 [t]

so that deg(g) ≤ q − 1 and so that f ◦ L
agrees with g on X

where L = {Lα,β : α, β ∈ Fq2} is the set of all lines of the form Lα,β(t) = (αt+ β, t).

In other words, F is the set of all functions such that for every line L, plugging in f(L(t))
yields a univariate polynomial with degree at most q − 1, which here is called g. Assuming
f ∈ Fq2 [x, y] then f(L(t)) will also be over the appropriate field, so the main restriction is
that the total degree does not exceed q − 1 after simplification.

Now we define Hermitian-Lifted Codes.

Definition 12. Let q be a prime power and let F be defined as above. Then the Hermitian-
Lifted Code C ⊂ (Fq2)

q3 is the evaluation code

C = {(f(x, y))(x,y)∈X : f ∈ F}.

The length of the code is q3 because |X | = q3. Each codeword is the vector created by
the inputs of X into a function f , and all the functions f satisfy that their total degree is
at most q − 1.

Horizontal lines are ignored here because they include the point at infinity which is not
an evaluation point by construction of X .

It is important to remember the difference between Cq,m, the Hermitian one-point code,
and C, the Hermitian-Lifted code. Both of these have codewords of length q3 and the

10

inputs are X = Hq(Fq2) \ {P∞}. Also, both codes have locality q and availability q2 − 1.
The difference is the functions f that are valid. In the one-point code Cq,m, the functions
f must satisfy f ∈ L(mP∞), which is polynomials of total degree at most m. In the
Hermitian-Lifted Code, the functions must satisfy f ∈ F , which is all functions with degree
at most q − 1 after they are parameterized. Although the distinction between these two
codes is seemingly insignificant, the main theorem proves that the slight difference in the
set of functions F and L(mP∞) is enough to make the rate of each code converge to a
different value as q goes to infinity.

4 Main Theorem and Proof

The authors of [5] prove that the rate of the Hermitian-Lifted Code as q → ∞ when q = 2l

is bounded below by a positive constant. The aim of this paper is to extend this theorem
to show that the rate of the Hermitian-Lifted Code is also bounded below by a positive
constant when q = pl when p is any odd prime. Recall that the Hermitian Lifted Code

C ⊂ Fq3

q2 is defined as C{(f(x, y))(x,y)∈X : f ∈ F}. The statement of the theorem in [5] is
the following:

Theorem 4. Suppose q = 2l where l ≥ 2 and let C be the Hermitian-Lifted Code. Then the
rate of C is at least 0.007.

Despite the fact that 0.007 is a very small lower bound, it demonstrates a significant
difference between the Hermitian-Lifted code and the Hermitian one-point code, which has
a rate that converges to 0 as q increases. Set m = q2 − 1 and represent the Hermitian
one-point code as Cq,q2−1. The one-point code is a subset of the lifted code because the set
of functions corresponding to each code satisfies L((q2 − 1)P∞) ⊂ F . Since the one-point
code is a subset of the lifted code, then the dimension of the lifted code must be at least
the dimension of the one-point code.

Recall that when m > 2g − 2, then the dimension of the Hermitian one-point code is
equal to m − g + 1. In the code Cq,q2−1, we have m = q2 − 1 and 2g − 2 = q2 − q − 2,

so m > 2g − 2. Thus, the dimension of Cq,q2−1 is q(q+1)
2 and the length of the code is q3.

Therefore, the rate of Hermitian one-point code C is at least

q(q + 1)

2q3
=

q2

2q3
+

q

2q3
=

1

2q
+

1

2q2
,

which clearly converges to 0 as q → ∞. Therefore, finding that the rate of the Hermitian-
Lifted code converges to a number greater than 0 proves that the set of functions F \L((q2−
1)P∞) is large. The proof of Theorem 4 in [5] follows the appoach of finding a large set of
functions included in the lifted code but not in the one-point code that result in a sufficiently
large dimension. By following a very similar process of finding a set of functions to the proof
in [5], we will prove the following main result.

Theorem 5. Suppose that q = pl where p is an odd prime and l ≥ 2. Then the rate of C is
at least

.469

p4(p− 1)(p3 − p2 + 1)
.

.

11

Although the bound decreases as p increases, the bound always remains positive. The
remainder of this section will be the proof to Theorem 5. First, we will describe the set
of functions that will provide a lower bound on the dimension of the code, a set which we
call good monomials. Next, we will describe the conditions that must be satisfied for a
monomial to be considered good, and provide some examples for when q = 3l. Finally, we
will count the minimum number of functions that must be good monomials, which will lead
to a lower bound on a dimension. The final proof of the bound in Theorem 5 will conclude
this section.

4.1 Good Monomials

Before proving the theorem, we will prove some lemmas assuming that q = pl. In this
section, we will denote the Hermitian Curve Hq by X . The goal is to find a large set of
monomials, Ma,b(x, y) = xayb ∈ F , that are linearly independent. By finding and counting
the number of monomials that are linearly independent, we will find a lower bound on the
dimension of the code, and thus also a lower bound on the rate of the code.

For a monomialMa,b(x, y) = xayb, the exponents are bounded by a ≤ q−1 and b ≤ q2−1.
The bound a, b ≤ q2 − 1 follows from the fact that we are working over the field Fq2 . The
bound on a follows from the reduction of the degrees from the Hermitian Curve. For
example, assume a = q and b = 2. From the equation of the Hermitian curve, we have
xq = yq+1 − x, so instead of xayb = xqy2, we could write it as (yq+1 − x)y2 = yq+3 − yq+1x,
which is a linear combination of monomials with a ≤ q − 1. Therefore, the conditions
a ≤ q − 1 and b ≤ q2 − 1 include all the linearly independent monomials.

The purpose of the following lemma is to prove that the evaluation map of the monomials
in the set is injective, which ensures that the size of the set is a lower bound on the dimension
of the code.

Lemma 1. Let Ma,b(x, y) = xayb. Then the set of vectors {(Ma,b(x, y))(x,y)∈X : 0 ≤ a ≤
q − 1, 0 ≤ b ≤ q2 − 1} are linearly independent.

The proof of this lemma for all values of q is in Proposition 5 of [5].
Now that the we have proven that the evaluation map of the monomials is linearly

independent, we can find a good set of monomials that will bound the dimension. Before
we can define which monomials are good, we will introduce another definition. Given a line
of the form Lα,β(t) = (αt+ β, t), the following definition gives the equation of the points of
the Hermitian curve that intersect with the line.

Definition 13. Given α, β ∈ Fq2 , define

pα,β(t) = tq+1 + αqtq + αt+ (β + βq) = tq+1 + aqtq + αt+ γ.

For g(t) ∈ Fq2 [t], ḡ(t) is the remainder when g(t) is divided by pα,β(t). Let degα,β(g) =
deg(ḡα,β(t)). Note that degα,β(g) ≤ q for all g ∈ Fq2(t).

For a line Lα,β(t) = (αt+ β, t), we have Mα,β ◦Lα,β agrees with polynomial g of degree
strictly less than q on X if and only if degα,β(Mα,β ◦ Lα,β) < q. Write

(Mα,β ◦ Lα,β)(t) = h(t)pα,β(t) + g(t)

for deg(g) ≤ q. Then since t ∈ X , then t satisfies 0 = tq+1+(α+βt)q+α+βt so pα,β(t) = 0.
Thus, Mα,β ◦ Lα,β agrees with g(t). Note that there are q + 1 values of t for polynomial of
degree at most q, so g(t) is a unique polynomial.

12

For a monomial Ma,b(x, y), let ga,b(t) = Ma,b(x, y) ◦ Lα,β(t) = (αt+ β)atb. We define a
good monomial to be a monomial Ma,b(x, y) such that ga,b(t) satisfies degα,β(g) ≤ q − 1.

What follows is that if Ma,b is a good monomial, then Ma,b ∈ F . Recall that F is defined
to be the set of all functions that when parameterized yields a univariate polynomial of
degree at most q − 1, so this observation follows by the definition of a good monomial.

4.2 Conditions of Good Monomials

The notation for the rest of this section will be as follows. The line Lα,β(t) = (αt + β, t)
is a line that goes through q + 1 points of the Hermitian curve X for α, β ∈ Fq2 . Also,
γ = β + βq ∈ Fq. This is not used later in the proof, but is true because (β + βq) =

(βq + βq2) = βq + β, which by Fermat’s Little Theorem implies that γ ∈ Fq.
Let σ0, . . . , σq be the roots of p(t). We know there are q+1 roots because there are q+1

points in the intersection of the line and the Hermitian curve. Thus,

p(t) = tq+1 + aqtq + αt+ γ = (t− σ0) · · · (t− σq) = c0t
q+1 + c1t

q + · · ·+ cqt+ cq + 1

where ck =
∑

S⊂0,...,q,|S|=k

∏
l∈S σl for k = 0, . . . , q. This is just given by the expansion of

the product above.
For any k ≥ 0 we define the element Pk =

∑q
i=0 σ

k
i . These values will be used to find a

condition for good monomials.

Lemma 2. Let q be a power of p and let α, β ∈ Fq2 . Then Pk+1 = −αqPk if and only if
degα,β(t

k) < q.

Proof. Write tk = gk(t)p(t) + ḡk(t) for some polynomial gk(t) so that the polynomial ḡk(t)
has degree at most q. The goal is to show that deg(ḡk(t)) < q if and only if Pk+1 = −αqPk.

Since σ0, . . . , σq are the roots of p(t), we have ḡk(σi) = σk
i . Thus, we know q + 1 values

of ḡk by plugging in each σi for i = {0, . . . , q}. Since ḡk has degree less than q, we can use
Lagrange interpolation to write

ḡk(t) =

k∑
i=0

σk
i

∏
j ̸=i

(
t− σj

σi − σj

)
=

 q∑
i=0

σk
i

∏
j ̸=i

1

σi − σj

 tq + r(t) (1)

where deg(r(t)) < q. Since we are only concerned with checking when the degree of the
whole polynomial is less than q, it is enough to check which conditions ensure that the
coefficient of tq is 0. Since

p(t) = tq+1 + αqtq + αt+ γ = (t− σ0) · · · (t− σq)

we can take the derivative of both sides and get

p′(t) = tq + α =

q∑
i=0

∏
j ̸=i

(t− σj).

Replacing t with σi yields

p′(σi) = σq
i + α =

q∑
i=0

∏
j ̸=i

(σi − σj). (2)

13

Because σi is a root of p(t) then σq
i + 1 + αqσq

i + ασi = −γ, which can be factored as
(σq

i + α)(σi + αq) = αq+1 − γ. Divide both sides of the equation by (σi + αq) and use
equation 2 to get ∏

j ̸=i

(σi − σj) =
αq+1 − γ

σi + αq
.

Using equation 1 we can calculate the coefficient of tq in ḡk(t) to be

q∑
i=1

σk
i (σi + αq)

αq+1 − γ
=

Pk+1 + αqPk

αq+1 − γ

which is equal to zero exactly when Pk+1 = −αqPk. Thus, this is our condition for when
degα,β(g) < q.

Now that we have a sufficient condition on Pk that gives good monomials, we need to
find a condition on k that will satisfy Pk+1 = −αqPk. We will find a few more patterns
before we find a condition on k.

Lemma 3. Let q be a power of an odd prime p. For 0 ≤ k < q, Pk = (−1)kαqk and
Pkq = (−q)kαk.

Proof. Since q is a multiple of p, then P0 = q+1 = 1. Let 1 ≤ k < q. We get Pk = −αqPk−1

from Lemma 2. By induction, we get that Pk = (−1)kαqk. Because we are working over
Fq2 ,

Pkq =

q∑
i=0

σqk
i =

(
q∑

i=0

σk
i

)q

= (αqk)q = (−1)kαk.

Therefore, Pk = (−1)kαqk and Pkq = (−1)kαk.

Using Lemmas 2 and 3 above, we can find a useful relationship between the elements
of the following matrix, which will be useful for the upcoming theorems.

P0 Pq · · · P(q−1)q

P1 Pq+1 · · · P(q−1)q+1

...
...

...
Pq−1 P2q−1 · · · Pq2−1

 .

For a root σ of p(t)− tq+1+αqtq +αt+γ, we have −σq+1 = αqσq +ασ+γ. By multiplying
both sides of the equation by σk−q−1 we get −σk = αqσk−1 + ασk−q + γσk−q−1. Thus, we
obtain that the values of Pk satisfy the recurrence relation

−Pk = αqPk−1 + αPk−q + γPk−q−1. (3)

Based on this formula, the (i, j) entry of the matrix is determined by the (i−1, j), (i, j−1),
and (i− 1, j − 1) entries of the matrix. As a result, the entire matrix is determined by the
first row and first column of the matrix. Therefore, every 2 × 2 submatrix M must satisfy
the recurrence relation

−M22 = αqM12 + αM21 + γM11. (4)

The next step of the proof will be to show that the above matrix can be written as a product
of a specific product of matrices, using the fact that it is sufficient to show that the first row
and column are equal and every submatrix satisfies the recurrence relation. The following
definitions will provide the tools for defining the product.

14

Definition 14. Let A = [aij] be an r × s matrix and B = [bij] an m1 ×m2 matrix. The
Kronecker product of A and B is the rm1 × sm2 matrix that can be expressed in block form
as

A⊗B =

a11B a12B · · · a1sB
a21B a22B · · · a2sB
...

...
...

ar1B ar2B · · · arsB

Next, we describe the matrices that make up the product. Consider a p × p matrix B

where every 2 × 2 submatrix satisfies the property in 4. The first row of the matrix is
{1,−α, α2,−α3, . . . , αp−1} and the first column is {1,−α1, α2q,−α3q, . . . , αq(p−1)}. We can
use this information to find every other element in the matrix.

Lemma 4. The term of the matrix Bij in row i and column j has the form

Bij =

min(i,j)−1∑
n=0

(−1)i+j−n

(
i− 1

n

)(
i+ j − n− 2

i− 1

)
α(i−1−n)q+j−1−nγn. (5)

Proof. We will prove this formula by induction. First, we can easily verify that the first row
and first column satisfy this formula. Now, assume that entries Ba,b, Ba+1,b, and Ba,b+1

satisfy the formula. We want to show that these imply that Ba+1,b+1 satisfies the formula.
We can calculate the Ba+1,b+1 entry by applying the property for any 2×2 matrix contained
in the p× p matrix.

Ba+1,b+1 = −αq

min(a−1,b)∑
n=0

(−1)a+b+1−n

(
a− 1

n

)(
a+ b− n− 1

a− 1

)
α(a−1−n)q+b−nγn

+−α

min(a,b−1)∑
n=0

(−1)a+b+1−n

(
a

n

)(
a+ b− n− 1

a

)
α(a−n)q+b−1−nγn

+−γ

min(a−1,b−1)∑
n=0

(−1)a+b−n

(
a− 1

n

)(
a+ b− n− 2

a− 1

)
α(a−1−n)q+b−1−nγn

=

min(a−1,b)∑
n=0

(−1)a+b−n

(
a− 1

n

)(
a+ b− n− 1

a− 1

)
α(a−n)q+b−nγn

+

min(a,b−1)∑
n=0

(−1)a+b−n

(
a

n

)(
a+ b− n− 1

a

)
α(a−n)q+b−nγn

+

min(a−1,b−1)∑
n=0

(−1)a+b+1−n

(
a− 1

n

)(
a+ b− n− 2

a− 1

)
α(a−1−n)q+b−1−nγn+1.

This can be simplified differently depending on whether a > b, a < b, or a = b. First,
consider that a ≥ b. We can further simplify by combining the summations. Temporarily,
let

X =

((
a− 1

n

)(
a+ b− 1− n

a− 1

)
+

(
a

n

)(
a+ b− 1− n

a

)
+

(
a− 1

n− 1

)(
a+ b− 1− n

a− 1

))
.

15

Then substituting the value of X we get

Ba+1,b+1 =

b−1∑
n=1

(−1)a+b−nXα(a+n)q+b−nγn

+ (−1)a+b

((
a− 1

0

)(
a+ b− 1

a− 1

)
+

(
a

0

)(
a+ b− 1

a

))
αaq+bγ0

+ (−1)a
(
a− 1

b

)(
a− 1

a− 1

)
α(a−b)qγb

+ (−1)a
(
a− 1

b− 1

)(
a− 1

a− 1

)
α(a−b)qγb

=

b∑
n=0

(−1)a+b−nXα(a+n)q+b−nγn.

Now consider that a ≤ b and use the same definition for X.

Ba+1,b+1 =

a−1∑
n=1

(−1)a+b−nXα(a+n)q+b−nγn

+ (−1)a+b

((
a− 1

0

)(
a+ b− 1

a− 1

)
+

(
a

0

)(
a+ b− 1

a

))
αaq+bγ0

+ (−1)b
(
a

a

)(
b− 1

a

)
αb−aγa

+ (−1)b
(
a− 1

a− 1

)(
b− 1

a− 1

)
αb−aγa

=

a∑
n=0

(−1)a+b−nXα(a+n)q+b−nγn.

Both cases result in the simplification

Ba+1,b+1 =

min(a,b)∑
n=0

(−1)a+b−nXα(a+n)q+b−nγn.

Now that we have simplified the equation into one summation, we can simplify the value of
X. Using known identities of binomial coefficients, the binomial coefficients can be rewritten
as the following. (

a+ b− 1− n

a− 1

)
=

a

a+ b− n

(
a+ b− n

a

)
(
a+ b− 1− n

a

)
=

b− n

a+ b− n

(
a+ b− n

a

)
(
a− 1

n− 1

)
=

n

a

(
a

n

)
(
a− 1

n

)
=

a− n

a

(
a

n

)

16

Now we will substitute these identities into the equation for X.

X =

((
a− 1

n

)(
a+ b− 1− n

a− 1

)
+

(
a

n

)(
a+ b− 1− n

a

)
+

(
a− 1

n− 1

)(
a+ b− 1− n

a− 1

))
=

(
a

n

)(
a+ b− n

a

)(
a− n

a
· a

a+ b− n
+

b− n

a+ b− n
+

n

a
· a

a+ b− n

)
=

(
a

n

)(
a+ b− n

a

)(
a+ b− n

a+ b− n

)
=

(
a

n

)(
a+ b− n

a

)
.

Plugging in the simplified value of X into the summation for Ba+1,b+1 yields

Ba+1,b+1 =

b∑
n=0

(−1)a+b−n

(
a

n

)(
a+ b− n

a

)
α(a+n)q+b−nγn,

which satisfies the formula. By induction, every entry in B satisfies 5, and the proof is
complete.

The formula for each term allows us to find the exact values of the last row and last
column.

Lemma 5. The last row of matrix B is Bpj = (−1)j−1α(p−j)qγj−1 and the last column is
Bip = (−1)p−1αp−iγi−1.

Proof. The last row of the matrix is given by

Bpj =

j−1∑
n=0

(−1)p+j−n

(
p− 1

n

)(
p+ j − n− 2

p− 1

)
α(p−1−n)q+j−1−nγn.

By binomial coefficient identities,
(
p−1
n

)
= (−1)n mod p. Also by binomial coefficient iden-

tities, (
p+ j − n− 2

p− 1

)
=

p

j − n− 1

(
p+ j − n− 2

p

)
.

This implies that
(
p+j−n−2

p−1

)
≡ 0 mod p except when n = j − 1. Therefore, the only terms

that are left in the last row are the terms with γj−1. Thus, Bpj = (−1)j−1α(p−j)qγj−1,
proving the lemma for the last row.

The last column of the matrix is given by

Bip =

i−1∑
n=0

(−1)p+j−n

(
i− 1

n

)(
i+ p− n− 2

i− 1

)
α(i−1−n)q+p−1−nγn.

Since (
p+ i− n− 2

p− 1

)
=

(p+ i− n− 2)!

(i− 1)!(p− n− 1)!
,

then
(
p+i−n−2

p−1

)
is divisible by p as long as i − n − 2 ≥ 0. This is the case except when

n = i − 1, because i − (i − 1) − 2 = −1. Therefore, all the terms of the entries in the last
column become 0 modulo p except when n = i − 1. Therefore, the formula for the last
column of the matrix is Bip = (−1)p−1αp−iγi−1, completing the proof of the lemma.

17

Now that we have defined one of the matrices, we can define the sequence of matrices
that will be in the Kronecker Product.

Definition 15. The matrix Bh represents the p × p matrix where the (i, j) term is of the
form min(i,j)−1∑

n=0

(−1)i+j−n

(
i− 1

n

)(
i+ j − n− 2

i− 1

)
α(i−1−n)q+j−1−nγn

pl−h

.

Lemma 6. Assume q = pl. Then
P0 Pq · · · P(q−1)q

P1 Pq+1 · · · P(q−1)q+1

...
...

...
Pq−1 P2q−1 · · · Pq2−1

 = B1 ⊗B2 ⊗ · · · ⊗Bl.

Proof. Denote the matrix on the left by Γq and the matrix on the right side by Γ′
q. The first

row of Γ′
q is (1,−α, α2,−α3, . . . , αq−1) and the first column is (1,−αq, α2q, . . . , α(q−1)q). By

Lemmas 2 and 3, the first rows and first columns of Γq and Γ′
q are equal. Therefore, in

order to show that Γq = Γ′
q, it is sufficient to show that every 2 × 2 matrix inside of Γ′

q

satisfies 4.
We will proceed by induction. First, we know that the matrix Bl satisfies property 4 by

construction and by Lemma 4. Now let i > 1 and assume that every 2 × 2 block of the
matrix

B = Bi+1 ⊗Bi+2 ⊗ · · · ⊗Bl

satisfies 4. To complete the inductive step, the goal is to show that every 2× 2 block of the
matrix

Bi ⊗B =

B (−α)p

l−i

B · · · (αp−1)p
l−i

B

(−αq)p
l−i

B (2αq+1 − γ)p
l−i

B · · · (−γαp−2)p
l−i

B
...

...
...

α(p−1)q)p
l−i

B (−γα(p−2)q)p
l−i

B · · · (γp−1)p
l−i

B

also satisfies 4. There are four cases for where a 2× 2 block may lie in the matrix above.

1. The block lies entirely in one of the 9 cells.

2. The block intersects four different cells of the matrix.

3. The block intersects two horizontally adjacent cells.

4. The block intersects two vertically adjacent cells.

Any 2×2 block in B satisfies the relation by the induction hypothesis. Therefore, any block
in the first case will also satisfy the relation because multiplying by a constant will maintain
the relation.

18

Note that by Lemma 5, the first and last columns and rows of B have the following
structure:

1 −α α2 · · · αpi−1

−αq −αpi−2

γ

α2q αpi−3

γ2

...
...

αq(pi−1) −αq(pi−2)γ αq(pi−3)γ2 · · · γpi−1

 (6)

Now let w, x, y, z be constants from a 2 × 2 submatrix of B and thus satisfying −z =
αqx+ αy + γw. Then in the second case, the block will be of the form(∏i−1

k=0 γ
(p−1)pk

w
∏i−1

k=0 α
(p−1)qpk

x∏i−1
k=0 α

(p−1)pk

y z

)
=

(
γpi−1w αq(pi−1)x

αpi−1y z

)
.

We want to show that −z = αqpi

x+ αpi

y + γpi

w. We can rewrite the relationship between
the constants as (−z1/p

i

)p
i

= (αqx1/pi

+ αy1/p
i

+ γw1/pi

)p
i

which by Theorem 8 implies

that −z = αqpi

x+ αpi

y + γpi

w. Thus, submatrices in the second case satisfy 4.
For the third case when the block intersects two horizontally adjacent cells, the block

will have the form (
(−1)j−1α(pi−j)γj−1

x (−1)jα(j−1)qy

(−1)jαpi−j−1yjx (−1)jαjqy

)
for constants x and y and 1 ≤ j ≤ q − 1. Indeed, we have

−(−1)jαjqy = (−1)j−1αjqy + (−1)jα(pi−j)γjx+ (−1)j−1α(pi−j)γjx

= (−1)j−1αjqy,

satisfying 4. Finally, in the fourth case of intersecting vertically adjacent cells, the block
has the form (

(−1)j−1α(pi−j)qγj−1x (−1)jα(pi−j−1)qγjx
(−1)j−1αj−1y (−1)jαjy

)
which satisfies 4 because

−(−1)jαjy = (−1)jα(pi−j)qγjx+ (−1)j−1αjy + (−1)j−1α(pi−j)qγjx

= (−1)j−1αjy.

Therefore, every 2 × 2 block of Bi ⊗ B satisfies 4. By induction, every 2 × 2 block in Γ′
q

must also satisfy 4. Since the first rows and columns of Γq and Γ′
q are equal, and both

satisfy the recurrence relation, then the entire matrices must be equal and Γq = Γ′
q.

The matrix identity in Lemma 6 can be used to find a sufficient condition for k that
satisfies detα,β(t

k) < q.

Lemma 7. Assume q = pl. Let 0 ≤ k ≤ q2 and write k = wq + z where z < q. For
α, β ∈ Fq2 , suppose either w = 0 or that there exists 1 ≤ i ≤ l such that w ≡ 0 mod pi and
z ̸≡ −1 mod pi. Then degα,β(t

k) < q.

19

Proof. Suppose k = wq + z where w and z satisfy the conditions stated in the lemma. By
Lemma 2, we just need to show that Pk+1 = −αqPk in order to show that degα,β(t

k) < q.
When w = 0, then k = z < q. This automatically gives that degα,β(t

k) < q because by
Lemma 3, since 0 ≤ k ≤ q then Pk = (−1)kaqk.

Assume that there exists an i such that w ≡ 0 mod pi and z ̸≡ −1 mod pi. Let

A = B1 ⊗ · · · ⊗Bl−i and B = Bl−i+1 ⊗ · · · ⊗Bl

where Bh is as in Definition 15. By Lemma 6, we have

A⊗B =

P0 Pq · · · P(q−1)q

P1 Pq+1 · · · P(q−1)q+1

...
...

...
Pq−1 P2q−1 · · · Pq2−1

 =

a11B a12B · · · a1sB
a21B a22B · · · a2sB
...

...
...

as1B as2B · · · assB

where s = pl−i.

Suppose that Pk lies in block acdB for some c, d ∈ {1, . . . , pl−i}. The fact that w ≡ 0
mod pi means Pk is in the first column of acdB. Since z ̸≡ −1 mod pi means that Pk is
not in the last row of acdB. Therefore, Pk+1 must also be in the same block acdB. By the
structure of the first column of B shown in Equation 4, we get that Pk+1 = −αqPk. Since
this is what we wanted to show by Lemma 2, we get that degαβ(t

k) < q.

4.3 Counting the number of Good Monomials

So far, we have proved that monomials of the form Ma,b(x, y) = xayb for a ≤ q − 1 and
b ≤ q2 − 1 are linearly independent and found conditions for when degα,β(t

k) < q. Now,
we want to count as many good monomials as possible that fit the conditions. If a+ b < q,
then it is clear the Ma,b is good. If a + b ≥ q, there are two ways that Ma,b can be good.
First, all the terms could reduce to degree less than q modulo pα,β(t) without using finite
field properties. Second, the coefficient in front of the term tq could reduce modulo p. The
formula for the coefficient can be found by expanding Ma,b ◦ Lα,β :

(Ma,b ◦ Lα,β)(t) = Ma,b(αt+ β, t) = (αt+ β)atb =
∑
j≤a

(
a

j

)
αjβa−jtb+j .

If
(
a
j

)
≡ 0 mod p for j = q − b, then the monomial is good. To count when this coefficient

will disappear, we use Lucas’ Theorem.

Definition 16. Let a and b be integers between 0 and pd−1 for prime p, and let p−ary(a) ∈
{0, 1, . . . , p− 1}d denote the p-ary expansion of a. We say that a lies in the p-shadow of b,
denoted a ≤p b if every digit of p− ary(a) is less than or equal to the corresponding digit in
p− ary(b).

Theorem 6. (Lucas). Let 0 ≤ a ≤ b be integers. Then
(
b
a

)
is zero mod p if and only if

a ≰p b, meaning a does not lie in the p-shadow of b.

With these tools in mind, we can come up with some sufficient conditions for good
monomials and count the number of monomials that satisfy those conditions to get a bound
on the rate of the Hermitian-Lifted Code. Note that the properties in the following lemma

20

do not cover all possible good monomials, but are plentiful enough to provide a positive
lower bound. The following lemma and proof are identical to Claim 12 from [5], with a
general prime p replacing every 2 from the original version. We define xr to be the digit
corresponding to pr of the p-ary expansion of x, or the digit r positions from the right.

Lemma 8. ([5]) Suppose that a ≤ q − 1 and b ≤ q2 − 1 satisfy the following properties:

1. b = wq + b′ for some w < q and some b′ < pl−1 so that w ≡ 0 mod (pi) for some
1 ≤ i ≤ l.

2. a < pl−1

3. there is some 0 ≤ s ≤ i− 1 so that as = b′s = 0

Then Ma,b is good.

Proof. Suppose that a, b satisfy the properties above. Let Lα,β(t) = (αt+ β, t) be a line in
L and write

(Ma,b ◦ Lα,β)(t) =
∑
j≤a

(
a

j

)
αjβa−jtj+b =

∑
j≤pa

αjβa−jtj+b (7)

using Lucas’ theorem in the second equality. Notice that for any j ≤p a, we have j < pl−1

and js = 0, using properties (2) and (3). Then the only monomials that appear in 7 are of
the form tk where k = wq+ b′ + j for w, b′ as in property (1) and for j ≤p a. Let i be as in
(1), so that w ≡ 0 mod pi. We claim that b′ + j ̸≡ −1 mod pi. Indeed, we can write

b′ = ps+1b′′ + b′′′ and j = ps+1j′′ + j′′′

for some b′′′, j′′′ > ps, using the fact that b′s = js = 0. Note that there exists some
c ≤ pi − ps+1 so that

ps+1(b′′ + j′′) ≡ c mod pi.

Thus,
b′j ≡ c+ b′′′ + j′′′ mod pi.

Since b′′′, j′′′ < ps, we have

c+ b′′′ + j′′′ < (pi − ps+1) + (ps+1 − 1) = pi − 1

which means that b′ + j ̸≡ −1 mod pi, as claimed.
Thus, k is of the form k = wq + z (where z = b′ + j) so that w ≡ 0 mod pi and

z ̸≡ −1. By Lemma 7, k has the necessary conditions to satisfy degα,β(t
k) < q. Therefore,

degα,β(Ma,b ◦ Lα,β < q for all α and β, so Ma,b is good.

Finally, we prove Theorem 5.

Proof. We will count the number of pairs a, b that satisfy the sufficient conditions for Ma,b to
be good. We iterate over all s, where we take s to be the smallest index so that as = b′s = 0.
For a given s, there are p2s−(p2−1)s ways to assign the bits a0, . . . , as−1 and b′0, . . . , bs−1′,
since there are only (p2 − 1)s ways to never have ar = b′r = 0 for any 0 ≤ r ≤ s− 1. Then
there are p2(l−s−2) ways to assign the bits as+1, . . . , al−2, b

′
s+1, . . . , b

′
l−2. Finally, there are

pl−s−1 ways to assign the bits ws+1, . . . , 2l−1. We will choose w0, . . . , ws = 0, ensuring that

21

w ≡ 0 mod 3s+1, specifically w ≡ 0 mod 3i for some i > s. Thus, the total number of
monomials meeting the description in Lemma 8 when l ≥ 2 is

l−1∑
s=0

(p2s − (p2 − 1)s)p2(l−s−2)pl−s−1 =

l−1∑
s=0

(p2s − (p2 − 1)s)p2(l−s−2)+l−s−1

=

l−1∑
s=0

(p2s − (p2 − 1)s)p3l−3s−5

=
p3l

p5

l−1∑
s=0

(p2s − (p2 − 1)s)p−3s

=
p3l

p5

l−1∑
s=0

(
1

p

s

− p2 − 1

p3

s)

=
p3l

p5

l−1∑
s=0

p−s − p2 − 1

p3

s

=
p3l

p5

1− (1p)
l

1− 1
p

−
1− (p

2−1
p3)l

1− p2−1
p3

=

p3l

p5

(
p

p− 1

(
1−

(
1

p

)l
)

− p3

p3 − p2 + 1

(
1−

(
p2 − 1

p3

)l(
1

p

)))

=
p3l

p5

(
p

p− 1
− p

p− 1

(
1

p

)l

− p3

p3 − p2 + 1
+

p3

p3 − p2 + 1

(
p2 − 1

p3

)l
)

=
p3l

p5

(
p

(p− 1)(p3 − p2 + 1)
− p

p− 1

(
1

p

)l

+
p3

p3 − p2 + 1

(
p2

p3 − p2 + 1

)l
)

=
p3l

p5

(
p

(p− 1)(p3 − p2 + 1)

)
(1− (p3 − p2 + 1)

(
1

p

)l

+ (p3 − p2)

(
p− 1

p3

)l

)

= q3

1− (p3 − p2 + 1)(1p)
l + (p3 − p2)(p

2−1
p3)l

p4(p− 1)(p3 − p2 + 1)

≥ q3

(
1− .531

p4(p− 1)(p3 − p2 + 1)

)
The last step comes from finding the lower bound on the numerator when p ≥ 3 and l ≥ 2.
The rate of the code is r = k/n where n = q3. Therefore, we have that the rate when p is
an odd prime is bounded below by

.469

p4(p− 1)(p3 − p2 + 1)
,

which completes the proof.

22

5 Examples

5.1 Example when p = 3

The proof applies to the general when q is the power of any odd prime, which makes it
difficult to visualize some of the steps of the proof. Below, we will show some of the steps
of the proof specifically when p = 3, and calculate the lower bound of the rate given by
Theorem 5.

The structure of matrix B is the 3×3 matrix determined by the formula given in Lemma
4 modulo 3. Thus, the product B1 ⊗ · · · ⊗Bl when p = 3 is

 1 (−α)3
l−1

(α2)3
l−1

(−αq)3
l−1

(2αq+1 − γ)3
l−1

(2αγ)3
l−1

(α2q)3
l−1

(2αqγ)3
l−1

γ2(3l−1)

⊗ · · · ⊗

 1 −α α2

−αq 2αq+1 − γ 2αγ
α2q 2αqγ γ2

 .

It is straightforward to check that the matrix B satisfies the block relation 4 without
applying Lemma 4 by only checking the 4 possible 2× 2 submatrices.

The lower bound of the rate of the Hermitian-Lifted Code when q = 3l is given by

.469

34(2)(33 − 32 + 1)
=

.469

3078
= .000152.

Note that this lower bound does not depend on the value of l. This is because the numerator

.469 is calculated by finding the lower bound of −(p3−p2+1)(1p)
l+(p3−p2)(p

2−1
p3)l, which

increases as l increases for a fixed value of p. While this does not necessarily indicate that
the actual rate of the Hermitian-Lifted Code increases as l increases, it does imply that the
lower bound .000152 is not an optimal lower bound for all q = 3l given the number of good
monomials that are defined in Lemma 7.

5.2 Example of a Good Monomial

We will use the conditions in Lemma 7 to find an example of a good monomial, and then
walk through the algebraic steps to verify that it reduces down to a polynomial of degree
at most than q − 1 after plugging in the line parameterization.

Suppose that q = 33 = 27. The Hermitian Curve H27 is x27 + x = y28 over the field
F272 . Based on property (1) of Lemma 7, either w ≡ 0 mod 3, w ≡ 0 mod 9, or w ≡ 0
mod 27, and b′ < 9. Let w = 9 and b′ = 6, which gives b = 9(27) + 6 = 249. By property
(2), we have a < 9, so we can pick a = 6. Finally, we need to check that our choices of a and
b′ satisfy property (3). Since the ternary expansion of a and b′ is a = b′ = 20, the second
digit satisfies a0 = b′0 = 0. Therefore, Lemma 7 asserts that the monomial M6,249 = x6y249

is good.
We could check algebraically that the monomial x6y249 is good by showing that it reduces

to a monomial of degree at most q− 1 = 26. However, this would be a very tedious process,
so we will omit the proof but explain how to use the Hermitian Curve to reduce the degree
of polynomials. Plugging in the parameterization of lines into the monomial gives

(M6,249 ◦ Lα,β)(t) = (αt+ β)6t249 = αt250 + βt243.

Thus, we would need to show that t250 and t243 each individually reduce to monomials of
degree at most 26.

23

From the Hermitian Curve itself, we get

t28 = (αt+ β)27 + (αt+ β) = α27t27 + αt+ c1.

Since we are only concerned with the degree of the monomial, we can generalize many of
the constants, in this case c1 = β27 + β. We can use this relation to reduce every power of
t to a monomial of degree at most 27. Below are the first few algebraic steps for the next
largest degrees.

t29 = α27t28 + αt2 + c1t = α54t27 + αt+ c2 + αt2 + c1t

= α54t27 + αt2 + c3t+ c2

t30 = α54t28 + αt3 + c3t
2 + c2t = α81t27 + α55t+ c4 + αt3 + c3t

2 + c2t

= α81t27 + αt3 + c3t
2 + c3t+ c4

t31 = α81t28 + αt4 + c3t
3 + c5t

2 + c4t = α108t27 + α82t+ c6 + αt4 + c3t
3 + c5t

2 + c4t

= α108t27 + αt4 + c3t
3 + c5t

2 + c7t+ c6

To confirm that M6,243 is a good monomial, this process would be continued until reaching
t243 and t250. Although this would be a very long process to do by hand, Lemma 7 implies
that the monomials t243 and t250 reduce down to a degree of at most t26. This occurs
because the coefficients of t27 reduce to 0 modulo 3.

Note that the values of a and b do not have to satisfy all the conditions in Lemma 7
in order to be a good monomial. The proof of the theorem counts a sufficient number of
good monomials to reach a positive lower bound for the rate, but it does not count all the
possible good monomials. Therefore, the actual rate of the Hermitian-Lifted Code is much
higher than the bound given in this paper.

6 Conclusion

This paper proved an extension of the main theorem in [5] by following a similar proof
strategy to conclude that all Hermitian-Lifted Codes have a rate bounded below by a positive
constant, regardless of the value of q.

There are remaining unanswered questions regarding Hermitian-Lifted Codes and also
lifted codes in general. In [1], the authors improve the lower bound given in [5] by using
a different proof strategy for counting good monomials. A similar approach could be used
to prove the general prime case to try to improve the bound given in Theorem 5. Fur-
ther, it would be interesting to find the exact number of good monomials in order to find
the exact value of the rate of the Hermitian-Lifted Code. Similar questions could also be
studied for lifted codes on different types of curves. While Hermitian-Lifted Codes are not
actually implemented in real world applications, discovering codes which are both locally
recoverable and have good parameters could be useful for constructing similar codes which
may eventually be implemented in the future.

24

7 Appendix: Finite Fields

This section will review important algebraic facts and finite field properties that are impor-
tant for understanding facts about algebraic codes. Most of the following information can
be found in the appendix of [6].

Most algebraic codes have a finite field as the alphabet. One of the most common
examples of a finite field is the integers mod p, denoted Zp, for any prime p. Note that the
integers mod n for a nonprime number n does not form a field, because a field cannot have
any zero divisors. However, there are fields of order q = pn for any prime p and positive
integer n, denoted Fq, which is frequently used as the alphabet for codes in the paper.

Recall Fermat’s Little Theorem, which is useful when working over the field Fp.

Theorem 7. (Fermat’s Little Theorem) If p is a prime number, then any integer a satisfies
ap ≡ a mod p.

This theorem can be used to reduce polynomials modulo a prime p, because any exponent
greater than or equal to p can be reduced. For example, in the Reed-Solomon code, the
dimension k is bounded by the size of the field q − 1 because any polynomial of degree
greater than q − 1 modulo q could be reduced to a polynomial with degree at most q − 1.
The same is true for fields Fq when q is a prime power. Any element a ∈ Fq satisfies the
property aq ≡ a, so any polynomials in Fq can also be reduced to a polynomial of degree at
most q − 1.

Another useful algebraic property is the binomial coefficient expansion modulo a prime.

Theorem 8. The binomial expansion formula modulo prime p is (a+ b)p = ap + bp.

This theorem makes binomial expansions over the field Fp easy and simple, and can be
extended to polynomial expansions where (a1 + a2 + · · ·+ an)

p = ap1 + ap2 + · · ·+ apn.
The code used in the main theorem has the alphabet Fq2 , where q = pl for a prime p and

positive integer l. The field Fq is a subfield of Fq2 . While aq
2

= a for all a ∈ Fq2 , the relation
aq = a is not always true for all a ∈ Fq2 . Instead, a

q = a is true only if a ∈ Fq ∈ Fq2 . This
property can be used to check if an element in Fq2 is also an element in Fq.

Theorem 9. For an element x ∈ Fq2 where q is a prime power, xq − x = 0 if and only if
x ∈ Fq.

The norm of x is the function N(x) : Fq2 → Fq and is defined as N(x) = xq+1. The
trace of x is the function Tr(x) : Fq2 → Fq and is defined as Tr(x) = xq + x. We can
use Theorem 9 to verify that these functions in fact map elements from Fq2 to Fq. In
order to show that the norm of x maps elements to Fq, we must show that (xq+1)q = xq+1.

Indeed, we have (xq+1)q = xq2+q = xq+1, so N(x) ∈ Fq. Similarly, the trace of x satisfies

(xq + x)q = xq2 + xq = x+ xq, which also verifies the mapping of the trace function. These
properties about norm and trace are useful for working with the Hermitian Curve, which
is the trace of x on one side of the equation and the norm of y on the other side of the
equation.

References

[1] Allen, A., Pabón-Cancel, E., Piñero-González, F., and Polanco, L. Improv-
ing the dimension bound of hermitian lifted codes, 2023.

25

[2] Babu, B. S., Krishnan, M. N., Vajha, M., Ramkumar, V., Sasidharan, B.,
and Kumar, P. V. Erasure coding for distributed storage: An overview. CoRR
abs/1806.04437 (2018).

[3] Barg, A., Tamo, I., and Vladut, S. G. Locally recoverable codes on algebraic
curves. CoRR abs/1603.08876 (2016).

[4] Guo, A., and Sudan, M. New affine-invariant codes from lifting. CoRR abs/1208.5413
(2012).

[5] López, H. H., Malmskog, B., Matthews, G. L., Piñero-González, F., and
Wootters, M. Hermitian-lifted codes. CoRR abs/2006.05558 (2020).

[6] Walker, J. L. Codes and curves. Student Mathematical Library 7 (2002), 66.

26

	Introduction
	Important Background and Notation
	Error Correcting and Detecting Codes
	Linear Codes
	Algebraic Geometry Codes
	Divisors and Riemann Roch Space of Functions
	Codes on Curves

	The Hermitian-Lifted Code
	The Hermitian Curve
	Locality and Availability of Hermitian One-Point Code

	The Code Construction
	Main Theorem and Proof
	Good Monomials
	Conditions of Good Monomials
	Counting the number of Good Monomials

	Examples
	Example when p=3
	Example of a Good Monomial

	Conclusion
	Appendix: Finite Fields

