
Mountain big sagebrush (Artemisia triden-
tata Nutt. ssp. vaseyana)a dominates upland
sites in the 540,000-km2 area in the Intermoun-
tain West occupied by big sagebrush (Artemisia
tridentata) (McArthur and Ott 1996). Mountain
big sagebrush grows at the upper elevational
range of big sagebrush and generally estab-
lishes in cooler, moister sites from about 2000
to 2800 m (West et al. 1978, Shultz 2006).

As the community dominant (McArthur and
Stevens 2004), mountain big sagebrush strongly
influences its community. The long taproots
raise water from deep in the soil at night and
may also transport new precipitation to deeper
soils where it is less likely to evaporate
(Richards and Caldwell 1987, Caldwell et al.
1998). This process may increase water avail-
ability for the sagebrush and may also posi-
tively affect nearby plants. A study using D2O
applied to deep roots of mountain big sage-
brush observed movement of labeled water
into nearby grasses, indicating that hydraulic
redistribution can increase water availability
for nearby plants (Caldwell and Richards 1989).

However, another study showed that removal
of big sagebrush had no effect on surface soil
moisture but increased soil moisture in deeper
horizons (Inouye 2006). Big sagebrush also
creates a patchy distribution of nutrients; and
carbon and nitrogen, organic carbon, and
organic phosphorus occur at higher levels
under big sagebrush canopies than between
them (Charley and West 1975, Inouye 2006).

Climate models indicate that temperatures
in the western United States will rise 0.8–1.7
°C by the mid-21st century (Barnett et al.
2005). Effects of climate change on precipita-
tion in the Rocky Mountains are challenging
to model due to complex topography. The
NCAR-DOE Parallel Climate Model predicts
little or no change in precipitation (Barnett
et al. 2005), while the Hadley and Canadian
General Circulation Models predict a gener-
ally drier climate with wetter winters and drier
summers (Smith et al. 2001). All models, how-
ever, project decreased snow cover throughout
the region (Smith et al. 2001, Cayan et al.
2001, Barnett et al. 2005, IPCC 2007). These
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decreases in snow cover and increases in
temperatures have already been seen in the
Northern Hemisphere, with indications that
decreasing snow cover and corresponding
changes in radiative balance may create a
positive feedback, causing greater increases in
spring temperatures (Groisman et al. 1994).

Most studies examining responses of sage-
brush annual growth rings to precipitation
have seen a positive correlation (Ferguson and
Humphrey 1959, Ferguson 1964, Fowler and
Helvey 1974). However, with a large part of
precipitation in the Rocky Mountains falling
as snow, total precipitation is only part of the
picture. Responses of mountain big sagebrush
to the extremes of snow depth are mixed. In a
snow-fence experiment in southern Wyoming,
increased snow depth and prolonged periods
of soil saturation in the spring led to a high
mortality of mountain big sagebrush (Sturges
1989). However, decreased winter snow depth
can also be detrimental to sagebrush, as was
seen during the 1967–1977 winter when spo-
radic warm days and dry, frozen soils caused
widespread damage to mountain big sage-
brush (Hanson et al. 1982, Nelson and Tiernan
1983). Moderate decreases in snow cover as
predicted with climate change may have less
direct effects through decreased soil moisture
and increased growing season. A montane
meadow warming experiment at 2920 m ele-
vation found a negative correlation between
average growth rate and later snowmelt dates
(Perfors et al. 2003).

Although models predict substantial tem-
perature increases in the Rocky Mountains,
few studies have looked at effects of tempera-
ture on sagebrush. DePuit and Caldwell (1973)
showed decreased photosynthesis with higher
temperatures because of increased water stress.
Yet as temperatures increased through the sum-
mer, sagebrush showed maximal efficiency at
higher temperatures. In the montane meadow
warming experiment, an increase in the bio-
mass of sagebrush was observed on warmed
plots, although this increase is more likely due
to earlier snowmelt than to the direct effects
of increased temperature (Harte and Shaw
1995, Loik et al. 2000). Overall, the potential
effects of predicted increases in temperature
on sagebrush are unclear.

This paper examines the simultaneous roles
of temperature, precipitation, and snow depth
in determining annual ring growth of big

mountain sagebrush. We predicted that growth
would be negatively related to summer tem-
perature and positively related to precipitation
and snow depth. 

We collected mountain big sagebrush at a
site just south of Almont within the Gunnison
Basin, Colorado (38.655°N, 106.861°W, 2460
m). The study site is located about 200 m from
the East River on a slight, southeast slope; it
receives moderate cattle grazing. Mountain
big sagebrush 30–70 cm in height dominates
the area with forbs and grasses underneath
and between the shrubs and with scattered
Juniperus scopulorum.

We sampled 14 variously aged plants (range
2–59 years) and a range of growth habits. Some
plants had rings too deteriorated to measure,
and only 5 plants contained long and clear-
enough chronologies to be used for cross-dating.

In the lab we cut cross sections at the
thickest and most intact portion of the main
stem and sanded each to allow individual
growth rings to be seen clearly. We scanned
each section at high resolution, including a
ruler to obtain absolute measurements. Using
the image processing program Image J (NIH
2007), we placed points marking ring bound-
aries to measure the perpendicular width of
each ring. Euclidian distance was used to cal-
culate ring widths.

Annual growth rings of big sagebrush are
diffuse, porous, and easily identifiable due to
an interxylary cork layer added between new
growth and growth from the previous year
(Ward 1953). In stressful years, partial death of
the cambium can occur, leading to localized
growth in areas with still-living cambium. This
irregular stem growth creates the characteristic
lobed stems of sagebrush. Number of lobes
varies from 1 to 10. False rings occur in years
with 2 surges of growth and are frequent at
lower elevations but have not been encountered
at higher elevations. Occasionally, rings are
absent from some lobes of a plant in stressful
years, but occurrence of missing rings around
the entire circumference are rare (Ferguson
1964, Perryman and Olson 2000).

For each cross section we measured 2 to 3
lobes and cross-dated them by comparing
graphical representations of ring widths. Within
the 14 lobes we examined, only 3 had rings
absent within lobes, and there were no rings
missing in all lobes of a plant. Additionally, 4
lobes did not show rings in the most recent
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years and were adjusted accordingly. After lobes
within a plant showed a strong correlation, we
averaged rings of the same year and then
standardized across all years within each plant

(    , where x is the mean ring width
across all lobes for 1 year; x– is the mean of these
averaged widths across all years for that plant,
and s is the standard deviation of the x values).
We repeated the cross-dating among the 5
plants with usable cross sections to identify
missing rings. Once we had a strong relation-
ship in ring-width variation across the plants,
we averaged and standardized the standard-
ized ring widths for each year. This average
lessens noise from individual plants and
strengthens the climate signal (Fritts 1971).

Correlations between climatic variables
and mean ring widths were calculated using
various temporal windows for both tempera-
ture and precipitation. Temperature during
the water year (November–October) was
shown to be a good predictor of ring widths in
pinyon pines (Kempes et al. 2008). However,
we also wanted to gain a greater understand-
ing of the role of seasonal climate, so we calcu-
lated correlations for mean temperatures in
summer (May–October), spring (March–May),
and winter (October–March). For precipita-
tion, a study by Ferguson and Humphrey
(1959) suggested a greater impact of precipita-
tion in early summer (May–July) compared to
late summer (July–October), so we calculated
correlations for those time periods as well as
for the 2 periods combined (May–October),
the water year, the winter (October–March),
and the spring (March–May). Since snowmelt
may play an important role in recharging deep
soil moisture and may therefore be important
to sagebrush growth, we also correlated stan-
dardized ring widths with maximum snow
depth at any time during the latter part of
winter (January–April) and with maximum
April snow depth, just before spring melt. 

We used multiple regressions with stan-
dardized variables to determine the relative
importance of temperature, precipitation, and
snow depth in controlling ring widths. For
each of the 3 climatic variables, we chose the
one temporal window with the highest corre-
lation with ring widths.

All weather data were obtained from a
weather station in Crested Butte, Colorado
(38.9°N 107°W, 2699 m), 25 km north of the
study area (NCDC 2009). All calculations were

done in Microsoft Excel, except the multiple
regressions, which were done with Minitab
version 15.

The 5 plants we were able to cross-date
yielded strong correlations among lobes within
plants (Pearson r = 0.72 to 0.91). Cross-dating
between pairs of plants was also successful (r
= 0.41 to 0.76 for various pairs, P < 0.01 for
all). As not all of the sagebrush sequences were
of equal length, we examined the time span of
the shortest cross section—39 years from 1969
to 2007.

All temperature windows correlated signifi-
cantly and negatively with ring widths (Fig. 1;
r = –0.42 to –0.62, P < 0.01), except winter
temperature, which showed a nonsignificant
correlation (r = –0.17, P = 0.321). The
strongest correlation was for summer temper-
ature (r = –0.62). For precipitation, we
observed strong positive correlations between
ring widths and winter precipitation (r = 0.68,
P < 0.001), spring precipitation (r = 0.54, P <
0.001), and water year (r = 0.63, P < 0.001).
There was a weak correlation with early sum-
mer precipitation (r = 0.33, P = 0.042) and
none with late summer (r = –0.08, P = 0.654)
or total summer precipitation (r = 0.17, P =
0.315). Snow depth showed strong positive
correlations with ring widths (maximum snow
depth in April, r = 0.71, P < 0.001; maximum
winter snow depth, Fig. 2, r = 0.74, P < 0.001).

Multiple regressions with relatively high r2

values and regression coefficients similar in
absolute value suggest that both summer tem-
perature and either winter precipitation or
maximum winter snow depth are important in
controlling growth (Table 1). The fit using
maximum snow depth (adjusted r2 = 0.60)
was somewhat better than the fit using winter
precipitation (adjusted r2 = 0.49).

Both the simple correlations and the multi-
ple regressions indicate that growth of mountain
big sagebrush is water limited. This conclu-
sion is supported by strong positive correla-
tions with various precipitation windows,
except for late summer precipitation, which
comes after major growth has ceased for the
year (Ferguson and Humphrey 1959). The
strong negative correlation with summer tem-
peratures also supports this conclusion, as hot
summer days increase water stress. The strong
positive relationship with maximum winter
snow depth suggests that the recharge of deep
groundwater during late winter and spring
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snowmelt is very important to growth of this
species.

The increased summer temperatures pre-
dicted by climate models will likely decrease
growth of mountain big sagebrush. Given the
strong correlation between winter precipitation
and maximum snow depth (this study: 0.88, P <
0.001), it is not possible with observational data
to separate effects of late winter and early
spring rains from the effect of maximum snow
depth. If models that predict increased winter
precipitation are correct, it might be possible
that the resulting increase in sagebrush growth
could partially offset effects of increasing tem-
peratures. However, increased winter tempera-
tures might also cause more precipitation to fall
as rain rather than snow. More of this water
might evaporate, and the recharge of deep soil
profiles could decrease. This scenario would
exacerbate decreases in growth caused by
higher summer temperatures.

If mountain big sagebrush growth rates do
decrease in the future, this decrease could

reduce sagebrush populations at the lower ele-
vational limit where water stress is greatest, and
this reduction would impact other aspects of the
community. Inouye (2006) showed that sage-
brush removal increased soil moisture and
perennial grass cover.

Effects on carbon balance and soil C are
unclear and may vary with replacement species.
Bechtold and Inouye (2007) found that removal
of A. tridentata ssp. tridentata led to higher soil
C after 6 years, presumably due to more litter
input and fine roots of perennial grasses.
Replace ment of A. tridentata by the invasive
annual grass Bromus tectorum had mixed effects
on soil C (Bolton et al. 1993, Norton et al. 2004).

At sites not at the lower limit of the popula-
tion, decreased annual growth may corre-
spond with decreased sagebrush cover, which
could have similar but less dramatic effects on
the community.

However, these predictions assume little
evolutionary response by the species. Sub-
species of A. tridentata and also other species

2009] NOTES 559

Fig. 1. Correlation coefficients (* P < 0.05, ** P < 0.001) of standardized ring widths of mountain big sagebrush with
several temporal windows: A, precipitation; B, temperature. Weather data were measured at Crested Butte, Colorado
(NCDC 2009; mean monthly temperature and precipitation 1969–2007 with 1977–1979 missing for temperature; maxi-
mum snowpack data 1969–2007 with 1974, 1977, 1982, 1996, and 1998 missing). Different letters indicate correlations
outside the 95% confidence intervals of correlation coefficients with other letters.
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within the subgenus Tridentatae have many
points of contact and commonly hybridize.
Hybrids show intermediate form and physi -
ology, and they are better adapted to the inter -
mediate zone than either of the parents
(McArthur et al. 1998). Additionally, subspecies
of A. tridentata, including ssp. vaseyana and its
hybrid with A. t. ssp. tridentata, occur both as
diploids and tetraploids even within popula-
tions. Polyploidy events provide reproductively

isolated groups that can then undergo selec-
tion (McArthur and Sanderson 1999). The high
occurrence of hybridization and polyploidy in
A. tridentata and its related species might
allow these taxa to respond relatively quickly
to climate change compared to other species.

Changes in mountain big sagebrush growth
rates and perhaps distribution and cover
have the potential to greatly impact the large
areas of sagebrush-dominated communities
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Fig. 2. Standardized mean ring widths of mountain big sagebrush compared to (A) summer temperature (May–October,
note inverted axis); (B) winter precipitation (October–March); and (C) maximum snow depth (January–May; weather
data from NCDC 2009).
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through out western North America. While
some studies have modeled effects of climate
change on sagebrush and predicted replace-
ment by shrubs common to more arid regions
(Hansen et al. 2001), not enough research has
been done to understand the effects of chang-
ing climate on sagebrush.
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