
An Exploration of Connect Sums of

Knots Using the Trip Matrix

Spring 2023 Senior Thesis

Emerson Worrell

April 19th, 2023

Abstract

We utilize the trip matrix method of calculating the Jones Polynomial to give an

alternative proof that the Jones Polynomial is multiplicative under connect sums.

We then use the structure of the trip matrix itself as a method to determine if a given

knot diagram with minimal crossing number representation is prime or composite.

Finally, we briefly explore the effect of Reidemeister moves on the structure of the

trip matrix.

1



1 Introduction and Motivation

The goal of this thesis was to perform an in-depth exploration of the trip matrix method

of computing the Jones Polynomial. The eternal goal of knot theory is to determine

when two knots are distinct and when they are the same. Knot invariants, such as the

Jones Polynomial, are tools we use to answer this question. By learning more about

how these invariants behave and by creating new invariants, we can gain a better un-

derstanding about the nature of knots.

The trip matrix method was created in 1993 by Louis Zulli [6] and provides a way of

computing the Jones Polynomial for a knot that requires only linear algebra. The encap-

sulation of so much information in a matrix over Z2 provides an interesting opportunity

to see what other tasks the trip matrix can be used to perform. We initially used the

trip matrix to provide an alternative proof that the Jones Polynomial is multiplicative

over connect sums [2]. This process revealed certain patterns in the structures of these

matrices; we explored these patterns to provide a method for determining if and when

a knot is composite or prime.

In Section 2 we provide the necessary background information needed to understand

our work and then in Section 3, we give results on the structure of trip matrices of

composite knots. In Section 4 we provide our proof of the multiplicative nature of the

Jones Polynomial. In Section 5 we discuss how the trip matrix can be used to deter-

mine when a given knot is prime or composite. Finally in Section 6, we delve into how

Reidemeister moves affect the trip matrix.

The work we did was fruitful, but many questions arose that we either lacked the time

or the ability to answer, which we discuss in Section 7.

2 Background Information

We begin with an explanation of the necessary terminology, tools, and concepts needed

to understand our work. This section consists of a basic introduction to knots, knot

invariants, connect sums, and the trip matrix. For more information, see [1].

2.1 Basic Knot Theory

Definition 2.1 (Knot). A knot is an embedding of S1 in R3. More intuitively, it is

some string that has been twisted and wrapped around itself in some manner, and then

closed so that there are no loose ends.

2



Definition 2.2 (Knot Equivalence). Two knots are equivalent if one knot can be de-

formed into the other without cutting the knot or allowing strands to pass through each

other. This type of deformation is known as an ambient isotopy.

Definition 2.3 (Knot Diagram). A knot diagram is a representation of a knot in a 2

dimensional plane. In a knot diagram, there are crossings at which exactly two strands

of the knot cross over one another. which is represented by a break in the understrand.

A given knot has infinitely many diagrams, although it is common to focus on the

simplest of these with the smallest number of crossings possible. See Figure 1a for

examples of knot diagrams, and Figure 1b for multiple diagrams for the same knot.

Note 1. There are a number of different ways that knots are classified. In our paper

we use the Alexander-Briggs-Rolfsen classification to refer to specific examples of knots

(see Appendix A). We also use the colloquial names for certain well-known, simple

knots.

(a) Diagrams for two distinct
knots [5] (b) Different diagrams for the same knot [1]

Figure 1: Different knots have different diagrams. But the same knot can have many
different diagrams too.

Definition 2.4 (Reidemeister Moves and Planar Isotopies). A Reidemeister move is a

manipulation of a knot diagram that changes its appearance without cutting or changing

the knot itself. There are three types of Reidemeister moves, shown in Figures 2a,

2b, and 2c. Additionally, there exist planar isotopies, which are deformations of the

projection plane itself, which in turns morphs the knot diagram but does not involve

changing crossings or sliding strands over or under others. Figure 3 shows a planar

isotopy of a knot diagram.

(a) Type 1 Reidemeister
Move

(b) Type 2 Reidemeister
Move (c) Type 3 Reidemeister Move

Figure 2: The three Reidemeister moves [1]

3



Figure 3: An Example of Planar Isotopy. Notice how the crossings are unchanged, but
the strands have been warped and curved.

Theorem 2.5 (Reidemeister [4]). The following are both true:

1. If there are two different diagram representations of the same knot, then there

exists a sequence of Reidemeister moves and planar isotopies to take one diagram

to the other.

2. Two knots are equivalent in 3-space if and only if their knot diagrams are equiv-

alent under Reidemeister moves and planar isotopies.

This theorem is very powerful and will be important later on. Most notably it means

that if we can deform one knot in some manner in 3-space, then there exists a sequence

of moves in the plane that also show the diagrams are equivalent.

Definition 2.6 (Crossing Number). The crossing number of a knot K, denoted c(K),

is the smallest number of crossings with which a knot can be represented in a knot

diagram.

Every knot has a crossing number and this can be used as a knot invariant (see Definition

2.7). However, finding cross number for knots is in general a difficult problem.

Definition 2.7 (Knot Invariants). A knot invariant is a mathematical object that

remains unchanged by Reidemeister moves and planar isotopies.

If two knot diagrams are different representations of the same knot, then their invari-

ants will be the same. Distinct knots on the other hand often yield different values for

a given invariant, but sometimes yield the same value. Therefore, we use invariants to

determine when two knot diagrams represent distinct knots.

Our paper focuses on an operation on knots called the connect sum. To form the con-

nect sum, take two knots, K1 and K2. Cut each of these knots in one location away

from a crossing, leaving 4 loose ends. Attach these together in pairs such that each loose

end from K1 is now connected to an end from K2 and no new crossings are introduced.

The resulting knot is denoted K1#K2, and is known as a composite knot.

4



All knots are either

• Composite: the result of some connect sum of multiple non-trivial knots.

• Prime: cannot be broken down into the connect sum of two non-trivial knots.

• The unknot, also known as the trivial knot. This is simply a circle in the plane.

Figure 4 below is an example of how two knots may be connect-summed together:

Figure 4: Connect-summing two knots [1]

2.2 The Trip Matrix and The Jones Polynomial

This paper focuses on a knot invariant known as the Jones Polynomial. In particular,

we explore a specific method of calculating the Jones Polynomial using a tool known as

the trip matrix. As previously mentioned, this method was first introduced by Zulli [6].

The trip matrix is constructed from a knot diagram as follows:

1. Label the n crossings of the knot diagram 1 through n in any order.

2. At each overcrossing, choose a direction along the knot at random and draw an

arrow pointing in that direction. We refer to the overcrossing arrow at crossing i

by i+.

3. At each undercrossing, draw an arrow such that the undercrossing arrow is point-

ing counterclockwise from the corresponding overcrossing arrow. We refer to the

undercrossing arrow at crossing i by i−.

4. Construct an n× n matrix with entries in Z2 in the following manner:

(a) For entry (1,1), follow the overcrossing arrow from crossing 1 until you return

to crossing 1 at the undercrossing arrow. If the undercrossing arrow “leads

you on”, the entry in (1, 1) is a zero. If it “pushes you back”, the entry is a

one. Repeat this process at each crossing i ∈ {2, 3, . . . , n} for diagonal entries

(i, i).

(b) The matrix is inherently symmetric, so (j, k) = (k, j).

5



(c) For the entries off diagonals (entries (j, k) where j ̸= k), we similarly begin

at the overcrossing arrow of crossing j. We then follow the path from here

until we reach the undercrossing arrow of crossing j. The number of times

modulo 2 that this path goes through crossing i is the value placed in (j, k).

Note that because the matrix is symmetric, we could start at crossing i and

count the number of times j is crossed to yield the same result.

We refer to the trip matrix for a given knot K by TK . The resulting matrix can be used

to calculate the Jones Polynomial.

Example 1. Trip Matrix

Let’s walk through an example of this process, since words on a page can only explain so

much. Consider Figure 5, which is the figure 8 knot after numbering the crossings and

adding the overcrossing arrows in any order. We choose the arrows of the overcrossing

arrows at random and the undercrossing arrows are all pointed counterclockwise from

their overcrossing counterparts. The overcrossing arrows are in red with the undercross-

ing arrows in blue, which we maintain as the standard throughout this paper. Now, lets

compute the trip matrix TK .

Figure 5: The Figure 8 Knot.

TK will be a 4× 4 matrix. Let’s compute the diagonal entries first. Starting at crossing

1, we follow the overcrossing arrow, and when we return to the undercrossing arrow 1−,

it leads in the direction we are currently travelling, so entry (1, 1) is a zero. The same

is true for crossing 2, so (2, 2) is a zero as well. For crossings 3 and 4, however, the

undercrossing arrows lead back the way we came, so these entries are both ones.

Now for the other entries. The path from crossing 1 to itself goes through crossing 3,

crossing 4, and then arrives back at 1. So entries (1, 2), (1, 3), and (1, 4) are zero, one,

6



one respectively. Since this matrix is symmetric, (2, 1), (3, 1), and (4, 1) can also be filled

in with these same values. For crossing 2, we can ignore any interactions with crossing

1 since both (1, 2) and (2, 1) have been filled. Our path takes us through crossing 4

and 3 once each, so (2, 3) = (3, 2) and (2, 4) = (4, 2) are all ones. Finally, we start

at crossing 3 and only consider how it interacts with crossing 4. This path takes it

through 4 twice, and since we are operating modulo 2, entry (3, 4) = (4, 3) is a zero.

Our resulting complete trip matrix is seen below:

0 0 1 1

0 0 1 1

1 1 1 0

1 1 0 1


Definition 2.8 (Trip Matrix State). A knot with n crossings will have 2n states. Each

state is a string of A’s and B’s, each with A or B corresponding to one of two possible

states at each crossing. We denote a specific state of a knot K as S, and the set

of all possible sets for K as S(K). The trip matrix generated by the method above

corresponds to the state containing all A’s. In order to get a different state, change the

entry along the diagonal in row i from a 0 to a 1 (or vice versa) if the corresponding

letter in that position of the string is a B, which we refer to as toggling between states.

The matrix for K when toggled to a state S is denoted by TKS
. The number of A’s

and B’s in a given state can not be determined exclusively from the trip matrix itself.

However, they are used in the calculation of the Jones Polynomial and can be kept track

of separately. These are denoted A(S) and B(S) respectively for a given state S.

Definition 2.9 (Writhe). We define the writhe of a knot K (denoted w(K)) as the

total number of ones along the diagonal minus the total number of zeroes along the

diagonal in the trip matrix TK

Now that we have defined these terms, we can finally use them to define the Jones

Polynomial itself:

Definition 2.10 (Jones Polynomial [6]). The Jones Polynomial for a knot K is defined

as the following:

VK = (−t
3
4 )w(K)

∑
S∈S(K)

t−
1
4

A(S)

t
1
4

B(S)

(−t−
1
2 − t

1
2 )nul(TKS

)

Theorem 2.11 (Jones [2]). The Jones Polynomial is a knot invariant.

7



3 The Structure of Trip Matrices of Composite Knots

We now explore how the trip matrix behaves for composite knots. For the remainder of

this section, as well as Sections 4 and 5, we assume that any knot diagrams are repre-

sentations of knots with their minimal crossing number. That is to say, it is impossible

to reduce the number of crossings any further with Reidemeister moves. We make this

assumption since it will not change the Jones Polynomial, it will make the trip matrix

smaller and therefore easier to deal with, and it is possible because every knot has

a representation with its minimal crossing number. Using the smallest diagram and

its corresponding trip matrix gives us the clearest picture of the behavior of the knot

without any extraneous crossings. Section 6 discusses some of the effects Reidemeister

moves and extraneous crossings have on the trip matrix.

Before we continue, there is also one important fact we must address. There is an

important open question regarding the crossing number of connect sums. Specifically,

it is unknown whether crossing number is preserved under connect sums, i.e., does

c(K1#K2) = c(K1) + c(K2) for all possible knots? This conjecture has been proven

true for certain classes of knots, namely, torus and alternating knots, conjectured to be

true for all knots, and a counterexample has yet to be found [3]. However, this has yet

to be proven true for all knots and it is essential to our proofs that it is true. Therefore

we assume from this point forward that every claim made only holds for those knots

for which crossing number is preserved under connect sums. If at some point in the

future this conjecture is proven true, then the following will be true for all knots. If it

is proven false, then hopefully it becomes clear for which knots it is and isn’t true, and

we can restrict our results to those classes of knots for which it is true.

3.1 A Composite Knot Yields a Block Matrix Structure

In this paper, we define a block matrix as an n × n matrix that is formed by plac-

ing smaller m × m matrices along the diagonal. The remaining entries not in these

submatrices are all zeroes. Below is an example of what a block matrix may look like.

8





x x x 0 0 0 . . . 0 0 0

x x x 0 0 0 . . . 0 0 0

x x x 0 0 0 . . . 0 0 0

0 0 0 x x x . . . 0 0 0

0 0 0 x x x . . . 0 0 0

0 0 0 x x x . . . 0 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 . . . x x x

0 0 0 0 0 0 . . . x x x

0 0 0 0 0 0 . . . x x x


Note that these blocks can be any size (although we show later that trip matrices of knots

with minimal crossing representation must have block size at least 3). Additionally, each

x represents either one or zero.

Theorem 3.1. If a given knot is composite, then its trip matrix must have a block

matrix structure.

Proof. LetK be a composite knot formed by the connect sum of prime knotsK1 through

Kn with crossing numbers m1,m2, . . . ,mn. Without loss of generality, the connect sum

K must have been constructed by first taking K1 and connect summing K2 to it in some

manner. Then K3 would be added to this new composite knot K1#K2, continuing all

the way through Kn. Now, because we can label the crossings of K in any manner we

choose, we can choose to label K such that the first m1 crossings correspond to the m1

crossings from K1, crossings m1 + 1 through m1 +m2 correspond to the m2 crossings

from K2, and so on. We can then choose overcrossing arrows in any manner. Consider

forming the trip matrix, beginning with row (and column) 1. We begin at crossing 1

and travel in the direction of the overcrossing arrow. There are two possibilities from

this point: either this path leaves the section of K corresponding to K1 before it reaches

crossing 1 again, or it does not. If it does not, then the entries in row 1 beyond column

m1 will all be zeroes since the path never goes through any of those crossings. If it does

enter a section of K corresponding to a component other than K1, then it must neces-

sarily go through the entirety of that other component before returning to crossing 1.

If this were not the case, then this path must have traveled through part of K1, entered

part of a different component (say K2 without loss of generality), and then returned to

crossing 1 before touching the remainder of K2. But then K2 consists of two disjoint

9



components of K, meaning it was actually two distinct components. But we supposed

K2 was a prime knot and so this is a contradiction.

It is also worth noting that the path from crossing 1 might run through more than one

other component of K before returning to crossing 1. Example 2 demonstrates this

possibility. After entering K2, the path enters and runs through the entirety of K3

(therefore passing through every crossing in K3 exactly twice) as well before returning

to K2 and eventually to K1. In any case, the path from crossing 1 to itself must either

pass through each other component of K completely or not at all. This means that

beyond column m1, all the entries in row 1 must be 0.

Additionally, if the path from crossing 1 to itself does enter a different component,

when it inevitably returns to K1, it will return in the exact same spot and direction

from where it left. As a result the path relative to the other crossings in K1 is the exact

same as if it were an isolated knot, and so the entries corresponding to crossing 1 from

K1 are identical to those in the K1 trip matrix.

The arguments above hold for every crossing in K. The result is a block matrix where

each block corresponding to component Ki is an mi × mi block along the diagonal

corresponding to the trip matrix for Ki on its own, with the remainder of entries in

those rows and columns being 0.

In Example 2 we provide an example of Theorem 3.1:

Example 2. Consider the knot K with diagram shown below and its corresponding trip

matrix. Notice crossings are labelled in a way that respects the “obvious” components.

10



TK =



1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1


3.2 Properties Preserved In Trip Matrices of Connect Sums

Because the trip matrix of a composite knot is simply made up of smaller matrices of

its component knots in a block matrix, it would be natural to assume that many of

the properties of the smaller matrices are preserved in the large, composite matrix. In

this subsection we show that all of the important information pertaining to the Jones

Polynomial is preserved.

Lemma 3.2. A trip matrix for a knot with minimal crossing representation cannot

have a column of all zeroes.

Proof. Suppose by way of contradiction that knot K, represented with minimal cross-

ings, has a column of all zeroes in its trip matrix. Call this column i. Every other

crossing must be passed through either twice or zero times on the path from i+ to i−,

and also the undercrossing arrow on i− must lead the path forward. We can divide

the other crossings into two sets: those that are met twice along this path and those

that are not met at all, which we refer to as sets A and B respectively. We construct a

knot that fits this criteria, shown in Figure 6. Begin by placing crossing i, along with

the overcrossing arrow and the undercrossing arrow. Then, all the crossings from set A

must lie between i+ and i−, while all the crossings from set B must lie on the “other

side” of this knot. This results in a knot with two clear “sections” connected by a half

twist, which is crossing i. These sections must be disjoint; if they weren’t, then the path

from i+ to i− would necessarily pass through section B and result in crossings that are

only met once along this path, generating ones in column i, which we know don’t exist.

11



If we visualize this knot in 3-space, it is clear that this half-twist can be undone by

simply twisting the entirety of section B, removing crossing i in the process. Since this

can be removed in 3-space, there must be some sequence of Reidemeister moves that

can be performed to remove crossing i in the plane as well by Theorem 2.5. Therefore

this crossing is extraneous and contradicts our claim that K has been represented with

minimal crossing number.

Figure 6: The knot structure resulting from column i having all zeroes. Boxes A and
B represent arbitrary knot sections.

Theorem 3.3. Let T be the trip matrix for composite knot K, and let T1, . . . Tn be the

respective blocks corresponding to component knots K1, . . .Kn which form K. Then

nul(T ) = nul(T1) + · · ·+ nul(Tn).

Proof. Let K be a composite knot formed from prime knots K1 through Kn, and let TK

and T1 through Tn be the corresponding trip matrices for the composite knot and its

prime components, respectively. Consider each of the trip matrices and their respective

blocks in T . A given block will be a mi ×mi matrix; consider in addition to this each

of the columns of T that this block occupies. Every row excluding the k rows in the

block will be exclusively zeroes since T is a block matrix.

The additional rows containing all zeroes have no effect on the dimension of the column

space nor the null space. The dimension of the null space of that subset of the columns

of T will always be the same as the dimension of that block as a k × k matrix. The

only concern here is a column corresponding to a different block that can be written as

a linear combination of columns from this block. However, this is only possible if such

a column contained all zeroes; if it had ones, then it would have ones in a row which

columns from every other block would only have zeroes due to the structure of the block

matrix. Naturally, no linear combination of zeroes can yield a one.

12



If such a column had all zeroes, then it would be possible for some linear combination of

the columns from one block to give us a column of all zeroes from another block (since we

are working modulo 2, this would most likely be two identical columns summed together)

thereby breaking this transitivity. However, Lemma 3.2 shows that this situation is

impossible. Therefore, nullity is transitive over block trip matrices as claimed.

Example 3. Here is an example of the previous theorem:


1 0 1

0 1 0

1 0 1





1 0 1

0 1 0

1 0 1

0 0 0

0 0 0

0 0 0


On the left is a 3× 3 matrix corresponding to some knot K1, while on the right, there

are 3 additional rows of all zeroes, which exist when considering this matrix as a block

in a larger, 6× 6 composite matrix. The last 3 rows of the matrix on the right have no

effect on the null space, because they are all zeroes.

Theorem 3.4. Let T be the trip matrix for composite knot K, and let T1, . . . Tn be the

respective blocks corresponding to component knots K1, . . .Kn which form K. Then

w(T ) = w(T1) + · · ·+ w(Tn).

Proof. Let o(T ) and z(T ) denote the number of ones and zeroes along the diagonal of a

given trip matrix T . By definition, w(T ) = o(T )−z(T ). Also, o(T ) = o(T1)+ · · ·+o(Tn)

and z(T ) = z(T1) + · · · + z(Tn) by Theorem 3.1. Then w(T ) = o(T1) + · · · + o(Tn) −
(z(T1) + · · ·+ z(Tn)) = o(T1)− z(T1) + . . . o(Tn)− z(Tn) = w(T1) + · · ·+ w(Tn).

Theorem 3.5. Let T be the trip matrix for composite knot K, and let T1, . . . Tn be the

respective blocks corresponding to component knots K1, . . .Kn which form K. Then for

a given state S, A(T ) = A(T1)+ · · ·+A(Tn) and similarly, B(T ) = B(T1)+ · · ·+B(Tn).

Proof. A state for an m-crossing knot K is by definition a string of A’s and B’s of length

m. We can break this word up into smaller words, each of which corresponds to the

component knots K1 . . .Kn. Naturally, the number of A’s and B’s in the large string

will be the sum of the number of A’s and B’s in each of the smaller strings.

Note 2. While the previous 3 theorems only reference trip matrices, the results extend

to any toggled trip matrix as well (and in fact, any block matrix over Z2).

13



4 The Jones Polynomial is Multiplicative Over Connect

Sums

With the theorems from Section 3, we can now prove our first major result, first proved

in [2].

Theorem 4.1. The Jones Polynomial is multiplicative over connect sums. That is, if

K = K1#K2# · · ·#Kn,

VK =
n∏

i=1

VKi

.

Proof. Let K be a composite knot that is formed via connect sums by the prime knots

K1 . . .Kn. Let K have trip matrix T and let the component knots have trip matrices

T1 . . . Tn. Then by Definition 2.10 the Jones Polynomials for the given knots are:

VK = (−t
3
4 )w(K)

∑
S∈S(K)

t−
1
4

A(S)

t
1
4

B(S)

(−t−
1
2 − t

1
2 )nul(TS)

VK1 = (−t
3
4 )w(K1)

∑
S∈S(K1)

t−
1
4

A(S)

t
1
4

B(S)

(−t−
1
2 − t

1
2 )nul(T1S

)

...

VKn = (−t
3
4 )w(Kn)

∑
S∈S(Kn)

t−
1
4

A(S)

t
1
4

B(S)

(−t−
1
2 − t

1
2 )nul(TnS

)

Our claim is that VK =
∏n

i=1 VKi . To begin showing this equivalence we first need to

show that the product of the n sums for the component knots has the same number of

terms as the sum for VK , which will make this process significantly easier. Recall that

the number of terms in a given sum here is 2m, where m is the number of crossings in the

given knot. LetK havem crossings and letK1,K2, . . .Kn havem1,m2, . . .mn crossings,

respectively. Then we know that m = m1 + · · ·+mn. Therefore, 2
m = 2m1 × · · · × 2mn .

This means that when expanding the product of the n sums of the component knots,

we will have 2m terms, each of which corresponds to one of the 2m states for the com-

ponent knot K. As an example, consider the connect sum of a trefoil and figure 8 knot.

Suppose we are considering the state AAABABA of the composite knot. This single

state will yield one term in the sum VK . This term corresponds to the product of the

AAA term in the VK1 sum and the BABA term in the VK2 sum by Theorem 3.5. This

extends to an arbitrary number of components in the connect sum.

14



Because the number of terms on both sides of our alleged equality is the same, and

because we can break up the states of the composite knot into smaller states in a very

nice manner, our proof becomes very straightforward, if a little tedious: we can show

that the large sum for the composite knot and the product of the smaller sums for

the component knots are the same by going term by term. Consider a random state

S ∈ S(K). Then this state S can be divided up into its component substates S1 . . . Sn,

where each substate Si is the section of the word S that corresponds to the current state

of the component knot Ki.

Now consider the product of the terms from the sums for the component knots:

n∏
i=1

t−
1
4

A(Si)

t
1
4

B(Si)

(−t−
1
2 − t

1
2 )

nul(TiSi
)

We can break this product into three separate products for each like term in the ex-

pression:

n∏
i=1

t−
1
4

A(Si)
n∏

i=1

t
1
4

B(Si)
n∏

i=1

(−t−
1
2 − t

1
2 )

nul(TiSi
)

By Theorem 3.5, A(S) = A(S1)+· · ·+A(Sn) and B(S) = B(S1)+· · ·+B(Sn). Therefore

by exponent rules,

t−
1
4

A(S)

=

n∏
i=1

t−
1
4

A(Si)

t−
1
4

B(S)

=

n∏
i=1

t−
1
4

B(Si)

By Theorem 3.3, nul(TS) = nul(T1S1
) + · · · + nul(TnSn

). Again by exponent rules we

get

(−t−
1
2 − t

1
2 )nul(TS) =

n∏
i=1

(−t−
1
2 − t

1
2 )

nul(TiSi
)

All together, this gives us the expression:

t−
1
4

A(S)

t
1
4

B(S)

(−t−
1
2 − t

1
2 )nul(TS) =

n∏
i=1

t−
1
4

A(Si)

t
1
4

B(Si)

(−t−
1
2 − t

1
2 )

nul(TiSi
)

Where the right hand side is a term from the sum for the composite knot and the

left hand side is the product of the terms corresponding to this same state. Therefore

on a term by term basis the large sum is the product of the smaller products as claimed.

15



All that is left to consider is the term from outside the summation, which is dependent

on the writhe. By Theorem 3.4 we know that

w(K) = w(K1) + · · ·+ w(Kn)

Again by exponent rules this means

(−t
3
4 )w(K) =

n∏
i=1

(−t
3
4 )w(Ki)

Therefore

VK =
n∏

i=1

VKi

as claimed.

Example 4. Let us examine this theorem, along with Theorems 3.3 through 3.5, in

action. Below is the composite knot formed by the trefoil on the left and the figure 8

knot on the right, along with its corresponding trip matrix:

Figure 7: The trefoil and figure 8 connect summed.

16



TK =



1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

0 0 0 1 1 1 1

0 0 0 1 1 0 1


First, let us consider the writhe, as it is dependent only on the trip matrix and not the

toggled matrices. We calculate this as 5 − 2 = 3. If we were to take the trip matri-

ces for these two knots separately (see Appendix A) we get writhes of 3 − 0 = 0 and

2−2 = 0, which when added together, give 3 as well. So writhe is preserved as expected.

Let us focus on the specific state ABABBAA. This results in the following toggled

matrices for the trefoil, figure 8, and their connect sum respectively:


1 1 1

1 0 1

1 1 1





1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1





1 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 1 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 0 1


With a little linear algebra which we omit for the sake of brevity, we find that the first

matrix has nullity 1, while the second has nullity 0. The third, as expected has nullity

1, which is the sum of the nullities of the two component matrices. Finally, it is clear

that the number of A’s and B’s is preserved. The state of the first matrix is ABA, the

second is BBAA, while the composite matrix is just their states joined together forming

ABABBAA. This of course holds for all 27 states of the composite knot. For each one

of these states in the Jones Polynomial for the composite knot, there is a corresponding

pair of states from the two component knots for which all of the important information

is additively preserved.

17



5 Utilizing the Trip Matrix to Determine When a Knot is

Prime or Composite

The block structure of trip matrices of composite knots begs the question of whether or

not the trip matrix could be used to determine if a given knot is prime or composite,

and in the latter case, which prime knots make up the composite knot. In this section,

we explore how a trip matrix may change under a relabelling of the crossings, give a

stronger version of Theorem 3.1, and determine when a given trip matrix may be a

block matrix in disguise due to a different labelling of the crossings.

5.1 Crossing Relabelling and the Trip Matrix

A natural question to ask when first working with the trip matrix is what happens

if we choose a different labelling of the crossings. There are n! labellings for a knot

with n crossings, which come from n! ways we can rearrange the numbering of the

crossings (changing arrow direction does not change the trip matrix). While these

different labellings generate the same Jones polynomial, the matrices themselves may

look very different. We can see this in Figure 8, followed by the corresponding trip

matrices for the two labellings. The same knot, when labelled in two different manners,

gives two distinct matrices.

Figure 8: Different labellings for the figure 8 knot.



0 0 1 1

0 0 1 1

1 1 1 0

1 1 0 1





1 1 1 0

1 0 0 1

1 0 0 1

0 1 1 1


However, it turns out that every possible trip matrix is equivalent up to an operation

we refer to as row/column swapping:

18



Definition 5.1 (Row/Column Swapping). Row/column swapping is defined by first

swapping column i with column j, then swapping row i with row j. This operation is

denoted by ∆(i, j).

Lemma 5.2. The ∆ operation is the same independent of whether rows or columns

are swapped first.

Proof. Let i, j, k ∈ N and consider ∆(i, j). Let T be a trip matrix. We begin by

swapping rows first, then columns. The following hold, where the first arrow denotes

the swapping of rows and the second columns:

Tii → Tji → Tjj

Tjj → Tij → Tii

Tij → Tjj → Tji

Tji → Tii → Tij

Tik → Tjk → Tjk

Tki → Tki → Tkj

The above scenarios cover all possible cases; it remains only to show that when swapping

columns first the results are the same:

Tii → Tij → Tjj

Tjj → Tji → Tii

Tij → Tii → Tji

Tji → Tjj → Tij

Tik → Tik → Tjk

Tki → Tkj → Tkj

We can see that reversing the order yields the exact same results, proving that the ∆

operation is commutative.

Theorem 5.3. The ∆ operation in the trip matrix corresponds to a swapping of labels

in the corresponding knot.

Proof. Let T1 be the trip matrix for a knot K under some relabelling, and consider

performing ∆(i, j) on T1 to get a new matrix T2. In T1 row i, and thus column i, detail

the relationship between crossing i and the other crossings in the knot, as well as itself.

After row/column swapping, these exact same relationships are catalogued into row and

19



column j as described in Lemma 5.2. Similarly the information pertaining to crossing

j is now located where the information regarding crossing i previously was. This exact

same result would be achieved if we were to instead swap the labels in K of crossings

i and j; the same relationships would exist, but they would correspond to the rows

and columns we swapped. Therefore, a swapping of two labels in the knot diagram is

equivalent to performing the ∆ operation on the corresponding rows and columns in

the trip matrix.

Definition 5.4 (∆-equivalent). We say two matrices are ∆-equivalent if there exists

some finite sequence of ∆ operations that can take one matrix to the other. If there is

no such sequence of moves, then the two matrices are said to be ∆-distinct.

Theorem 5.5. For any given knot, there are up to n! possible trip matrices, which are

all ∆-equivalent.

Proof. Let K be a knot with n crossings. Then, there are n! different ways to label

the crossings of K. Each of these yields a trip matrix, and there are up to n! unique

trip matrices; since two rows can be the same, there might be less than n! unique trip

matrices as swapping the labels of these two crossings will not change the matrix. Let

T1 and T2 correspond to labellings l1 and l2, respectively. There exists a finite number

of swaps of labels to change l1 to l2. Since each of these is equivalent to a row/column

swap by Theorem 5.3, the two matrices T1 and T2 are separated only by this same

sequence of row/column swaps. Therefore, any two trip matrices for a given knot K are

∆-equivalent.

5.2 The Trip Matrix as a Tool to Identify Compositeness

With our new ∆ operation well-defined, we can finally get a stronger version of Theorem

3.1.

Lemma 5.6. All composite knots have block trip matrices up to some relabelling.

Proof. Let K be a composite knot. Then by Theorem 3.1 there exists a labelling that

gives a block matrix structure for at least one possible trip matrix T for K. By Theorem

5.5, any other trip matrix for K generated by a different labelling is ∆ equivalent to T .

Therefore, any labelling for a composite knot will give a trip matrix that is ∆-equivalent

to a block matrix.

Theorem 5.7. A knot is composite if and only if its trip matrix is ∆-equivalent to a

block matrix. Additionally, each block in the trip matrix represents the prime compo-

nents from which the composite knot has been formed.

Proof. Theorem 3.1 satisfies the forward direction.

20



To show that a block matrix structure implies that the corresponding knot is composite,

we can construct a copy of S1 with labels for the undercrossings and overcrossings in

order that respects the information obtained from the trip matrix. We informally refer

to this construction as a “knot circle”. The order in which one encounters crossings

when travelling around this circle represents the order they would meet this crossings

when travelling along this as an actual knot. Also note that the construction that fol-

lows is by no means unique; our goal is not to find the only knot from a given trip

matrix, rather it is to show if a trip matrix has a block structure, then any possible

corresponding knot must be composite.

Let T be a trip matrix which has a block structure after some relabelling, and let us

label its blocks B1 through Bn. Label the jth crossing from the ith block by B±
ij
, so

the third overcrossing from the fifth block would be denoted B+
53
. Begin by placing B1

on the circle. Note that the order in which we place the individual crossings from B1

would be determined by the structure of B1. However, we don’t care about that level

of detail, only that all of the crossings from B1 are laid out in a continuous sequence

around the circle.

Figure 9: The Circle With The First Block Placed

Let’s begin by placing B2. We have only one option, which is to place all the crossings

from B2 consecutively. Each pair B+
2i
and B−

2i
must contain either zero or both crossings

from all pairs from B1 between them, or else we would get a one in the trip matrix where

there should be a zero. Additionally, the entirety of B2 must lie on this same “side” of

the circle relative to B1. If we were to place some of the pairs from B2 in one place and

the others pairs in a distinct area separated by some crossings from B1 then any path

from a crossing from B2 in the former section to itself would never see any crossing from

latter section; this would mean splitting B2 into two distinct blocks which contradicts

our assumption that B2 is a single block.

21



Figure 10: The Circle After Placing The Second Block

Next we must place B3. We have only two distinct options here: either we place B3

“next to” B2, or we can place it “inside” B2 (without loss of generality; we could just

as easily use B1 here). What we mean by this is that we place all of the crossings from

B3 consecutively between two of the over/undercrossings from B2, just as we placed B2

between two crossings from B1. In the former case it is clear why this would create a

block structure, since either path from a crossing in B2 would either miss the entirety

of B3 or it would go through all of B3. In the latter case, consider a random pair of

crossings m+
2i

and m−
2i
. Either both of these are clockwise from B3, in which case the

paths from one to the other either see or miss all of B3, or one is clockwise and the other

counterclockwise. In this case again one path sees all of B3 and the other sees none of it.

Figure 11: The Circle After Placing The Third Block Inside The Second

We can continue placing blocks in this manner until every block has been placed. Be-

cause of the numerous choices of where we can place each subsequent block, this method

will create a multitude of different knots. However, as mentioned previously we only

need to show that by placing blocks in this manner, we get a composite knot. And any

circle representation of a knot constructed in this manner will in fact be composite, as

we now show.

Consider the manner in which we placed the blocks. Because at the time each block

was placed it was placed continuously, and because there was one block that we placed

last, we know that at least one block is still continuous and hasn’t been split up by the

22



placement of another block. Consider what this looks like in the form of a knot. We

start from the last crossing from some other component and then enter the block placed

last. Because this block is continuous, we then travel through the entirety of this block

before leaving and meeting some other crossing from a different block. This is precisely

the result of a connect sum where we attach this block to the preexisting knot along the

strand between the two other crossings seen before and after this block. Therefore, we

can simply “cut out” this block from our knot circle to indicate that we have undone

that connect sum with the corresponding knot and set it aside.

The removal of the block that is guaranteed to be connected will either result in a disjoint

block being reconnected, or it won’t. But if it doesn’t, that means the penultimate

block must also be connected, because this means the only opportunity for it to become

disjoint (the placement of the final block, which we just excised) did not make it disjoint.

Therefore we know we have a connected block which we can excise in the same manner.

We can keep removing the blocks in reverse order to the manner in which they were

placed because we know that they must be connected by the time we come to them for

removal. This continues until every block has been excised, and what we have left is

n distinct knot circles each representing a distinct block Bi. Each of these knot circles

are in fact our prime components K1 through Kn. So a block trip matrix does imply

that the corresponding knot is composite, with each block in the matrix representing a

prime component knot.

Example 5.

Consider Figure 12 below. This is an example of how one might construct a knot circle

from a trip matrix with 6 blocks of unspecified size. Whenever a block has been split

into multiple nonconsecutive sections by the placement of a subsequent block, we refer

to that as BA
i , B

B
i , etc. Consider the last block placed. In the example below that

block could be B4, B5, or B6. We will assume it was B6 without loss of generality, and

because the numbering suggests that we placed it last.

Figure 12: One example of a fully constructed circle.

23



Begin by removing B6, which we claimed above was the last block placed:

Figure 13: Our knot circle example with B6 excised.

Now that B6 has been removed, we see that the two previously disjoint sections of B1

are now connected, and so we now consider it a continuous block labelled B1. In our

example, we have now have 3 connected blocks, which are B1, B4, and B5. Remove

B5 and B4 in one step, since they are both connected blocks. This results in Figure 14

below:

Figure 14: Knot circle with B4 and B5 removed.

The removal of B5 connected BB
2 and BC

2 while the removal of B4 connected all of B3.

Next we can remove B3, which fully connects B2:

Figure 15: Removing B3

24



We are now left with just B1 and B2 (just how we started) which we can simply break

into two knot circles, and we are done.

The theorem above is extremely powerful because of its direct consequence in the fol-

lowing corollary. We now know that being prime or composite are equivalent to either

not having a block structure in the trip matrix or having one.

Corollary 5.7.1. A knot is prime if and only if its trip matrix is not ∆-equivalent to

a block matrix.

Proof. Knots can only be prime, composite, or the unknot, while trip matrices are either

a block matrix up to some relabelling or not. Since the unknot has no crossings in its

minimal crossing representation it cannot generate a trip matrix. Theorem 5.7 shows

that a knot being composite and its trip matrix having a block structure are equivalent.

Therefore, if a knot is prime, it must necessarily not have a block matrix structure, and

a matrix which cannot attain a block structure under any relabelling must necessarily

be prime.

5.3 Relabelling Algorithm to Break a Trip Matrix Into Individual

Blocks

We now have a method to determine if a given knot (with minimal crossing representa-

tion) is either prime or composite. However, this depends on our ability to take a given

trip matrix and determine if it has a block structure or not. This is not a trivial prob-

lem. In order to ensure that a knot is prime, we must check all n! possible labellings

and verify that none have a block structure. Even for computers this number grows

much faster than we would like. Additionally, if after some relabellings, a trip matrix

gives two blocks, we are not necessarily done. Perhaps these blocks can be broken down

further into smaller blocks. Ideally, we can not only determine if a knot is prime or

composite, but in the latter case, determine exactly which prime knots form the larger

composite knot. Here we detail a system of quick checks that can be performed to de-

termine primeness, and an algorithm which determines the exact breakdown into prime

knots for any given trip matrix.

5.3.1 Criteria for Primeness

The following are 4 quick checks that can immediately identify if a given knot is prime

from its trip matrix. While these checks are (probably) not all-encompassing, in practice

we found that every prime knot we checked met at least one of these criteria. This

suggests that perhaps every prime knot meets on these criteria, which we discuss in

Section 7.

25



Theorem 5.8. If the trip matrix T for knot K has less than 6 rows/columns, then K

is prime.

Proof. The proof is trivial. The smallest possible composite knot is the connect sum

of two trefoils which has 6 crossings and thus a trip matrix with 6 rows and columns.

Anything smaller can only be prime.

Theorem 5.9. If a trip matrix of any size has a row with less than 3 zeroes off the

diagonal, then it must be prime.

Proof. As previously mentioned we are operating under the assumption that crossing

number is preserved under connect sums, which implies that each block must have at

least 3 rows and columns since the smallest prime knot, the trefoil, has 3 crossings.

This means that for a knot to be composite, it must contain a block of at least rank

3. This means that the largest possible block in a matrix of rank n is n − 3. Ignoring

the diagonal (since any relabelling keeps entries on the diagonal and will thus always be

part of any block) and assuming the worst case scenario that this entire block is made

up of only ones, we get a maximum of n− 3 ones in any row (and thus a minimum of 3

off-diagonal zeroes). Therefore if there exists a row with less than 3 off-diagonal zeroes

it must be prime, since even the largest possible block could not contain this row.

Theorem 5.10. If the total number of zeroes in a trip matrix of rank n is less than

6(n− 3), then the corresponding knot must be prime.

Proof. Let’s construct a trip matrix with the most possible ones that is still composite.

To do so, we construct a matrix with 2 blocks, one of size 3 × 3 and the other of size

n − 3 × n − 3, both of which are made up entirely of ones. Including more blocks will

increase the number of zeroes. In this case, the number of zeroes is precisely 2×3×(n−3).

This comes from there being two rectangles in the matrix (after the matrix is relabelled

so that the blocks are intact) which are n− 3 units long and 3 wide. We choose blocks

of size 3 and n − 3 since 3 minimizes the function x(n − x) where x is the size of the

smaller block, and thus gives us the minimum number of zeroes. Since this is the lower

bound for the number of zeroes in a block matrix, any trip matrix with fewer zeroes

must necessarily be prime.

Theorem 5.11. If every row of a matrix of rank n has greater than n
2 ones, it must be

prime

Proof. Suppose TK meets the above criteria. We know that in order to be prime, T

must have at least two blocks. Therefore, at least one of these must have number of

rows and columns ≤ n
2 . If every row in T contains more than this number of ones, then

it is impossible for a block of this size to exist, and so the corresponding knot must be

prime.

26



5.3.2 Block Matrix Relabelling Algorithm

The following algorithm can be used to determine when a given trip matrix possesses

a block structure. While in the worst case scenario is can be time-consuming, it is

significantly more effective than checking all n! possible matrices.

1. Begin by making the 4 checks for primeness described above. If any of these are

met, then the trip matrix is prime and we are done.

2. If none of the checks are met, then further work is needed. Count the number of

ones in each row, and perform row/column swaps so that the rows are arranged in

ascending order by the number of ones they contain. Label the rows 1 through n.

If multiple rows have the same number of ones the order of them doesn’t matter.

3. Go through the rows in this ascending order, and when the number of ones in a

given row is greater than the label of the row, stop; this is the smallest possible

block this matrix can contain. Call this number k. If this is not reached by the

time we reach row number ⌈n2 ⌉, then the matrix must be prime.

4. If this initial swapping results in a block, then we can simply cut this block out

of the matrix and set it aside as one of the components of K, and start from step

1 on the remaining matrix. If not, then some of the entries in the first k rows in

the columns to the right of k must be ones. If the first k rows of column k + 1

are all zeroes, then we may also swap this column with a column to the right of

it that contains ones. We continue this process until the column to the right of

our attempted block (now of size k′ × k′) contains some ones in the first k′ rows.

Again, if we attain a block at any point we can cut it out and start again.

5. Now, it is possible that the number of rows with less than k′ ones is actually

greater than k′ itself (call the number of these rows p). This means that there are

actually
(
p
k′

)
possible choices for the rows that we include in our attempted k′×k′

size block. We must now check each of these possibilities to see if any result in a

block. Note that while theoretically this can be a large number, in practice p is

often not much bigger than k′ and so the check is generally very short.

6. If at this point we have still not found a block, we now repeat every step from

step 3 onward with an attempted block of size k + 1. We continue this process

either until the entire matrix has been divided into prime blocks or we reach row

⌈n2 ⌉, in which case the matrix must be prime.

As previously mentioned, in the worst case scenario that the matrix in question corre-

sponds to a prime knot, this algorithm is time consuming. However in the case that it

is composite, we have found in practice that blocks tend to form very quickly. While

27



this comment is purely anecdotal, it indicates that if blocks exist they will generally

appear quickly in this process, and if no blocks appear soon, there is a decent chance

that the knot is prime. We also do not claim that this algorithm is guaranteed to break

a composite matrix down into blocks or confirm that it is prime, nor do we claim that

it is optimal, hence the omission of any proof.

Example 6. Relabelling Algorithm

We begin with an arbitrary 6× 6 trip matrix (which does not necessarily correspond to

an actual knot) and work through the algorithm as explained:



0 1 0 1 0 0

1 1 0 1 0 0

0 0 0 0 0 1

1 1 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1


We begin with the 4 checks for primeness. This matrix has rank 6, so the first fails.

Going through each row, they all have at least 3 zeroes off the diagonal, and there are

rows with less than 4 ones, so the first and fourth checks fail. Finally counting all the

zeroes, we have 24, which is greater than the minimum 18 = 6(6− 3) required. Because

all the checks fail, we move on to the algorithm itself.

The number of ones in each row is denoted by the sequence 2, 3, 1, 3, 1, 2. Therefore,

we perform ∆ swaps so that this order is a non-decreasing sequence. We have multiple

options here, so without loss of generality we can perform ∆(2, 5), ∆(1, 3), ∆(4, 6). This

gives us the following ∆-equivalent trip matrix:

28





0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 1

1 0 0 1 0 0

0 0 1 0 1 1

0 0 1 0 1 1


By the criteria from the algorithm, the smallest possible block here is 3. Column 4

contains a one its first 3 rows, so we move on to the next step. Now, we come to a

tricky spot. Every row has less than 3 ones, so any of the 6! possible relabellings could

potentially yield a block. In general the number we need to check at this step is much

smaller, but in this case we got unlucky. We could brute force this, or we can move with

finesse. Entries (1, 4), (3, 5), and (3, 6) are all ones where we need zeroes. Performing

∆(3, 4) could potentially solve this problem:



0 0 1 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 0 0 0 1 1

0 0 0 1 1 1

0 0 0 1 1 1


And voila! Our finesse yielded a block matrix. Since each of these blocks is rank 3

they cannot be broken down further, and so we are done. Note that this matrix is

not actually possible; there are only two trip matrices of rank 3 which correspond to

the trefoil and its mirror image, and neither of these blocks are those matrices (see

Appendix A for these trip matrices). This was merely an example of the algorithm

in action. This example was also the worst-case scenario in terms of the number of

potential checks. In our experience the number of checks is usually much smaller in

practice, but this example demonstrates that some mathematical intuition can often be

used to help address this problem just as much as the algorithm does.

29



6 Exploration of the Effects of Reidemeister Moves on

Trip Matrices

As discussed earlier, our work hinges on several assumptions. One of these is that we

are working with knot diagrams that have the minimum number of crossings possible.

Of course, this is generally not the case, and finding the minimal crossing number for a

given knot is not a trivial problem. As such, we hoped to explore how the trip matrix

behaves under Reidemeister moves to see if it could be used as a method to detect

extraneous crossings, and therefore be used as a tool to calculate minimal crossing

number. Unfortunately (albeit unsurprisingly) the trip matrix is simply not powerful

enough of a tool to be utilized in this manner, as we will show later. This section details

our exploration into this subject and what results we did find.

6.1 Type 1 Reidemeister Moves

A Type 1 Reidemeister amounts to effectively the same result as discussed in Lemma 3.2.

Below, we see the two possibilities for a Type 1 Reidemeister move (depending on the

direction the twist is introduced) with their overcrossings and undercrossings labelled.

In Figure 16 the resulting structure in the matrix is a row/column of all zeroes, while

in Figure 17 the row/column is all zeroes with a 1 on the diagonal. This structure is

only possible when an R-1 move occurs or under the conditions previously established

in Lemma 3.2, which, while not strictly an R-1 move, is an extraneous crossing that can

nonetheless be removed. Note that if we were to point the overcrossing arrows in the

opposite direction, the path would then go through every other crossing twice before

returning to itself, which would similarly yield all zeroes.

Figure 16: Type 1 Move twisted in one direction.

30



Figure 17: Type 1 Move twisted in the other direction.

6.2 Type 2 Reidemeister Moves

Naturally, Type 2 moves are more complex in nature. First we see what structure a

Type 2 move yields in the trip matrix. Below in Figure 18 we see the 4 possible la-

bellings for an isolated Type 2 move. Additionally, for each of these labellings there are

two ways to connect the loose ends. If the top right and bottom right are connected,

then we have a link instead of a knot, so we exclude that possibility. The other options

are top right to bottom left and top right to top left. We considered all 8 cases but only

illustrate the 4 different labellings without reattaching the strands for the sake of brevity.

Figure 18: 4 general arrow labellings for a Type 2 Reidemeister Move.

In every case, the same result will occur regarding all other crossings in the knot (the

crossings not shown). Let A and B denote the crossings shown that are formed by the

Type 2 move. If the path from crossing A back to itself goes through a given crossing

i once, then the same must be true for crossing B, and vice versa. This is similarly

true if the path goes through i zero times or twice. This is because these two crossings

are adjacent when approached from any direction; supposing one decides to start at

crossing i and take the path back to i−, then if the path crosses A or B at any point

then the next crossing it immediately encounters is its pair.

The only other thing to consider is the 2 × 2 submatrix that details the relationship

between crossings A and B, and of course their diagonal entries. After going through

8 possibilities (the details of which we again omit for brevity), we are are left with two

possibilities, which are shown below:

31



0 0

0 1


1 1

1 0


The resulting change in the matrix is an additional two rows and columns, where in the

2 × 2 submatrix where they meet we have one of the above forms, and the remaining

entries are in pairs, where for each other crossing the entries detailing the relationship

between that crossing and crossings A and B are the same. Below is an example of a

matrix where the last two rows and columns are the result of a Type 2 move:

x x x x x 0 0

x x x x x 1 1

x x x x x 1 1

x x x x x 0 0

x x x x x 0 0

0 1 1 0 0 1 1

0 1 1 0 0 1 0


Unfortunately, this structure can appear in the absence of a Type 2 move. We found

an example of a knot that generated this structure but the crossings that created this

structure were not the result of a Type 2 move, shown in Figure 19. This example shut

down our attempt to use the trip matrix as a tool to eliminate extraneous crossings,

since we could not assume that this structure implied a Type 2 move.

Figure 19: Type 2 Counterexample

32





1 1 1 1 1 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0

1 0 1 0 1 1 1 1

1 0 1 1 0 1 1 1

0 0 0 1 1 0 0 0

0 0 0 1 1 0 1 0

0 0 0 1 1 0 0 0



What is interesting here is that there is in fact a clear Type 2 Reidemeister move

(crossings 7 and 8). However, because rows 6 and 8 are identical, by looking at the trip

matrix we can’t tell which actually pairs with row 7 as a Type 2 move. Of course, we

could simply swap the identical rows and assume we swapped it so that the rows we are

removing are collectively the Type 2 move. But we do not know if this structure only

appears when there is a removable Type 2 move somewhere in the knot, or if there are

times when it can appear in the complete absence of a Type 2 move. We address this,

and related questions, in Section 7.

6.3 Type 3 Reidemeister Moves

Upon the realization that the Type 2 structure in the trip matrix was not an if and only

if situation, it became clear that exploring further into this topic would be fruitless,

since there is no way of identifying Type 2 moves solely from the trip matrix (at least to

our understanding). Because of this (and a lack of time) we did not explore how Type

3 moves affect the trip matrix.

33



7 Further Questions

There are a number of lingering questions from our research that could be the basis for

interesting future work, which we detail below:

• Is there another way to determine extraneous crossings?

– While our attempt to identify extraneous crossings by analyzing Reidemeister

moves did not prove successful, it is possible that there are other patterns in

matrices that could be used to answer this question. In this vein, we have

included an appendix of trip matrices of prime knots (see Table A).

• Can we formalize the algorithm described in Section 5?

– We did not prove that our algorithm performed as claimed. Future work

could involve proving that this algorithm does indeed perform its intended, or

alternatively coming up with a more efficient manner of relabelling trip matri-

ces. This could also entail finding more criteria for primeness/compositeness

that could be used to reduce the number of knots we actually need to imple-

ment the algorithm for.

• Does every prime knot meet one of the listed criteria for primeness, making our

algorithm obsolete?

– Every knot for which we computed a trip matrix met one of the prime criteria

listed in Section 5. We conjecture that this list (perhaps with the addition

of other easy checks) may in fact identify every prime trip matrix. If this is

the case then the only use for the algorithm would be to rearrange and break

down a composite trip matrix into its component blocks, rather than use it

to check for primeness.

• What effect does a Type 3 Reidemeister move have on the trip matrix?

– We did not attempt to answer this question because the investigation into

Type 2 moves did not come to fruition. However this is still an interesting

question that could be potentially useful, and it could reveal more about how

the trip matrix behaves under ambient isotopies.

• Can distinct knots have identical trip matrices for representation with minimal

crossings?

– Naturally, this question is only applicable when the two distinct knots have

the same crossings number. It is known that there are distinct knots that

have the same Jones polynomial, and some of these pairs even have the same

34



crossing number. This would suggest that these knots may have identical

trip matrices up to ∆-equivalence, although it is theoretically possible for

∆-distinct trip matrices to generate the same Jones polynomial. A thorough

analysis of this subject would likely involve filling out the catalogue of primes

found in Appendix A for all prime knots up to a certain crossing number,

particularly those pairs of knots with the same Jones polynomial and crossing

number. If the answer to this question is yes, it would open up further

questions regarding why two distinct knots could have identical trip matrices

and how powerful a tool the trip matrix itself is at identifying distinct knots.

• Can a knot have ∆-distinct trip matrices as a result of different minimal crossings

representations?

– For some knots, the minimal cross number representation is not unique, and

there are multiple distinct knot diagrams for a given knot that all have min-

imal crossing number. Would these distinct diagrams yield ∆-distinct trip

matrices or would they be ∆-equivalent? This is partially tied to the explo-

ration of Type 3 Reidemeister moves, since that is a simple way to change a

knot diagram without affecting the number of crossings.

• Can the Type 2 Reidemeister structure appear in knots with no Type 2 moves to

remove?

– As discussed in Section 6, our only counterexample still contained a Type 2

Reidemeister move. Is this the only way that this structure can appear in

the trip matrix, or are the others? If the former is true, this reopens the

possibility of using the trip matrix to undo Reidemeister moves.

35



8 References

References

[1] Colin C. Adams. The knot book. An elementary introduction to the mathematical

theory of knots. W. H. Freeman and Company, New York, 1994, pp. xiv+306. isbn:

0-7167-2393-X.

[2] V. F. R. Jones. “Hecke algebra representations of braid groups and link polyno-

mials”. In: Ann. of Math. (2) 126.2 (1987), pp. 335–388. issn: 0003-486X. doi:

10.2307/1971403. url: https://doi.org/10.2307/1971403.

[3] Louis H. Kauffman. “New invariants in the theory of knots”. In: 163-164. On the

geometry of differentiable manifolds (Rome, 1986). 1988, 6, 137–219, 282 (1989).

[4] Kurt Reidemeister. “Elementare Begründung der Knotentheorie”. In: Abh. Math.

Sem. Univ. Hamburg 5.1 (1927), pp. 24–32. issn: 0025-5858. doi: 10.1007/BF02952507.

url: https://doi.org/10.1007/BF02952507.

[5] Dale Rolfsen.Knots and links. Vol. 7. Mathematics Lecture Series. Corrected reprint

of the 1976 original. Publish or Perish, Inc., Houston, TX, 1990, pp. xiv+439. isbn:

0-914098-16-0.

[6] Louis Zulli. “A matrix for computing the Jones polynomial of a knot”. In: Topology

34.3 (1995), pp. 717–729. issn: 0040-9383. doi: 10.1016/0040-9383(94)00041-I.

url: https://doi.org/10.1016/0040-9383(94)00041-I.

Emerson Worrell

Mathematics Department

Colorado College

Colorado Springs, CO 80946

Email:e worrell@coloradocollege.edu

36



A Catalogue of Primes

In the process of conducting our research we calculated a number of trips matrices for

different prime knots. We include them here for posterity, and so that the reader may

potentially discover patterns in the nature of these matrices that we missed. Below

are the trip matrices for 17 different prime knots up to crossing number 10, denoted

with their Alexander-Briggs-Rolfsen notation. The reader is free to use the criteria for

primeness listed in Section 5 to verify that every knot listed meets at least one of the

criteria, supporting our conjecture in Section 7. Note that the first (31) knot is the

left-handed trefoil while the second is the right-handed trefoil, the mirror image of the

former.

37



(31)


1 1 1

1 1 1

1 1 1



(31)


0 1 1

1 0 1

1 1 0



(41)



0 0 1 1

0 0 1 1

1 1 1 0

1 1 0 1



(51)



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1



(52)



1 1 1 1 1

1 1 1 1 1

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1



38



(61)



0 0 0 1 0 1

0 0 0 1 0 1

0 0 0 1 0 1

1 1 1 1 1 0

0 0 0 1 0 1

1 1 1 0 1 1



(62)



1 1 1 0 1 1

1 1 1 0 1 1

1 1 1 0 1 1

0 0 0 1 1 1

1 1 1 1 0 0

1 1 1 1 0 0



(71)



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



39



(72)



1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 0 1 0 1 1

1 0 0 0 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



(73)



0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 0



(74)



0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 1 1 0 1 1 1

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0



40



(81)



1 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 0 1 0 0 1 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0



(82)



1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0



(84)



0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0

1 1 1 1 0 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 0 1 1 1


41



(810)



0 1 1 1 0 1 1 1

1 0 1 1 0 1 1 1

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

0 0 1 1 1 0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 1 0 1

1 1 0 0 0 1 1 0



(94)



1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0

1 1 1 1 0 0 1 0 0

1 1 1 1 0 0 0 1 0

1 1 1 1 0 0 0 0 1



42



(910)



0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1

1 1 1 1 0 1 1 1 1

1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0



(101)



0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 1



43


