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It’s a Small(er) World:
The Role of Geography in Biotechnology Innovation

I. Introduction

It has long been noted that firms within an industry often cluster geographically,
for a variety of reasons. Localization economies, or Marshall-Arrow-Romer externalities
which reduce the cost of inputs to firms in the local industry, have been studied in a
variety of contexts (see for example Henderson (1986) or Smith and Florida (1994)). For
some industries, it is the nature of the knowledge itself, its speed of progress and the
degree to which it is tacit, that encourages firms to locate near other firms in the sector.
Both of these aspects of knowledge, diffusion speed and tacitness, have been identified in
the literature (see Caballero and Jaffe (1993) for diffusion speed and Von Hippel (1994)
for tacitness) but to our knowledge no analysis has tested their change over time, nor
measured their strength in biotechnology.

This paper examines knowledge flows within biotechnology, confirming the
traditional evidence that inter-firm knowledge transfers decrease with distance, while
adding the important caveat that the impact of physical distance has been diminishing
over time. Thus, historically there has been a knowledge spillover-based reason for
biotechnology firms to cluster geographically, although that reason is less powerful now
than ever before.

Using all biotechnology patents granted in the U.S. between 1975 and 1994, we
show that there is a marked tendency to cite patents from nearby areas. Thus, this paper
follows the "paper trail" literature (Feldman, 1999) on inter-firm knowledge transfers or
"spillovers" in documenting the creation of knowledge via patent citations. We test

whether this pattern could naturally arise from a tendency to cite other patents listing the



same inventor, the same firm assignee, the same patent examiner, or the same technology
class. We conclude that the geographic clustering of citations holds over and above the
effects of these other factors, suggesting that there is a local nature to knowledge
spillovers (at least insofar as patent citations reflect knowledge flows).

In section II of the paper, we briefly review the relevant literature on
biotechnology clustering and the geographic nature of knowledge spillovers. Section III
describes our data set, designed for compatibility with the literature, and Section IV
presents regression analysis that controls for non-geographic effects in presenting the
declining role of distance. Section V concludes with implications for policy and further
research.

II. Literature review

The literature suggests that knowledge spillovers cluster geographically, with
higher spillovers (shown by more patent citations) within a short distance. The
underlying supposition is that inventors are more aware of (or find more use for)
inventions located close to them, and therefore build more heavily on local inventions,
the result being a geographic clustering of citations.

Empirical evidence stresses the important role of geography in the spillover of
knowledge from one member of an innovation network to another (see for example a
review by Gelsing, 1992). It also emphasizes the importance of frequent personal contact
and research collaboration. In particular, Zucker et al. (1998) show that firms using
biotechnology are strongly influenced by the location of superstars in academic research

institutions.



Lundvall (1992) points out that the importance of geography should differ
predictably by technology type. While geography has little impact on stationary
technologies (facing constant needs and opportunities), that importance grows quickly for
technologies undergoing incremental innovation and radical innovation. During
technological revolutions, there is a dramatic effect on the geographic pattern of
subsequent innovations. Since biotechnology has enjoyed aggressive growth, we expect
a large geographic impact on knowledge flows.

Geographic proximity has already been used to explain the location of R&D-
intensive activities (for Boston's high-technology district, see Dorfman (1988); for
biotechnology in particular see Zucker et al., (1998); for France see Carrincazeaux et al.,
(2001)), due to evidence of localized spillovers within an industry. However, the location
of firms is not always a good predictor of the location of innovation. Feldman (1994) tests
whether U.S. state patent levels can be predicted simply by the presence of particular
industries in that state. Test statistics are decisive, perhaps because industries have
different propensities to patent, so that in fact there is only a 0.42 correlation between
innovation measures and value-added in each state by industry. This result is confirmed
for the 1975-1994 period in the U.S. (Johnson and Brown, 2004) in an exploration of why
the northeastern states lost a dramatic share of the national patenting total. It occurred
not only due to the location of industries, but also due to industries that were unable to
maintain the patenting rates enjoyed by the same sector in other regions.

Localization of patent citations has been firmly established by the leading paper
on the topic (Jaffe et al., 1993), with a random sample of patents clearly more likely to

cite local patents than others at every geographically aggregated level. The effects are



small but statistically significant, and are more intense where knowledge becomes
obsolescent rapidly, like electronics, optics and nuclear technology (Jaffe and
Trajtenberg, 1996). The result has been confirmed for semiconductors (Almeida and
Kogut, 1997).

Since biotechnology knowledge becomes obsolescent very rapidly (see Johnson
and Santaniello, 2000), one might expect that it will follow the same pattern. However,
two factors augur against this quick conclusion. First of all, most biotechnological
information is not tacit, so will be relatively easy to communicate across long distances.
Second, biotechnology patenting has occurred largely during a period when international
and inter-regional communication has been increasingly effective and affordable, so once
again we might expect less localization of knowledge spillovers (Feldman, 1999).

Other researchers have demonstrated a geographic pattern to European patent
citations. In a limited sample of Swedish patent applications, international trade flows,
rather than physical distance, was the only variable that robustly explained international
references (Sjoholm, 1996). In a larger study of over 100,000 patent citations between
European regions, there is strong evidence of geographic clustering (Maurseth and
Verspagen, 1999). Regressions show that distance between regions is an important

driving factor, along with technological similarity between regions.



II1. Data

Measurement issues

This paper relies exclusively on patent citations from biotechnology patents as a
geographic measure of knowledge spillovers in the sector. When a patent application is
submitted for approval, it is accompanied by a list of citations to other patents and
literature which have been instrumental in the creation of this technology, or which
delineate the legal limits of this application. The intention is twofold: to build a
convincing case that this application is novel and unobvious to someone trained in the
field, and to provide a legal record of materials consulted during the invention process in
order to protect patent rights in the future. To this list of citations, a patent examiner may
add his or her own list of citations. The result is a paper trail of knowledge creation.

Of course, patents records do not perfectly reflect the creation of technology, as
some innovations are never patented and patents vary greatly in size and importance.
However, within the U.S. on a state-by-state level, patents have a high correlation with
other measures of innovative activity. For example, there is a 0.88 correlation between
patents and R&D expenditures, 0.99 between patents and research employment records,
and 0.93 between patents and a census of innovation citations in scientific and trade
journals conducted by the Small Business Administration (Feldman, 1994).

Citations themselves do not perfectly reflect the transfer of knowledge, as they
may be inserted for a variety of other reasons including legal protection or examiner
privilege. Jaffe et al. (2000) relates survey evidence showing that only V4 of all patent
citations correspond to a clear spillover of knowledge, another "4 have some possibility of

a spillover, and the remaining %2 do not reflect knowledge transfers. However, their



statistical tests indicate that overall citations can be interpreted as a signal of spillovers,
albeit a noisy signal.

As a final definitional challenge, "biotechnology" definitions differ between
nations and over time (see Johnson and Santaniello, 2000). Therefore, we follow the
most recent published biotechnology definitions of the U.S. Patent Office (USPTO,
1998), which include portions of eleven separate classes from the U.S. patent
classification system.'

II1.B. Clustering of knowledge citations

Patent citations may also cluster for non-geographic reasons, coincidentally
causing a pattern which appears geographic merely through correlation with other
phenomena. For example, inventors may be more familiar with their own patents, citing
them more frequently than others, which would give a biased impression of the
importance of geography. The same may be true of assignees, if employees of a firm are
familiar with other patents held by the firm. While inventor and assignee self-citation
may drive a pattern of geographic clustering, they confuse the issue of "local knowledge
spillovers," which is the primary focus of our analysis, so we describe and separate it. On
the other hand, we do not wish to simply ignore self-citations as being obviously local. If
an assignee firm is located in several different locations, high familiarity with other
inventions by the same assignee may actually work against a geographic clustering of
citations. The same may be true of an inventor who moves during his or her career.

Therefore we include self-citations in the analysis but control for them separately.

! Specifically, the definition includes U.S. Patent Classes 47/1.1-47/1.4, 47/57.6-47758, 424/9.1-424/9.2,
424/9.34-424/9.81, 424/85.1-424/94.67, 424/130.1-424/283.1, 424/520-424/583, 424/800-424/832,
435/1.1-435/7.95, 435/40.5-435/261, 435/317.1-435/975, 436/500-436/829, 514/2-514/22, 514/44,



All patent citations are reviewed, revised and potentially appended by examiners
at the U.S. Patent Office. Due to the nature of patent records, it is impossible to verify
whether a given citation was originally submitted by the applicant or added by an
examiner, so we must treat examiners as another potential source of geographic
clustering. While examiners may have less geographic concentration in their knowledge,
they may feel more familiarity with patents that they have examined than with patents
that others have examined. This potentially introduces a bias through differences in the
geographic zones of examiner caseloads. Since applicants do not know which examiner
will be assigned to their case, it is unlikely that applicants will include a large number of
citations to any particular examiner. Thus, we can infer an "examiner self-citation effect"
to distinguish it from any geographic pattern we may observe.

Using U.S. patent data from a combination of sources (NBER website as
described in Hall et al., 2001 in addition to raw data collected by the independent firm
MicroPatent), we collected citations from all biotechnology patents granted between
1975 and 1994. We then traced all self-citations by inventors, allowing for some
flexibility in name spellings (since the USPTO does not standardize name format). These
include not only first inventors, but all inventors listed for each patent. We found that
self-citation accounted for almost precisely one percent of all citations from
biotechnology patents, suggesting that while some self-citation is present, there are strong
inter-inventor knowledge spillovers. Unlike academic citations, there is very little reason
here to self-cite as a means of advertising, so we can be fairly sure that self-citations are

indicators of useful capital or legal protection.
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To add to this measure, we investigated citations between assignees. Using the
same biotechnology patents, we found that nine percent of all citations were to the same
assignee firm or person, again checking rigorously for variations of firm names. This
share varied from nearly 14 percent in 1975-79 to a low of less than 8 percent in 1985-89,
with no obvious trend. This intra-firm pattern is obviously an important component of the
flow of knowledge, but they still imply that 9 of 10 citations are to other firms.

Conceivably, those citations to other firms and inventors were simply added by
patent examiners, with no relationship to knowledge flows between inventors. We found
that five percent of all biotechnology citations were made to other patents sharing the
same examiner, with considerable variation between examiners. In fact, for one examiner
over seventy percent of the citations made to patents he examined hail from other patents
he reviewed. Naturally, citations should be made to similar technologies, and as a result
biotechnology examiners should cite one another frequently, and conceivably, should cite
their own relevant reviews most of all. However, this may also be evidence that some
examiners are inserting or confirming references to material with which they are
personally familiar. While primarily of interest to the U.S. Patent Office, it also offers
insight into a weakness of using citations as measures of knowledge flow.

IV. Model and estimation

Our regression analysis extends the seminal work of Jaffe and his co-authors
(Caballero and Jaffe, 1993; Jaffe and Trajtenberg, 1996), building upon a basic model
with extensions that has been used successfully for other purposes. We add to the

analysis by allowing coefficients to vary over time, and by directly controlling for the

exclude class PLT (plant patents) due to data limitations on these documents.



potential impact of technological similarity between regions and self-citation by
inventors, assignees and examiners. The model is a recognition that the likelihood that a
patent k granted in year ¢ will be cited by a subsequent patent, K, granted in year 7, is at
least in part a function of the attributes of patents £ and K. Using exponential rates of
decay and diffusion to model the flow of knowledge over time, that probability can be

written as:

p(k,K) = a(k, K)3(k, K) exp[~f,( 2 PNl —exp(=4,(T =0)] (1)

5=t
where a(k,K) represents the non-geographic attributes of patents k£ and K that affect the
probability of citation, while o(k,K) represents the relevant geographic attributes. /S
represents the decay rate of knowledge, permitting the possibility that older patents are
cited less frequently simply because they are older, and so may no longer be at the
leading edge of their art (we follow the literature in modeling decay based on the
knowledge stock available, or the number of patents P granted between the application
date ¢4 of the cited patent and the grant date T of the citing patent). £, represents the rate
of diffusion of knowledge, incorporating the possibility that it takes some time for new
innovations to be recognized as noteworthy, (again, we follow the literature and base this
on the time lag between citing and cited patents, measured in years). Both exponential
terms naturally depend (directly or indirectly) upon the time elapsed between granting of
the cited and citing patents. In addition, there is ample evidence of “citation inflation”
over time (e.g. Johnson and Popp 2003), with recent patents recording longer citation lists
than earlier patents do, a fact which time-based dummy variables will capture in our

analysis.
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This statistical model has an illustrious history in the literature, and has proven
quite effective at describing citation patterns (e.g. see Johnson and Popp 2003 for
justification and history of the model). The only real novelty introduced here is the
particular set of control variables and geographic variables chosen for inclusion. In
particular, we include six control variables (« parameters) and one geographic (o )
variable:

e whether or not patents k£ and K have the same inventor (o, ),

e whether or not patents k£ and K have the same assignee (g, ),

e whether or not patents k£ and K have the same examiner (o ),

e whether or not patents k£ and K have the same technology class (g, ),

e pendency lag of cited patent k (opac),
e year T of citing patent K, to account for citation inflation (¢, ), and

¢ distance between state origins of patents k and K (5, ).

While most of the variables listed are binary in nature, and thus are easy to
incorporate into a cohort-based estimation process (including the year T, which is
incorporated as a series of dummy year variables Tj), there are two notable exceptions.

First, pendency lag is a continuous variable so potentially cited patents were
grouped into four categories. Short (lag <=3 years), medium (3 < lag <=5 years), long (5
< lag <=10 years) and very long (lag>10 years) are defined to reflect the broad
differences.

Second, physical distance is a continuous variable so (k,K) patent pairs are
grouped into 100-kilometer cohorts ranging from high distance (over 2,300 kilometers
between state capitals of k and K) to low distance (less than 100 kilometers), for twenty-

four distance groupings.’

? Sensitivity tests performed to include 10 groupings (1-250 km, 251-500 km, etc.) produced similar
results.
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For the sake of computability, we group the data into five-year time periods for
o (1975-79, 1980-84, 1985-89, and 1990-94), to allow for some change in the key
relationships over time.

Therefore, we postulate the functional forms

a(k,K) = ag, 05,005,005 01,,00 )

S(k,K)=06" 3
where ¢ is a single parameter raised to the power D, the number of units of physical
distance between citing and cited locations. Therefore, a distance of 200 km is associated
with an estimated coefficient based on 52, Estimations based on a more flexible
functional form of 6 (£, K), allowing each distance to enjoy its own independent &
coefficient, produce similar but less parsimonious results.

Using these parameters, the probability of a patent & granted in year ¢ being cited

by a patent K, granted in year 7, can be estimated as:

Pex = alk, K)S(k, K)exp[-f, (X P —exp(=fo(T =)+ & (4)

s=ty
A true geographic effect of clustering would be evidenced by a ¢ value less than unity
(i.e. a lower probability of citation when the distance between citing and cited patent is
high), since other relevant attributes of patents k and K have been controlled.

Since most patents are never cited, if we were to estimate equation (4) for
individual pairings of citing/cited patents, the dependent variable would be zero for the
vast majority of all observations. Thus, following the work of Jaffe and his coauthors, we
group the patents into “cohorts” of potential citations. Cohorts are constructed as

mutually exclusive and exhaustive subsections of all possible citations, and therefore
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include counts of simultaneous citation (one patent citing another within the same
application year), self-citation, and citations to patents in the same geographical area, as
well as citations to patents dramatically different than the citing patent. For example, one
cohort may be defined as ““all patents granted in 1976 and cited in 1978 by a patent that
shares the same inventor, the same assignee, a different examiner, a different technology
group, and hails from a state within 100 kilometers with a highly similar technology
profile”.

The expected number of citations to a cohort with specific values for the
independent variables, hereafter abbreviated (X; ¢,7), is the likelihood of a single citation

times the number of potentially citing (or cited) patents:

E[Cy.,71= (N N Ay )Py ) )]

where C is the number of citations to the cohort of patents described by the list of
attached parameters, N is the number of (all) patents in that cohort available to be cited,
and 4 is the number of potentially citing (biotechnology) patents granted in year 7. This
equation can now be rewritten to use what we know about patents in the cohort to which

the pairing (k,K) belongs:

_ _ ( CX;t,T ]
s =P (N e (A ) ©

and combining (2), (3), (4) and (6) gives us an equation:

Cyur D
[(N )(A ) = gy U A A Oy 4600
Xt X;T

exp[—B,(D_ Pl —exp(—B,(T — )] + &, @)

s=t,
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which can be estimated by non-linear least squares as long as the error term, ¢, , is well

behaved.’

As a comparison group, we omit from our estimation the coefficients reflecting
simultaneous citations (where 7=t¢), short cited patent lags, citations within the same state
(distance = 0), and the last time dummy (T990.94).

Using this methodology now standard in the citation literature, rather than
estimating coefficients based upon ten billion possible patent-to-patent citations (which
actually exist and were individually tabulated), the data are summarized into 5908 group-
to-group observations of citations, each weighted by the number of citations they
represent. These observational “cohorts” are groups defined to be mutually exclusive and
exhaustive citation frequencies between patent categories of interest, including
observations of citations between similar patents (i.e. patents which cite patents similar in
time, in region, in technology, in assignee, etc.) and observations of citations between
heterogeneous patents.  Estimated coefficients hail from the power that group
characteristics display in explaining frequent citations between certain groups, compared
to infrequent citations between others. For example, if we were to find that citations in
cohorts containing patents physically close to each other were relatively more frequent
than citations in cohorts containing patents far from each other, the regression coefficient
on distance should be a negative one, as distance detracts from the propensity to cite
another patent.

In particular, since we have included time as a component of our cohort

. . N (A, . ..
? Because the data are grouped we weight each observation by (N )(Ar) to avoid heteroskedasticity
issues (Greene, 1993).
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definition, we can compare the different impact that distance (or any other variable) has
wielded over time. We are in fact statistically comparing cohorts which are identical in
every way except for different timeframes, with the difference in citation frequency
between those cohorts attributable to the different timeframe. It is equivalent to including
a time dummy variable in a regression equation of individual observations, except that in
this case each observation is a citation frequency within a cohort.

A summary table of the salient data characteristics is presented in Table 1. Notice
that there is an average 0.001 probability of citation between patents (the dependent
variable), with a slight downward trend over time. Although each patent cites more than
prior patents did, there is an even more rapidly increasing population of patents in
existence, making the probability fall over time.

Measures of distance have remained remarkably constant over time, as has the
share of patent citation cohorts displaying self-citation (by the same inventor, assignee,
examiner or geographic state). Therefore, any estimated effects seen in our results are
not a function of biases in the underlying variables. Instead, those effects come from the
distribution of citation patterns overlaying the patent population.

Table 2 presents regression estimates based on the cohorts described,
incorporating all ten billion possible patent-to-patent citations. Notice that significance is
measured with a test of the null hypothesis that a given coefficient is unity.

The results are broadly consistent with the literature (e.g. Johnson and Popp,
2003). For example, our regression yields time-specific constants that have diminished
since 1980. Although patents per year increase, and each one has a longer list of

references than previous generations did, there is a decreasing probability of citation to
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any particular patent. Both decay and diffusion are significant and strikingly faster than
evidenced elsewhere in the literature. Our results show rates averaged that are much
faster to decay and diffuse than average rates across the economy, reflecting the fact that
biotechnology moves at a fast pace in its creation and decay of knowledge.

There are positive and statistically significant self-citation effects by inventors
and assignees. The combination clearly suggests a strong impact of applicant self-
citation, but their relative size implies that inventors have a stronger propensity to cite
other laboratory co-workers and not necessarily themselves, which is probably a better
signal of useful knowledge acquisition than the self-promotion effect we would suspect in
the case of same-inventor citations.

Furthermore, the same-examiner effect, which we introduce for the first time in
analysis of this type, is strong, positive and significant, reflecting the correlation between
subject material and a particular examiner. Since applicants presumably would not be
able to predict the examiner in advance, and would have little reason to cite patents by
the examiner even if they knew, we can perhaps conclude that examiners apparently add
those citations, adding disproportionately more citations to patents that they have read
themselves.

Finally, we obtain the counterintuitive result that increased physical distance
makes citations more likely (0 >1), a statistically significant result. The reason is
explained in the remaining columns of Table 2, where we report estimates of equation (7)
separately for each time period. The ancillary regressions omit the time-specific constant
for each period, and calibrate the decay and diffusion rates to the primary estimated

values.
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Results are similar to the primary analysis, with one key distinction. The distance
coefficient o transitions from less than unity in 1975-79, to insignificantly different than
unity in 1980-84, to significantly greater than unity in 1985-89 and 1990-94. In other
words, the 1970’s saw physical distance as a limiting factor to citations, with an
additional hundred kilometers of distance dropping the probability of citation by five
percent. In the later periods, distant citations became the norm, with longer citations
more common than shorter ones.

The results point unquestionably to the fact that physical distance has become less
of a constraint with the passage of time. Perhaps the trend is due to the nature of the
knowledge being created, but we suspect that it is more due to advances in
communication, which allows easier transmission of information across great distances in
the era of computerization, internet, teleconferencing and cellular communication. In
short, the principles underlying the inter-firm transfer of knowledge are changing in a
striking fashion, making spillovers easier and longer than ever before.

V. Conclusion and Policy Implications

We are left with a striking picture of the inter-firm transfer of biotechnological
knowledge. Controlling for other factors, knowledge flows used to diminish with
physical distance, but the importance of distance has been receding with time. That is,
knowledge is more likely to transfer over long distances now than it was twenty years
ago. Paradoxically, it may now be more likely to jump long distances (e.g. from coast to
coast), than it is to travel the shorter distances to neighboring states.

The policy recommendations of this paper have therefore been heard before. In

an age of more intense and distance-free communication, the conduits of knowledge
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transmission take on a new importance. Researchers and firms have obviously benefited
tremendously from the movement to electronic patent searches and filings. In fact, that
trend may have partially driven our results.

Long-distance knowledge transfers are increasingly the norm in biotechnology.
The policy implications of this paper may be important not only for regions of the U.S.
but for less developed nations as well. As the importance of physical distance has
diminished over time, innovation has become possible at a wider array of locations,
potentially drawing on a wider range of raw materials (such as agricultural germplasm)
and ideas. This might imply a possibility for the deliberate fostering of non-traditional
locations for biotechnology, with a prerequisite of vibrant communication with the
research community elsewhere.
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Table 1: Summary of citation cohort data

Variable Mean St. Dev Min  Max
Actual citations as share 0.001 0.017 0 1
of potential citations
1975-1979 0.002 0.036 0 1
1980-1984 0.002 0.022 0 1
1985-1989 0.001 0.009 0 1
1990-1994 0.001 0.015 0 1
Freqof0 Freqofl Min  Max
Dummy variables:

Same inventor 0 1
1975-1979 1735 556 0 1
1980-1984 1267 404 0 1
1985-1989 1054 270 0 1
1990-1994 486 136 0 1

Same assignee 0 1
1975-1979 1688 603 0 1
1980-1984 1238 433 0 1
1985-1989 1019 305 0 1
1990-1994 493 129 0 1

Same examiner 0 1
1975-1979 1464 827 0 1
1980-1984 1057 614 0 1
1985-1989 901 423 0 1
1990-1994 450 172 0 1

There are 5908 observations in the full dataset, due to our partitioning of all
possible citations into citation cohorts. Of those, 2291 have a citing patent
granted in 1975-79, 1671 are in 1980-84, 1324 are in 1985-89, and 622 are in
1990-94.

This distance variable represents observations in twenty ranges, each
encompassing 100 km spans, as described in the text. The number of
observations per range, in increasing distance order, is 256, 445, 300, 285, 266,
264,267,281, 264, 261, 258, 262, 250, 237, 247, 247, 254, 270, 234, 232, 245,
283. The distribution is very similar for each set of citing years.
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Table 2: Regression results

Variable 1975-94 1975-79 1980-84 1985-89 1990-94
Same inventor 0.20 | (24.48)" 0.44 | (21.65)" 471 | (26.47)" 1.02 | (6.68) 6.16 | (7.45)"
x 107 x 107 x 107
Same assignee 3.10 | (17.28)" 82.96 | (35.06) 1.05 | (0.10) 0.11 | (82.28)" 1.54 | (0.82)
Same examiner 532 (8.84)" 0.07 | (23.62)" 57.86 | (39.03)" 21.78 | (44.37)" 574 | (11.75)"
Same technology 2.28 | (138.67)" 6.02 | (50.59)" 4.95 | (41.62)" 9.67 | (71.74)" -6.07 | (40.07)"
x 107 x 107 x 107 x 107 x 107
Pendency lags
Medium 0.45 | (2.79)" 0.34 | (70.66)" 0.66 | (19.55)" 0.26 | (46.41)" 0.32 | (59.59)"
Long 6.99 (190.20)" 0.04 | (16.99)" 0.06 | (19.54)" 0.06 | (59.36)"
x 10
Very Long 1.41 | (497.04)" 0.01 | (11.03)" 6.30 | (65.36)
x 107 x 107
Constant
1975-1979 1.28 | (1.58)
1980-1984 3.38 | (2.13)
1985-1989 1.62 | (2.23)°
Distance 1.01 | (173.87)" 0.95 | (13.82)" 1.01 | (0.45) 1.05 | (25.75)" 1.05 | (7.78)"
Decay rate” 2.34 | (14.32)" 234 x | - 2.34 | - 234 x| - 234 x| -
x 107 10~ x 107 10~ 10~
Diffusion rate” 7.98 | (2.99)” 7.98 | --- 7.98 | --- 7.98 | --- 7.98 | ---
x 107 x 107 x 107 x 107 x 107
Adjusted R? 0.13 0.04 0.15 0.24 0.16
Observations 5908 2291 1671 1324 622

Notes: " Decay and diffusion rates are estimated for the first column and calibrated for the last four columns. They report a

standard t-test of f=0, unlike other coefficients which report a test of a, 6=1. ** indicates 99% confidence, * 95% confidence.
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