
Electronic copy available at: http://ssrn.com/abstract=2019734

WORKING PAPER 
 
 
 
 

Can You Hear Me Now? 
The Importance of Location for Knowledge Transfer in the 

Telecommunications Sector 
 

by 
Daniel K.N Johnson, Jeffrey Moore & Kristina M. Lybecker  

 
 
 
 

Colorado College Working Paper 2012-01 
March, 2012 

 
 
 

 
 

Department of Economics and Business 
Colorado College 

Colorado Springs, Colorado  80903-3298 
www.coloradocollege.edu/dept/EC 

 



Electronic copy available at: http://ssrn.com/abstract=2019734

Can You Hear Me Now?   
The Importance of Location for Knowledge Transfer in the Telecommunications Sector 

 
Daniel K.N Johnson, Jeffrey Moore, and Kristina M. Lybecker 

Colorado College 
Department of Economics & Business 

14 East Cache La Poudre, Colorado Springs, 80903 
djohnson@ColoradoCollege.edu, tel 719-389-6654 

 
Abstract 

This paper examines the evidence on the clustering of 
innovators within the telecommunications sector, using U.S. 
patent citation data to trace their locations over time.  While 
clustering is clearly evident, we use multivariate left-censored 
Tobit regression analysis to control for identifiable factors, 
showing that the distance between successive innovators has 
been rising over time, perhaps even exponentially. 

1. Introduction 
Firms within an industry often cluster geographically due 

to localization economies or Marshall-Arrow-Romer 
externalities that reduce the cost of inputs to firms in the local 
industry, [1][2].  For some industries, the degree to which 
knowledge diffuses rapidly or tacitly encourages firms to 
locate near other firms in the sector [3][4].  To our knowledge 
no analysis has tested this clustering effect within the 
telecommunications sector, nor compared its impact across 
time.  

Using all telecommunications patents granted in the U.S. 
between 1976 and 2002, we show that there is a marked 
tendency for innovators to cite patents from nearby areas as 
intellectual background.  We statistically test whether this 
pattern could naturally arise from a tendency to cite other 
patents listing the same inventor, the same firm assignee, or 
the same technology class.  We conclude that the geographic 
clustering of citations holds over and above the effects of 
these other factors, suggesting that there is a local nature to 
knowledge spillovers (at least insofar as patent citations 
reflect knowledge flows), but that this tendency is weakening 
over time.   

As Figure 1 shows, the average distance between a citing 
patent and its bibliographic references has grown by over 350 
miles (or twenty percent) between 1976 and 2002.  The 
statistical analysis which follows controls for other factors 
that have changed, but the fundamental pattern remains. 

Figure 1 

 
In section 2 of the paper, we briefly review the relevant 

literature on energy technology clustering and the geographic 
nature of knowledge spillovers.  Section 3 describes our data 

set, designed for compatibility with the literature, and Section 
4 presents multivariate regression analysis that controls for 
non-geographic effects in presenting the declining role of 
distance.  Section 5 concludes with implications for policy 
and further research. 

2. Literature Review 
Most technical and economics literature suggests that 

knowledge spillovers cluster geographically, with higher 
spillovers (more patent citations) occurring locally.  The 
underlying supposition is that inventors are more aware of (or 
find more use for) inventions located close to them, and 
therefore build more heavily on local inventions.   

Empirical evidence confirms the role of location  in the 
spillover of knowledge from one member of an innovation 
network to another [5], but some research points out that the 
importance may differ by technology [6] with location more 
important for technologies undergoing radical innovation.  
During technological revolutions, such as telecommunications 
experienced in the period under study, we expect some large 
geographic impacts on knowledge flows.  

Geographic proximity has already been used to explain the 
location of R&D-intensive activities [7] due to evidence of 
localized spillovers within an industry.  However, the location 
of firms is not always a good predictor of the location of 
innovation [8][9]. Localization of patent citations has been 
firmly established [10][11][12], with a random sample of 
patents clearly more likely to cite local patents than patents by 
parties that are located farther away, an effect prevalent in 
electronics, optics, and nuclear technology [13].  However, 
none of these studies examined how that importance changed 
over time. 

On the other hand, there are strong voices in the literature 
who argue that either distance has never mattered as much as 
was thought [14], or that the impact of communication 
technology on productivity or on knowledge transmission 
across distance will not be that great [15][16].  

3. Data 
Every patent application must include citations to other 

patents which were instrumental in the creation of this 
technology, or which delineate the legal limits of the patent 
application.  Inventors create this citation list to prove the 
novelty of the patentable product or process, and to provide a 
record of materials that were consulted during the invention 
process to protect patent rights in the future.  The result is a 
paper trail of knowledge creation. 

Of course, patents records do not reflect the innovation 
perfectly, as some inventions are never patented and patents 
vary greatly in importance.  However, within the U.S. on a 
state-by-state level, patents have a high correlation with other 



measures of innovative activity [8].  Citations themselves do 
not perfectly reflect the transfer of knowledge, as they may be 
inserted for a variety of reasons, and perhaps only half show 
true knowledge transfer [17].  However, if the noisiness of 
this statistical signal is constant over time, we can use it to 
compare time periods even with an implied degree of 
imprecision. 

We follow the World Intellectual Property Organization’s  
definition for telecommunications, and our dataset therefore 
includes all patents granted between 1976 and 2002 that 
qualify as telecommunications technology, appended with all 
patents cited by those patents, at least those that were 
themselves granted between 1976 and 2002.  Citing and cited 
patents from all non-U.S. inventors have been excluded, for 
reasons of feasibility.  However, there is evidence in the 
literature that international citations are increasing in 
frequency across a host of technologies [18], evidence which 
is at least sympathetic to the hypothesis here that citation 
distances have been increasing over time [19]. 

Unfortunately, patent citations may cluster for non-
geographic reasons, causing a pattern that appears geographic 
merely through correlation with other phenomena.  For 
example, inventors (or assignees, the firms which retain the 
patent rights) may be more familiar with their own patents, 
citing them more frequently than others, which would give a 
biased impression of the importance of geography.  Therefore 
we include self-citations in the analysis but identify and 
control for them separately.   

Using U.S. patent data from a combination of sources 
(NBER website as described in [20], in addition to raw data 
collected by the independent firm MicroPatent), each patent 
citation’s endpoints (citing patent and cited patent) were geo-
coded for the primary location of each listed U.S.-based 
innovator.  We identified locations at the geographic center of 
the city listed as specific addresses are available for less than 
ten percent of all patent documents.   

The result is a dataset of 336,242 citations from U.S.-
based telecommunications patent documents to other U.S.-
based patent documents.  Previous literature [19] indicates 
that each of the following factors may play some role in the 
distance of a citation, so this research measured each for every 
observed citation between citing patent K and cited patent k: 

• whether they have the same inventor (hereafter, SI); 
• whether they have the same assignee (SA); 
• whether they are in the same technology cluster (ST); 
• how similar the citing and cited states are in 

technology types (SC); 
• whether the cited patent is also classified as 

telecommunications (T); 
• whether the assignee is a government agency (G); 
• whether the assignee is an educational institution (U); 
• how old the citation is, in years between citing and 

cited patent (A), along with its squared term to 
account for the potentially nonlinear effects of age; 
and 

• year T of citing patent K, to account for citation 
inflation (Y). 

We traced all self-citations, allowing for some flexibility 
in name spellings (since the United States Patent and 
Trademark Office, or USPTO, does not standardize name 
format).  These include not only first inventors, but all 
inventors listed for each patent.  Self-citation by inventors 
accounted for slightly over three percent of all citations, 
suggesting that while some self-citation is present, there are 
very strong inter-inventor knowledge spillovers.  Self-citation 
by assignees was slightly more frequent at twelve percent, but 
both are much lower self-citation rates than have been 
documented in other sectors like biotechnology [19], 
suggesting that knowledge transfers between individuals or 
firms are more common in telecommunications.  Unlike 
academic citations, there is very little reason here to self-cite 
as a means of advertising, so we can be fairly sure that self-
citations are indicators of useful capital or legal protection.  
Self-citation was coded as a binary variable (SI) for each 
citation. 

It is also possible that patents closer in technological 
content may have citations that differ from more diverse cited 
patents.  The data are coded so that a binary variable, ST, 
indicates whether the International Patent Classification (IPC) 
system places both citing and cited patents in the same 
technology cluster at the 4-digit level.  This system, in global 
use since 1975, is the standard by which all patents are 
organized (and thus assigned to examiners for processing, or 
searched by inventors and lawyers to establish claims).  There 
are 634 clusters at the 4-digit level, so an indicator that the 
patents share a class is a powerful signal of technological 
similarity, and a strong indicator that they were both 
processed by patent examiners with very similar scientific 
training.  In our sample, just under half of all citations saw 
citing and cited patents sharing a technology class. 

The technological correlation between citing and cited 
states (SC), is included for a similar reason.  Each state’s 
technological profile was calculated as the share of patent 
activity assigned to each of the 634 IPC technology classes.  
Pair-wise correlations between state vectors then provide a 
measure of technological similarity between locations.  Again, 
controlling for technological similarity will defuse the power 
of the data to show an importance of geography that may be 
superficially the result of two regions sharing the same 
technological portfolio and hence attracting citation flows.  
Our sample shows an average correlation of 0.87 between 
cited and citing state technology profiles. 

The analysis also includes an indicator of whether the 
cited patent is classified as telecommunications (T).  
Obviously, all citing patents have been defined as such, and 
there should be a higher probability for them to cite other 
telecom patents than to cite a random other technology group.  
In fact, only one-third of patents cited by our 
telecommunications sample are themselves characterized as 
telecom. 

Because government (G) and university (U) patents may 
cite knowledge differently than do private sector patents, we 
include those indicators as controls as well.  Only slightly 
over one percent of our sample falls into each of these 
categories of assignee.   

Linear and squared age terms are included to 
accommodate nonlinear effects for older knowledge.  The 



average citation is just under 7 years from cited to citing 
document. 

Finally, since the goal of the analysis is to test whether 
distance changes over time, it is necessary to include indicator 
variables for each time period.   

4. Statistical analysis 
Our regression analysis follows the literature [19] in using 

a simple model [21] with the citation as the unit of analysis.  
The model recognizes that the distance between a cited patent 
k granted in year t and a subsequent citing patent K granted in 
year T, can be explained at least in part as a function of the 
attributes of patents k and K: 

 
εαδ += ),(, KkKk

   (1) 

where δk,K represents the distance between patents k and K, 
α(k,K) is a vector of  the non-geographic attributes of patents 
k and K that affect the probability of citation, and ε is a 
randomly distributed error term.  We propose a reduced 
functional form, using the log of distance (or technically the 
log of [distance plus one] in order to avoid taking the log of a 
zero distance) because the fit of the equation is better due to 
the loglinear nature of the data’s underlying relationship: 

Ki
i

i

YYUGEC

TSCSTSISAKk

D

YYUGEC

TSCSTSISA

εα

ααααα

ααααααδ

++

+++++

+++++=

∑
=

2002

1976

2
2

0,

 

where the distance δ of each observed citation is explained by 
the attributes of the citing and cited patents as defined above.  
Notice that we use a fixed effect specific to the citing patent 
(εK), since there are presumably immeasurable factors specific 
to the citing patent which might dictate a longer or shorter 
average citation distance. 

Table 1 presents multivariate regression Tobit estimates 
(left-censored for intra-city citations with a distance of 0 
miles), with White-corrected errors to accommodate the 
presence of heteroskedasticity in the sample, using fixed 
effects at the level of the citing patent where each individual 
citations is the unit of analysis.  For simplicity, we estimate 
using only a time trend (and nonlinear versions of it) as an 
explanatory variable.  The average distance unambiguously 
increases with time, with strong evidence of a non-linear 
pattern.  When considering only inter-city citations (or 
citations with distances greater than 100 kilometers), the 
evidence is still very strong that a nonlinear pattern exists, one 
with distance rising with time.   

To permit maximum flexibility to these nonlinearities, and 
potential nuances in particular years, Table 2 offers the same 
analysis, using separate year indicator variables.  Notice that 
while increasing, the annual indicator variables do not 
uniformly increase over time (e.g. 1982-83, 1986-87).    
Table 3 presents the primary results, confirmed by the 
ancillary results in Table 4 which use time-based indicator 
variables instead of a time trend.   Both sets of results differ 
only minimally from the results of a model which uses the 
citing patent as the unit of analysis (not presented here), 
where each citation is weighted appropriately according to the 
number of citations referenced by the citing patent in 
question. 

       Sensitivity tests find very similar results if we restrict our 
consideration to citations of more than 10 kilometers, of more 
than 50 kilometers, or of more than 100 kilometers.  Results 
for citations spanning more than 100 kilometers, that is, 
excluding short and intra-city citations, presented in Tables 3 
and 4, and tell a very similar story.  Alternatively, results 
omitting citations from the states with the most citations again 
show the same pattern, with all coefficients of a size and sign 
similar to those presented here. 

Moving to other elements of the regression results, we 
notice that patents involving electronic communication tend to 
have a greater distance that those involved in other subsectors.  
Unsurprisingly, citations with the same assignee or same 
inventor are more likely to be proximate than are other 
citations.  The effect is especially strong and significant for 
inventors, suggesting that at least within telecommunications, 
inventors are not likely to move locations between self-
citations.   Citations within the same specific technology class 
appear to reference citing and cited patents that are closer to 
each other than more dissimilar patents (the ST coefficient is 
negative), and states that have similar technology sets in their 
innovative portfolios tend to be close together, a fact captured 
by the negative coefficient on that variable (SC). 

On the other hand, citations that cite other telecom patents 
average a slightly longer distance than their peers.  Apparently 
distance matters less for the transfer of purely telecom-related 
knowledge than it matters for the transfer of non-telecom 
innovations into the telecommunications sector.  

Citations from government-assigned patents tend to travel 
longer transmission distances for the knowledge they cite, a 
result that is reversed and slightly more pronounced when we 
consider only long-distance (>100 km) citations.  Academic 
patents tend to be shorter than their peers from the business 
sector as well, however, this effect is only significantly 
observed among long-distance citations (>100 km).   

The age of the cited patent matters as well:  older citations 
travel longer distances, an effect which other studies [22] have 
confirmed for an array of technologies.  This effect is also 
reversed and not significantly observed among long-distance 
citations (>100km). 
5. Conclusions 

While we are hesitant to draw major conclusions about the 
nature of technological change in telecommunications from 
this work, several themes appear relatively obvious and robust 
to alternative interpretations of the data.  

First, citation distances appear to be lengthening over time, 
whether we model those distances simply as a function of 
time or as a more complicated function of the attributes of the 
underlying patents.  It appears that telecommunications 
innovations have potentially benefited from the telecom 
revolution that they themselves created. 

Second, other factors may contribute to the explanation of 
why one patent cites another.  Self-citation is not frequent, but 
apparently has a strong effect on the probability of a patent 
citation.  Similarly, technology types seem to self-cite in 
particular ways that often make their citations travel longer 
distances than their peers. 

Might we learn something important about innovation 
through the study of patent citations?  Insofar as they reveal 



the paths of knowledge transmission, then we can identify the 
patterns and key actors in a technology such as telecom.  As 
the industry de-clusters, just as other sectors are diffusing, we 
might expect the key innovators to become increasingly 
footloose.  This is a mixed blessing, as it means they might 
choose their locations for new reasons (e.g. quality of life, 
proximity to family) but it may also lead to bidding wars by 
communities trying to attract productive innovators. 

At this point, we can only point to the fact that telecom 
technology is diffusing more readily than it has in the past, 
allowing innovators in more widely flung locations to access 
and cite their predecessors more easily than ever before. 
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Table 1:  Tobit weighted regressions on log(distance+1), time trend only 

  
All citations Only citations with distance > 100 km 

Time trend Nonlinear time 
trend Time trend Nonlinear time 

trend 
  coeff. t-stat coeff. t-stat coeff. t-stat coeff. t-stat 

Trend 1.876 
 x 10-2 (26.28)*** 1.293 

 x 10-2 (3.27)** 8.59 
 x 10-3 (27.18)*** -1.31  

x 10-3 (0.77) 

Trend2 --- --- 1.634  
x 10-4 (1.53) --- --- 2.76  

x 10-4 (5.96) *** 

Constant 6.125 (391.54)*** 6.170 (176.03) *** 7.18 (1037.8) *** 7.254 (481.5) *** 

F-stat 
  

690.87*** 
  

355.36*** 
  

738.73*** 
  

396.9*** 

Obs 336242 336242 280346 280346 

Notes:  *** indicates 99% confidence, ** 95% confidence, * 90% confidence.  Implicit impacts are calculated at the sample 
mean for the group in question. 

Table 2:  Tobit weighted regressions on log(distance+1), separate year time dummies 

 
All citations Only citations with distance>100km 

Variable coeff. t-stat coeff. t-stat 
Citing year 77 0.079 (0.52) 0.020 (0.31) 
Citing year 78 0.001 (0.01) 0.032 (0.50) 
Citing year 79 -0.026 (0.17) 0.005 (0.08) 
Citing year 80 0.076 (0.53) 0.020 (0.33) 
Citing year 81 0.112 (0.80) 0.003 (0.05) 
Citing year 82 0.202 (1.46) -0.016 (0.26) 
Citing year 83 0.334 (2.44)** 0.028 (0.48) 
Citing year 84 0.256 (1.90)* 0.002 (0.04) 
Citing year 85 0.251 (1.87)* 0.020 (0.34) 
Citing year 86 0.337 (2.53)** 0.013 (0.22) 
Citing year 87 0.433 (3.28)*** 0.035 (0.62) 
Citing year 88 0.459 (3.47)*** 0.058 (1.02) 
Citing year 89 0.534 (4.06)*** 0.064 (1.12) 
Citing year 90 0.490 (3.72)*** 0.069 (1.21) 
Citing year 91 0.483 (3.67)*** 0.082 (1.44) 
Citing year 92 0.385 (2.93)*** 0.063 (1.11) 
Citing year 93 0.263 (2.01)** 0.068 (1.19) 
Citing year 94 0.371 (2.84)*** 0.092 (1.63) 
Citing year 95 0.357 (2.74)*** 0.078 (1.39) 
Citing year 96 0.445 (3.42)*** 0.113 (2.00)** 
Citing year 97 0.439 (3.37)*** 0.116 (2.06)** 
Citing year 98 0.565 (4.35)*** 0.122 (2.17)** 
Citing year 99 0.545 (4.2)*** 0.134 (2.38)** 
Citing year 00 0.574 (4.41)*** 0.163 (2.89)*** 
Citing year 01 0.549 (4.21)*** 0.162 (2.86)*** 
Citing year 02 0.635 (4.89)*** 0.181 (3.22)*** 

Constant 6.033 (46.63)*** 7.243 (129.33)*** 
F-stat 

 
38.99*** 

 
31.79*** 

Observations 
 

336242 
 

280346 

Notes:  *** indicates 99% confidence, ** 95% confidence, * 90% confidence.  Implicit impacts are calculated at the sample 
mean for the group in question. 



Table 3:  Tobit weighted regressions on log(distance+1), time tren

  

d 

All citations 
Only citations with 
distance>100km 

Variable Coeff. t-stat Coeff. t-stat 
Same assignee (SA) -1.831 (94.57)*** -0.191 (19.14)*** 
Same inventor (SI)  -2.858 (67.73)*** -0.409 (10.9)*** 
Same technology (T) -0.099 (8.51)*** -0.026 (3.92)*** 
Citing-cited state correlation (SC) -6.489 (150.48)*** -2.410 (118.34)*** 
Cited telecommunications (T) 0.044 (3.59)*** 0.020 (2.85)*** 
Electronic communication (EC) 0.062 (6.70)*** -0.021 (3.92)*** 
Assignee  = government (G) 0.058 (1.73)* -0.053 (2.53)** 
Assignee  = university (U) -0.031 (0.84) -0.058 (2.72)*** 
Citation age (Y) 0.014 (4.87)*** -3.1 x 10-3 (1.92)* 
Citation age2 (Y2) -2.1 x 10-5 (0.15) 1.5 x 10-4 (1.92)* 
Trend  -7.8 x 10-5 (0.02) 5.9 x 10-3 (2.63)*** 
Trend2 -2.5 x 10-5 (0.23) 2.0 x 10-5 (0.32) 
Constant 12.284 (262.32)*** 9.250 (366.46)*** 
F-stat   4763.2***   1277.9*** 
Observations   336242   280346 

Notes:  *** indicates 99% confidence, ** 95% confidence, * 90% confidence.  Implicit impacts are calculated at the sample 
mean for the group in question.



Table 4:  Tobit weighted regressions on log(distance+1), separate year time dummies 

       All citations Only citations with 
  distance>100 km 

Variable coeff. t-stat coeff. t-stat 
Same assignee (SA) -1.831 (94.58)*** -0.191 (19.17)*** 
Same inventor (SI) -2.856 (67.72)*** -0.409 (10.9)*** 
Same technology (ST) -0.099 (8.53)*** -0.026 (3.88)*** 
Citing-cited state correlation (SC) -6.488 (150.52)*** -2.412 (118.44)*** 
Cited telecommunication (T)  0.044 (3.62)*** 0.020 (2.79)*** 
Assignee = government (G) 0.060 (1.80)* -0.053 (2.53)** 
Electronic communication (EC) 0.062 (6.71)*** -0.021 (4.02)*** 
Assignee = university (U) -0.030 (0.83) -0.059 (2.75)*** 
Citing year 77 -0.005 (0.04) 0.034 (0.51) 
Citing year 78 -0.082 (0.77) 0.014 (0.21) 
Citing year 79 -0.094 (0.88) 0.007 (0.10) 
Citing year 80 -0.057 (0.55) 0.031 (0.48) 
Citing year 81 -0.031 (0.31) 0.006 (0.09) 
Citing year 82 0.021 (0.21) 0.041 (0.66) 
Citing year 83 -0.001 (0.01) 0.034 (0.55) 
Citing year 84 -0.059 (0.61) 0.010 (0.17) 
Citing year 85 -0.105 (1.10) 0.027 (0.46) 
Citing year 86 -0.057 (0.61) 0.029 (0.49) 
Citing year 87 0.011 (0.11) 0.046 (0.79) 
Citing year 88 -0.095 (1.01) 0.041 (0.71) 
Citing year 89 -0.019 (0.20) 0.073 (1.25) 
Citing year 90 -0.030 (0.32) 0.082 (1.40) 
Citing year 91 -0.019 (0.20) 0.087 (1.49) 
Citing year 92 -0.021 (0.22) 0.083 (1.42) 
Citing year 93 -0.106 (1.14) 0.111 (1.90)* 
Citing year 94 -0.038 (0.41) 0.109 (1.89)* 
Citing year 95 -0.040 (0.44) 0.113 (1.96)** 
Citing year 96 -0.056 (0.61) 0.132 (2.29)** 
Citing year 97 -0.101 (1.10) 0.126 (2.18)** 
Citing year 98 -0.032 (0.36) 0.133 (2.31)** 
Citing year 99 -0.033 (0.36) 0.139 (2.42)** 
Citing year 00 -0.083 (0.89) 0.128 (2.21)** 
Citing year 01 -0.080 (0.86) 0.146 (2.51)** 
Citing year 02 -0.051 (0.56) 0.151 (2.62)*** 
citation age (Y) 0.014 (4.86)*** -0.002 (1.49) 
square age of citation (Y2) -0.001 (0.16) 0.001 (1.52) 
Constant 12.320 (127.77)*** 9.266 (155.95)*** 
F-stat   1594.18***   427.87*** 
Observations   336242   280346 

Notes:  *** indicates 99% confidence, ** 95% confidence, * 90% confidence.  Implicit impacts are calculated at the sample 
mean for the group in question. 



 
 


