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ABSTRACT 

This paper examines the location of innovations within 
solar technology, using U.S. patent citation data to trace 
their diffusion over time.  Knowledge clustering is clearly 
present.  We employ multivariate left-censored Tobit 
regression analysis to control for identifiable factors, to 
examine whether the distance between successive innovators 
has changed over time.  We find the distance to be 
increasing slightly over time, both when considering all 
citations and only inter-city transfers.   

1. INTRODUCTION 
It is well recognized that localization benefits frequently 

lead firms within an industry often cluster geographically.  
This reduces the cost of inputs to firms in the local industry 
[1,2], due to the rapid speed of knowledge diffusion [3] or 
due to tacit learning advantages [4].  We are unaware of any 
study which has tested the importance of these clustering 
forces within solar technologies, nor traced its impact across 
time.  

Using all solar technology patents granted in the U.S. 
between 1976 and 2002, we statistically test whether there 
has been a trend to cite knowledge arriving from greater 
distances.  Moreover, we examine whether such a pattern 
could arise from (or be abated by) a tendency to cite other 
patents listing the same inventor, the same firm assignee, or 
the same technology class.  We conclude that the geographic 
distance between citations has increased slightly over time, 
though at a decreasing rate.    

As Figure 1 shows, the average distance between a citing 
patent and its bibliographic references has fluctuated 
drastically over time, with a very significant jump in the late 
1970s.  The multivariate regression which presented in the 
following section controls for other changing factors, but the 
same fundamental pattern remains. 

 
 

 
 

 
Fig 1. Average citation distance in kilometers 
 
In section 2 of the paper, we concisely review the current 

literature on technology clustering and the geographic nature 
of knowledge spillovers.  Section 3 presents our data set, 
designed for compatibility with the recent literature, and 
Section 4 presents multivariate regression analysis that 
controls for non-geographic effects in presenting the role of 
distance.  Section 5 then concludes, identifying implications 
for policy and further research. 

2. LITERATURE REVIEW 
Most technical and economics literature indicates that 

knowledge diffuses more readily across short distances. The 
underlying supposition is that inventors build more heavily 
on local inventions because they more aware of (or find 
more use for) inventions located close to them.   

Empirical evidence confirms the importance of location 
in the spillover of knowledge from one member of an 
innovation network to another [5], but some research points 
out that the role may differ by technology [6] with location 
more critical for technologies undergoing radical innovation.  
During technological revolutions, such as solar technology 
experienced in the period under study, we might reasonably 
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expect some large geographic impacts on knowledge 
diffusion.  

R&D-intensive activities have been effectively explained 
using geographic proximity [7], but firm location may not be 
a good indicator of the location of innovation [8,9]. It has 
been firmly established that patents are more likely to cite 
proximate patents than patents by parties that are located 
farther away [10-14], an effect which is very pronounced in 
electronics, optics, and nuclear technology [15].  However, 
existing studies do not examine how that importance has 
changed over time. 

However, there are studies suggesting that distance has 
never mattered much [16], or that there has been minimal 
change over time, even with revolutionary changes in 
information and telecommunication technology [17,18].  

3. DATA 
Every patent application must include citations to any 

other patents critical to its creation, or which limit its legal 
reach.  Inventors develop this citation list to prove the 
novelty of the patentable product or process, and the result is 
a traceable record of knowledge creation.  Of course, patent 
records do not measure innovation perfectly, as some 
inventions remain unpatented and patents differ greatly in 
importance.  However, patents are highly correlated with the 
location of other measures of innovative activity [8].  While 
citations do not perfectly reflect the transfer of knowledge, 
as they may be included for a variety of reasons, evidence 
indicates that half trace true knowledge transfer [18], and if 
the noisiness of this signal is constant over the years, we can 
use it to compare across time even with an implied degree of 
imprecision. 

We follow the World Intellectual Property 
Organization’s definition for solar technology [19], and our 
dataset therefore includes all patents granted between 1976 
and 2002 that qualify as solar technology, appended with all 
patents cited by those patents, at least those that were 
themselves granted between 1976 and 2002.  Due to 
feasibility issues, citing and cited patents from all non-U.S. 
inventors have been excluded.  However, there is evidence 
in the literature that international citations are growing in 
frequency across a large set of technologies [20]. 

Patent citations may cluster for non-geographic reasons 
as well, generating a pattern that appears geographic. For 
example, inventors (or the assignees firms which retain 
patent rights) may have greater familiarity with their own 
patents, and therefore cite them frequently, a pattern which 
would give a biased impression of the importance of 
geography.  Given this, we include self-citations in the 
analysis but specifically identify and control for them 
separately.   

Using U.S. patent data from a variety of sources (NBER 
website as described in [21], in addition to raw data from the 
independent firm MicroPatent), each patent citation’s 
endpoints (citing patent and cited patent) were geo-coded for 

the primary location of each listed U.S.-based innovator.  
Given that specific street addresses are available for less 
than ten percent of all patent documents, we identified 
locations at the geographic center of the relevant city.   

The result is a dataset of 10,997 citations from U.S.-
based solar technology patent documents to other U.S.-based 
patent documents.  The existing literature [13,14] indicates 
that each of the following characteristics may play some role 
in the distance of a citation, so this study measured each for 
every observed citation between citing patent K and cited 
patent k: 

• whether they have the same inventor (hereafter, SI); 
• whether they have the same assignee (SA); 
• whether they are in the same technology (ST); 
• how similar the citing and cited states are in 

technology types (SC); 
• whether the cited patent is also classified as solar 

technology (S); 
• whether the assignee is a government agency (G); 
• whether the assignee is an educational institution 

(U); 
• how old the citation is, in years between citing and 

cited patent (A), along with its squared term (A2) to 
account for the potentially nonlinear effects of age;  

• and a time trend variable to proxy for the year of 
citation (T), along with its squared term (T2). 

First, we traced all self-citations, allowing for some 
flexibility in spellings of the names (since the USPTO, 
United States Patent and Trademark Office, does not 
standardize name format).  These include both the first 
inventors, as well as all inventors listed for each patent.  
Self-citation by inventors accounted for between one and ten 
percent of all citations, depending on the subsector (with 
alternative energy technologies accounting for the most self-
citations, and most technologies within the range of three to 
five percent).  This suggests that while some self-citation is 
present, very strong inter-inventor knowledge spillovers are 
also present.  On the other hand, self-citation by assignees 
was very frequent, at about twenty-five percent of all 
citations in the dataset, a greater percentage than found in 
other sectors like biotechnology [13] and traditional energy 
[14], suggesting that knowledge transfers between 
individuals or firms are less frequent in solar technology.  
Unlike academic citations, there is very little reason here to 
self-cite as a means of advertising, so we can be fairly sure 
that self-citations are genuine indicators of useful knowledge 
or legal protection.  Self-citation was coded as a binary 
variable (SI) for each citation within the dataset. 

Regardless of location, it is also possible that patents 
closer in technological content may cite each other more 
frequently.  The data are coded so that a binary variable, ST, 
indicates whether the International Patent Classification 
(IPC) system identifies both citing and cited patents in the 
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same technology class at the 4-digit level.  In global use 
since 1975, this system [19] is the standard by which all 
patents are categorized (and thus assigned to examiners for 
processing, or searched by inventors and lawyers to establish 
claims).  There are 634 clusters at the 4-digit level, so 
identification that the patents share a class is a significant 
signal of technological similarity, and a powerful indicator 
that they were both processed by patent examiners with very 
similar scientific training.  Within this dataset, 
approximately twenty percent of all citations saw citing and 
cited patents sharing a technology class. 

The technological correlation between citing and cited 
states (SC), is also utilized for a similar reason.  Each state’s 
technological profile was calculated as the share of patent 
activity within each of the 634 IPC technology classes.  Pair-
wise correlations between state vectors then establish the 
extent of technological similarity between locations. 
Controlling for technological similarity across locations will 
reduce the likelihood of the data to showing an importance 
of geography that may superficially be the result of two 
regions sharing the same technological portfolio and hence 
attracting citation flows.  Our calculations reveal an average 
correlation of 0.87 between cited and citing state technology 
profiles. 

The analysis also includes an indicator of whether the 
cited patent is classified as solar technology (S).  Obviously, 
all citing patents have been defined as such, and there should 
be a higher probability for them to cite other solar 
technology patents than to cite a random other technology 
group.   

Because government (G) and university (U) patents may 
employ distinct conventions for knowledge citations, than do 
private sector patents, we include those indicators as controls 
as well, but only four percent fall in the government 
category and six percent under university for all patents in 
the dataset.  

In order to capture the potential nonlinear effects for 
older knowledge, linear and squared age terms are included.  
The average citation is just roughly eight years from cited to 
citing document. 

Finally, it is necessary to include a time trend (and its 
square, to permit nonlinearities) or to include indicator 
variables for each time period since the goal of the analysis 
is to test whether distance changes over time.   

4. STATISTICAL ANALYSIS 
Our regression analysis follows the literature [13,14] in 

using multivariate left-censored Tobit regression analysis 
[22] with the citation as the unit of analysis.  The distance 
between a cited patent k granted in year t and a subsequent 
citing patent K granted in year T, is modeled as a function of 
the attributes of patents k and K: 

 εαδ += ),(, KkKk
   (1) 

where δk,K represents the distance between patents k and K, 
α(k,K) is a vector of  the non-geographic characteristics of 
patents k and K that may impact the probability of citation, 
and ε is a randomly distributed error term.  Because the fit 
of the equation is better due to the loglinear nature of the 
data’s underlying relationship, we propose a reduced 
functional form, using the log of distance (or technically the 
log of [distance plus one] in order to avoid taking the log of 
a zero distance) because the fit of the equation is better due 
to the loglinear nature of the data’s underlying relationship: 
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where the distance δ of each observed citation is explained 
by the attributes of the citing and cited patents as described 
above.  Importantly, we use a fixed effect specific to the 
citing patent (εK), since there are presumably immeasurable 
characteristics specific to the citing patent which might 
dictate a longer or shorter average citation distance. 

Table 1 presents the estimates of the  multivariate 
regression Tobit (left-censored for intra-city citations with a 
distance of 0 miles), with White-corrected errors to 
accommodate the presence of heteroskedasticity in the 
sample, using fixed effects at the level of the citing patent 
where each individual citations is the unit of analysis.  For 
simplicity, we estimate using only a time trend (and its 
square) to measure the change due to the passage of time, 
after controlling for other factors.  Here the trend coefficient 
is insignificant, indicating a lack of evidence that average 
distance either increases or decreases with time, ceteris 
paribus.  These results are confirmed when considering only 
inter-city citations (or citations with distances greater than 
100 kilometers). 

An examination of the coefficients in Table 1 reveals 
very few variables to be significant.  Only self citation (SI) 
and technological correlation between citing and cited states 
(SC) are significant both among all citations and only inter-
city citations.   

To permit maximum flexibility to these nonlinearities, 
and potential nuances in particular years, the same analysis 
was conducted using separate year indicator variables.  
These results are presented in Table 2.  Again, self citation 
(SI) and technological correlation between citing and cited 
states (SC) are significant.  However, in the case of inter-city 
transfers, many of the year dummies are now significant.   

Turning our attention to the significant elements of the 
regression results, we notice that patents in states that have 
similar technology sets in their innovative profiles tend to be 
close together, a fact captured by the negative coefficient on 
that variable. Unsurprisingly, citations with the same 
inventor are more likely to be proximate than are other 
citations.  This suggests that within solar technology, 
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inventors are not likely to move locations between self-
citations.  

Citations to the same assignee usually reference citing 
and cited patents that are closer to each other than patents 
with distinct assignees.  Indicating that solar firms may have 
well-developed knowledge transfer between branches or 
between the main office and their local innovators. 

The age of the cited patent matters when examining the 
full set of citations.  Older citations travel longer distances, 
presumably because it takes time for knowledge to travel, an 
effect confirmed by other studies [13, 14, 23] for an array of 
technologies.  Interestingly, this effect is not significant 
among long-distance citations (>100km). 

5. CONCLUSIONS 
While the limited scope of this study prevents major 

conclusions about the nature of technological change in solar 
technology from this work, several themes appear relatively 
obvious and robust to alternative interpretations of the data.  

First, in stark contrast to numerous other sectors, citation 
distances appear to be just barely increasing over time, 
whether we model those distances simply as a function of 
time or as a more complicated function of the attributes of 
the underlying patents.  Thus, with the exception of the late 
1970s,  it appears that knowledge flows between solar-
innovators have been relatively unaffected by recent changes 
in information and communications technology.   

Second, other factors may contribute to the explanation 
of why one patent cites another.  Self-citation is not 
frequent, but apparently has a strong effect on patent 
citations.  Similarly, technological similarities across states 
appear to correlate with more proximate citations.   

Are there larger lessons here to be gleaned from the study 
of patent citations?  Insofar as they describe the paths of 
knowledge diffusion, then we can identify the patterns and 
key actors in a technology such as solar technology.  Despite 
the diffusion seen in other sectors, solar technology remains 
as localized as ever.  It is disappointing that information 
does not appear to be more widely utilized (in a geographic 
sense) over time, though this may indicate that there is some 
level of industry stability as firms remain clustered together 
over the years.   

At this point, we can only point to the fact that the 
transmission of solar technology innovation, unlike other 
well-documented cases, presents no distinguishable change 
in its historical pattern.  For better or worse, recent changes 
in telecommunications do not appear to have impacted the 
ability or willingness of solar-innovators to draw inspiration 
from more distant locations.   
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TABLE 1:  TOBIT WEIGHTED REGRESSIONS ON LOG(DISTANCE+1), TIME TREND 
 

  
All citations Only citations with 

distance>100km 

Variable Coefficient t-statistic Coefficient t-statistic 
SA -1.24103 -12.59 -0.0811782 -1.68 
SI -3.01409 -14.05 -0.2966353 -2.06 
ST -0.0052 -0.08 0.0074822 0.21 
SC -8.8597 -27.56 -2.2797010 -15.64 
S 0.055855 0.66 0.0094207 0.22 
G 0.035903 0.3 -0.0539090 -0.79 
U 0.089249 0.86 0.0060484 0.09 
A 0.064333 2.99 0.0006483 0.06 
A2 -0.00124 -1.29 -0.0001945 -0.39 
T 0.030619 1.14 0.0122291 0.82 
T2 -0.00145 -1.82 -0.0002069 -0.47 
Constant 13.85614 42.65 9.0990030 52.68 
F-stat 156.63 24.37 
Observations 7275 5476 
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TABLE 2:  TOBIT WEIGHTED REGRESSIONS ON LOG(DISTANCE+1) 
 

  All citations Only citations with  
distance>100 km 

Variable coefficient t-statistic coefficient t-statistic 
SA -1.253097 -12.8 -0.0919297 -1.92 
SI -2.978057 -13.81 -0.2975982 -2.05 
ST -0.0172369 -0.26 -0.0050387 -0.14 
SC -8.835647 -27.34 -2.250812 -15.36 
S  0.0694775 0.82 0.000962 0.02 
G 0.039804 0.33 -0.0188992 -0.27 
U 0.0982451 0.97 0.0029136 0.04 
citingyear77 -0.5085765 -0.59 0.1206566 0.21 
citingyear78 0.3011388 0.39 0.9745374 2.03 
citingyear79 0.6557474 0.91 0.8633348 1.84 
citingyear80 0.3302404 0.46 0.9249412 1.97 
citingyear81 0.3992135 0.56 0.7928389 1.71 
citingyear82 0.3635106 0.51 0.6742532 1.44 
citingyear83 0.3614746 0.5 0.6774156 1.44 
citingyear84 0.2749228 0.38 0.7014251 1.49 
citingyear85 0.3025387 0.42 0.4360577 0.93 
citingyear86 0.5767055 0.82 0.8555372 1.86 
citingyear87 0.1234487 0.17 0.5657875 1.22 
citingyear88 0.3676643 0.51 0.8383999 1.78 
citingyear89 0.4892412 0.7 0.8890818 1.92 
citingyear90 0.3762426 0.53 0.6613748 1.43 
citingyear91 0.2917013 0.41 0.8578649 1.83 
citingyear92 0.5106411 0.71 0.9636189 2.09 
citingyear93 0.0623288 0.09 0.6477427 1.4 
citingyear94 0.3847774 0.55 0.7671445 1.64 
citingyear95 0.1955091 0.28 0.9379707 2.03 
citingyear96 0.1590613 0.23 0.874433 1.9 
citingyear97 0.2662705 0.38 0.9289408 2.01 
citingyear98 -0.0485908 -0.07 0.9533797 2.06 
citingyear99 0.312702 0.45 0.8634637 1.87 
citingyear00 0.2191028 0.31 0.7970408 1.72 
citingyear01 -0.0290474 -0.04 0.7280178 1.57 
citingyear02 0.0066041 0.01 0.8237827 1.79 
A 0.0623391 2.85 0.001768 0.15 
A2 -0.0011411 -1.17 -0.0002562 -0.51 
Constant 13.62037 18.61 8.410842 18.18 
F-stat 51.14 9.93 
Observations 7275 5476 

 
 


