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Abstract

The infield shift is a defensive strategy used in baseball to decrease opponents’ batting
success by moving fielders to positions where the batter is most likely to hit the ball. This
strategy has existed since the 1920s, but has increased in use in the last decade, aided by
the new Statcast technology installed in the Major League Baseball stadiums in 2015.
Although the simplest way for the batter to counteract the shift is to hit to where there are
fewer fielders, the majority of batters attempt to hit over the fielders. This suggests that
even if the shift successfully decreases batting average, it may consequently increase
slugging percentage, as more players are changing their behavior to hit to the outfield. No
peer-reviewed journal articles were found investigating the effect of the shift on batting
performance, indicating a need for research in this area. Ordinary least squares regression
was used to determine the effect of the shift on batting average in one model and the
effect on slugging percentage in another. The results demonstrated that a one standard
deviation increase in the percent of plate appearances facing a shift leads to a decrease of
approximately 0.009 or 25% of a standard deviation in batting average, but an increase of
approximately 0.008 or 10% of a standard deviation in slugging percentage. Therefore,
the effect of the infield shift on batting average is greater than the effect on slugging
percentage, suggesting that teams should continue to use the shift to decrease their
opponents’ success.

KEYWORDS: (Infield Shift, Batting Average, Slugging Percentage, Ordinary Least
Squares Regression)
JEL CODES: (L83, Z21)



ON MY HONOR, I HAVE NEITHER GIVEN NOR RECEIVED
UNAUTHORIZED AID ON THIS THESIS

o

[*4
Signature



ACKNOWLEDGMENTS

I would like to thank my thesis advisor, John Mann, who encouraged me to pursue my
passion for this research topic and has guided me throughout every step of this process,
including entertaining me with long conversations about baseball. I would also like to
extend a thank you to Kevin Rask, Ph.D. who has fielded all of my questions, ranging
from simple to complicated and has been an incredibly generous unofficial additional
advisor for this project. Finally, this work and all my studies would not be possible
without the encouragement and support of my family for which I am forever grateful.



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGMENTS

1 INTRODUCTION
2 LITERATURE REVIEW

3 THEORY
3.1 Total Number of Plate Apperances............cceevveeevuveeeiveeniiieeniieenieeesveeenne
3.2 Player AQC...iniiiiiieii ettt et et et enne
3.3 SPrint SPEd.....ooniiiiiiii e e
3.4 Bat Handedness. .........oouieiniiiiiiit e
3.5 Batting Order........ oottt

3.6 Pitching Variables............oooiiiiiiiiieeeee e
3.7 DivVISION/LEAZUE. .. .ouviniiiiit ittt

3.8 SPIE MOAEIS. . ...uniiiiiiiiiei s
4 DATA AND RESULTS
5 DISCUSSION
6 CONCLUSION
7 ADDITIONAL FIGURES

8 REFERENCES

11
12
13
14
15
16
17
18
18

19

31

34

38

41



Introduction

It’s a beautiful, sunny day in Minneapolis, Minnesota. A slight breeze wafts
through Target Field as right fielder, Max Kepler, steps up to the plate at the start of the
inning. The Houston Astros infielders take a quick look at their wrist strapped play-cards
and shortstop, Carlos Correa, moves across the infield to stand slightly to the right side
behind second base, leaving only third baseman, Alex Bregman, on the left side of the
infield. What is going on? Why would a team leave so much space to hit the ball on the
left side of the field? What some may not know is that Max Kepler almost always hits to
the right side of the infield when there are no runners on base (Figure 1). If Kepler hits a
ground ball to the right side of the infield, which he is statistically very likely to do in this
situation, he is almost guaranteed to hit into an out and the Astros will have successfully
defended against Kepler’s hitting power with what is referred to as the infield shift.

Figure 1: Max Kepler’s 2019 Spray Chart Against the Astros with No Runners on Base

Source: MLB Player Positioning vs Batter, 2020
The infield shift is a defensive strategy in baseball used to decrease base hits by
moving infielders to positions where the current batter is most likely to hit the ball. The
shift was first used in the 1920s, but did not make headlines until 1946 when it was

infamously used by Lou Boudreau of the Cleveland Indians to diminish the hitting



success of Hall of Famer Ted Williams (Levine & Bierig, 2017). Some complain that this
feature of defensive strategy has taken away from the athleticism of baseball and the
MLB commissioner, Rob Manfred, has even considered banning the shift (Sullivan,
2015). The infield shift as it is used today, was inspired by the recent era of home runs in
an attempt to stop the success of players pulling the ball (Sullivan, 2015). Use of the
infield shift has increased in the past two decades (Sheehan, 2015) and has been aided by
the installation of Statcast technology in all 30 Major League Ball Parks in 2015 (Levine
& Bierig, 2017). This new technology gives teams the opportunity to examine statistics
from every pitch of every at-bat in every single game, allowing them to know exactly
where to position themselves to have the highest probability of making an out. However,
like any defensive strategy, the infield shift may not be foolproof.

The seemingly simplest way to beat the infield shift is to hit a ground ball to the
side of the field that is less defended; however, most players attempt to hit over the shift
instead (Levine & Bierig, 2017). As stated by MLB player Josh Donaldson, who
averaged 37 homers and 100 RBIs from 2015 to 2017, “In the big leagues these things
they call groundballs are outs” (Levine & Bierig, 2017, p. 12). If batters are changing
their behavior when the shift is employed by hitting over the infield, it is possible that
while the shift may be taking away groundball singles, it may also be creating more extra
base hits to the outfield. Thus, while the purpose of the shift is to take away hits, the
spillover effects on other aspects of batting performance are critical in evaluating its
impact. This study aims to provide insight on the efficiency of the infield shift on both

batting average and slugging percentage (SLG) by asking the question: is the infield shift



successful at decreasing hits and if so, does it consequently create more opportunities for
extra base hits?
Literature Review

Thorough research uncovered some opinion pieces and online published research
discussing the effect of the infield shift on batting performance. Although there are no
peer-reviewed academic journals directly addressing the focus of this study, some
academic journal articles discuss the variability in batting performance due to other
variables.

One study comparing batting average prediction strategies used physical attributes
of a batters’ swing, including launch angle, exit velocity, and distance of a hit as
independent variables (Bailey et al., 2020). These variables were chosen based on a
hypothesis that they were the significant physical variables impacting players’ hitting
success and were found, using a logistic regression model, to be statistically significant in
predicting the probability of getting a hit (Bailey et al., 2020). However, the mean
absolute error which measured the discrepancy between predicted batting average and
actual batting average for this prediction method was determined to be 0.0208 batting
average points (Bailey et al., 2020). Thus, Bailey et al. suggest that this batting average
prediction could be improved by including other variables in the model such as age,
injuries, and player speed (2020).

Another study focusing on the variable of injuries determined a negative
relationship between concussions and batting performance (Wasserman et al., 2015). In
this study, 66 instances of leave due to concussions and 68 instances of bereavement or

paternity leave were compared within a retrospective cohort study design in order to



determine the effect of concussions on batting performance when players return after a
leave of absence. The study determined that within two weeks after their return, players’
batting averages, on-base percentages (OBP), slugging percentages (SLG), and on base
plus slugging percentages (OPS) were significantly lower from leaves of absence due to
concussion than leaves due to bereavement or paternity (Wasserman et al., 2015). This
significant difference was present even when controls were implemented for pre-leave
batting performance, player position, and number of days missed during leave
(Wasserman et al., 2015). The study concluded that further research was necessary to
determine exactly how concussions affect batting performance as a means to create better
return-to-play protocols within the MLB (Wasserman et al., 2015). Although this study
does not relate batting performance to defensive formation, it does suggest that there are
other variables that may affect batting performance other than the physical attributes of
each hit such as launch angle, exit velocity, or distance of a hit.

Batting performance and the variables that affect performance are important
because they impact wins. Winning games is important for a team because it increases
fan attendance and therefore increases profit and salaries alike. Both batting average and
SLG have been demonstrated to have a significant effect on the number of runs teams
score and their winning percentages. Changes in defensive positioning are built to disrupt
batting performance and success as a means to increase team wins.

Supporting research analyzed the winning success of Major League Baseball
teams in 2014 found that both earned run average (ERA) and on base plus slugging
percentage (OPS) were statistically significant variables in predicting number of wins for

an MLB team during the 2014 season (Peach et al., 2016). The ERA variable was



determined to have a negative correlation to the number of wins a team earned
throughout the season while the OPS variable was determined to have a positive
correlation (Peach et al., 2016). Although the OPS statistic is not exactly the same as the
SLG statistic, they are directly correlated as OPS includes the SLG statistic and therefore
the effect of the OPS variable is likely similar to a SLG variable. Subsequently, OPS also
includes on-base percentage (OBP), which is equal to the number of hits and the number
of walks a player has throughout the season divided by their total number of at bats. This
means that the OBP statistic is similar to the batting average statistic (number of hits
divided by total number of at bats) and may suggest that that a batting average variable
may also have a similar effect to the OPS variable. Peach et al. confirm these
comparisons by stating both OBP and SLG have been shown to significantly increase
team performance (2016).

Similar to the findings by Peach et al., a study examining salaries, performance
and owners’ goals in the MLB during the 1999 season determined that home run hitting
ability, batting average, ability to hit runs in, and the ability to draw walks were all player
skills that were statistically significant in increasing the number of wins for a team
(Yilmaz & Chatterjee, 2003). The study also examined the relationship between batting
performance and fan attendance, which was used as a proxy for financial success, as well
as the relationship between batting performance and player salaries (Yilmaz &
Chatterjee, 2003). The best model determined in the study for predicting Log salary for
players with salaries equal to or more than $ Imillion included home runs, walks, and
batting average as independent variables, which were able to explain 32.2% of the

variability in Log salary (Yilmaz & Chatterjee, 2003). The best model determined for



predicting number of wins included mean runs batted in and maximum number of walks
as independent variables, which were able to explain 57.1% of the variability in number
of wins (Yilmaz & Chatterjee, 2003). Finally, the best model for fan attendance included
maximum batting average, maximum home runs and maximum walks which explained
55.2% of the variability in fan attendance (Yilmaz & Chatterjee, 2003). Although this
study is more dated and possibly comes to different beta estimate conclusions than what
may be found with current data, it successfully demonstrates the relationship between
batting performance and team success as well as financial success for both the team and
individual players.

Another study investigating team revenues and MLB salaries found using a
hierarchical linear model that a player’s individual characteristics are significant
predictors of their salary (Brown & Jepsen, 2009). OBP and SLG were found to be
particularly important at predicting player salaries as both variables had positive beta
estimates and were statistically significant at better than the 99% level (Brown & Jepsen,
2009). The study also determined that teams do not pay differently for individual player
statistics as the Moneyball theory suggested (Brown & Jepsen, 2009), however, this may
be because franchises have adjusted their spending in reaction to Oakland’s success at
exploiting this differential payment in the early 2000s. Brown and Jepsen also found that
fielding average had a positive beta estimate in predicting player salary which other
studies have not examined (2009). The study also concluded that teams with higher total
revenues succeed more often than teams with lower payrolls due to their ability to

purchase more players with desirable characteristics (Brown & Jepsen, 2009). This



conclusion demonstrates that teams should be motivated to obtain higher revenues in
order to further increase their winning success.

This finding is supported by the results of a study which used a data envelopment
analysis technique to measure franchise payroll efficiency in both the NFL and the MLLB
(Einolf, 2004). From analyzing data in the NFL from 1981 to 2000 and the MLB from
1985 to 2001, Einolf determined that due to the lack of a salary cap and less revenue
sharing, the MLB has less payroll efficiency than the NFL (2004). The study found that
big spending and inefficient MLB teams often come from large media market, while
small spending and efficient MLB teams come from small markets (Einolf, 2004). This
was suggested to be the case because large market MLB teams receive greater revenue
from their decisions and tend to overspend for on field performance (Einolf, 2004). In his
study, Einolf claimed that the MLB economic structure creates a significant advantage
for large market teams and therefore encourages inefficiency (2004). The study concludes
with the statement that in the MLB as opposed to the NFL, winning is more important
than efficiency, otherwise teams would not spend as much as they do trying to ensure
success (Einolf, 2004).

However, in contrast to the conclusion that winning is optimal for teams, one
study performed at the University of Indianapolis found that too much success may
actually have a negative consequence for baseball teams (Zimmer, 2018). This study
demonstrated that as the number of previous World Series Championships increased for
Major League Baseball teams, fan attendance decreased (Zimmer, 2018). Zimmer
hypothesized that this correlation may occur due to increases in fan apathy from having a

very successful team (2018). In addition to this finding, however, the study determined



that within a given season, increases in a team’s winning percentage increased fan
attendance (Zimmer, 2018) which agrees with the findings within the other studies
reviewed.

An additional study, performed at the University of Alberta, determined using an
ordinary least squares regression model that fan attendance is not only impacted by
individual team success but is influenced by competitive balance within the league as
well (Soebbing, 2008). The study used an actual to idealized standard deviation ratio
(AISDR) in reference to team win percentage to measure competitive balance and found
that the variable had a negative beta estimate and was significant at the 99% level
(Soebbing, 2008). This finding supports the uncertainty of outcome hypothesis which
assumes fans gain more utility from watching games with unpredictable outcomes and
therefore more fans will attend games in which the teams playing are more evenly
matched (Soebbing, 2008). The games behind from a playoff appearance variable was
also found to be negative and significant at the 99% level, demonstrating that individual
team performance directly impacts fan attendance (Soebbing, 2008) which supports the
findings from the previous studies analyzed.

As seen from the analysis of previous research, winning and scoring runs is vital
for a team and therefore the infield shift may be a very important factor in baseball if it
influences batting performance and consequently winning for a team. However, when
looking at the impact of different batting performance statistics on winning, there has
been a continuous debate of which, if any, is the most significant. For example,
Moneyball by Michael Lewis claimed that player skills in the MLB were valued very

inefficiently in terms of salaries and this is what allowed Billy Beane of the Oakland



Athletics to have a successful season with a very minimal budget (Lewis, 2003). This
theory also claimed that the OBP statistic was actually more significant to winning games
than SLG (Lewis, 2003). In a later study that evaluated this theory, the OBP and SLG
were compared in terms of their effect on winning for a team and concluded that a one-
point change in a team’s OBP makes a more significant contribution to team winning
percentage than a one-point change in SLG (Hakes & Sauer, 2006). This study also
supported the Moneyball theory claim that OBP was an undervalued skill financially in
the MLB during the 2000-2004 period, however, state that the market seems to have
corrected this inefficiency after the findings of Lewis were published (Hakes & Sauer,
2006).

Although it was confirmed by Deli that the Moneyball theory was correct in
claiming that certain characteristics of players were undervalued financially during the
early 2000s, within his study assessing relative inputs in a production function, it is
argued that OBP may not be more significant than SLG as the Moneyball theory
suggested (2013). Deli’s study demonstrated that OBP and SLG come from different
distributions and do not have the exact same unit of measure (2013). Deli stated that
when comparing variables within regression, the relative variability of each variable must
be considered (2013). The study determined that there was much more variability in the
SLG variable and therefore increasing OBP by 1% was much more difficult than
increasing SLG by 1%, concluding that OBP is not necessarily more significant in
predicting the number of runs scored (Deli, 2013).

Unlike Deli’s findings however, Lee found within his study examining the Korean

baseball league that while SLG and OBP are both significant in increasing number of



runs scored at the 95% level, OBP was approximately 2-3 times more important than
SLG (2011). The study used a panel data analysis of a stochastic production frontier
model and the results demonstrated that a ten-percentage point rise in OBP increased the
number of runs scored by 41.7% while the same percentage rise in SLG only increased it
by 18.6% (Lee, 2011). Lee’s study also evaluated the effectiveness of small ball in the
Korean baseball league, an offensive strategy that is used to get runners on base and
move them into scoring position through methods such as stealing bases, bunting, using
pinch hitters, hit-and-run-plays, and other related plays which often include sacrificing an
out in order to advance runners (2011). The results of the small ball variables, which
included stolen base attempts, sacrifice hits, and number of players used in a game, were
mixed with stealing attempts found to be beneficial to scoring runs while sacrifice hits
and number of players used were detrimental (Lee, 2011). However, based on the
magnitude of all the variables, the overall effect was negative on runs scored, which
demonstrates that letting batters hit may be more efficient than using small ball
techniques (Lee, 2011).

A more recent study using a Markov decision process model determined in
contrast to Lee that sacrifice bunts were more beneficial than previously thought (Hirotsu
& Bickel, 2019). Hirotsu and Bickel claim that this study examined situations that had
not been studied before which could explain why their conclusion was different than
other studies (2019). Additionally the study investigated the effect of sacrifice bunts on
the probability of winning a game as opposed to number of runs scored which followed
the reasoning that the objective of a game is to win and not just score runs and therefore

using the probability of winning as the dependent variable is a better measure to
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determine the success of the sacrifice bunt (Hirotsu & Bickel, 2019). The study
concluded that sacrifice bunts are found to have a positive impact on the probability of
winning a game in specific situations such as when a team has a large lead or during an
early inning of a game (Hirotsu & Bickel, 2019). Cumulatively, these studies show that
there is not a definite variable that is has been shown to be the most important in
affecting wins.

The studies reviewed demonstrate that there are many variables that affect batting
performance including factors such as physical attributes of a swing and player injuries. It
is possible that the infield shift could also be a variable that significantly impacts batting.
Batting performance is important because it positively impacts runs scored and winning
percentage for a team which in turn positively impacts fan attendance and revenue.
Although it is clear that batting performance affects winning, there is not one definite

variable that has been demonstrated to be the most important in predicting wins.

Theory

This study will use an ordinary least squares regression model to determine the
effect of the infield shift on the variability in both batting average and SLG. As opposed
to focusing on the physical aspects of a swing in looking at the variability in batting
performance, this study focuses on the physical attributes of players as well as the
situational aspects of plate appearances. These variables include: total number of plate
appearances, player age, total number of pitches faced, types of pitches faced, average
speed of pitches faced, percent of pitches in the strike zone, player sprint speed, player

bat handedness, players’ most common position in the batting order, division, league, and
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percentage of plate appearances when an infield shift is in play. This leads us to the
equation:
y = By1PlateAppearances + [,PlayerAge
+ B3BreakingBalls + [,FastBalls
+ BsTotalPitches + BgAveragePitchSpeed
+ f,InZonePercent + [gSprintSpeed
+ BoBattingFirst + ;,BattingSecond Equation 1
+ B11BattingThird + p,BattingFourth
+ fBi3BattingFifth + f4BattingSixth
+ fisBattingSeventh + fi¢BattingEighth
+ Bi7;American + BigEast + f19Central
+ B,oBatSide + [, PercentageShifts

One model implements batting average as the dependent variable in this equation
and the other uses SLG. The number of off-speed pitches, batting ninth, and west division
variables are all omitted from the model due to redundancy. Although not every variable
used in the model has evidence supporting a direct effect on batting average or SLG, each
has evidence supporting its effect on winning percentage or runs scored, which existing
research suggests is in some ways correlated with batting performance.

Total number of plate appearances. It is expected that as players face more plate
appearances, they will perform better as they get more experience, though at a certain
point it is possible that too many plate appearances may cause physical fatigue for a
batter. A study performed by Demiralp et al. found that within a fixed effects regression

model, the number of games played has a negative impact on a player’s OPS statistic
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(2012). It was hypothesized that this result is likely due to the physical fatigue a player
faces when playing higher numbers of games (Demiralp et al., 2012). Additionally, the
number of games played squared variable also had a negative impact on OPS,
demonstrating that this negative effect increases with more games played (Demiralp et
al., 2012). Unlike this result, however, the number of games played was found to
positively impact batting average (Demiralp et al., 2012). This result may be due to the
experience that players gain throughout the season as they play more games. While the
number of games played is not exactly proportional to the number of plate appearances a
player faces, as players play more games they will have higher number of plate
appearances and therefore it can be assumed that the effect of the number of plate
appearances will likely be very similar to number of games played on batting
performance.

Player age. As players age, it would be expected that they are able to gain skill
and knowledge from their experience in the MLB, however, after a period of time it
would also be expected that their physical abilities decrease. A study examining this
experience-productivity relationship in the MLB found that age does significantly impact
batting average (Krohn, 1983). This study used a linear regression model with batting
average as the dependent variable and age and age squared as the independent variables
(Krohn, 1983). The results demonstrated that gaining experience helps increase players’
batting averages, but at a certain point, age causes players’ physical abilities, and
therefore their batting averages, to decline (Krohn, 1983). The study determined that the
peak of a player’s batting average is 28 years old with a standard error of about 2 years

(Krohn, 1983). Demiralp et al. found similar results using a fixed effects regression
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model examining the effect of age on OPS and batting average as well as other variables
such as stealing bases (2012). Their regression results demonstrated that age has a
positive impact on OPS, batting average, and stealing bases (Demiralp et al., 2012).
However, the results also found that the age squared variable had a negative impact on
OPS, batting average, and stealing bases, illustrating that the productivity of a player as
they age increases at a decreasing rate (Demiralp et al., 2012). These results support the
hypothesis that as players age they gain experience and skill, however, their physical
abilities eventually decline. From their results, Demiralp et al. claimed that batting
performance peaks at the age of 30, which is similar to Krohn’s results (1983), while base
stealing peaks at the age of 27 (2012). Hakes and Turner also demonstrated a relationship
between batting productivity and age, with all players increasing in productivity as they
age, but at a decreasing rate (2011). In addition, Hakes and Turner used quintile analysis
to determine that the most skilled players peak in performance about two years later than
lower skilled players (2011). This literature demonstrates that within this regression, age
will likely have a significant effect on both batting average and SLG.

Sprint speed. In this study, sprint speed refers to the feet per second a player can
run in their fastest one-second window. While a player’s running speed may not directly
affect how often or how well they hit the ball, it may help to increase how many times
they can get on base by outrunning the throw to first base, thus increasing their batting
average. It may also increase the number of bases they can gain on a hit, thereby
increasing their SLG. Bailey et al. support this idea in their study, which focused on the
prediction of batting averages, by suggesting in their study conclusions that running

speed is a variable that could improve batting average predictions (2020). Additionally,
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Demmink demonstrated through a linear regression model that stolen base attempts
positively impact number of wins at a significance level above 99% (2010). Similarly,
Lee determined that stolen base attempts were also beneficial to scoring runs in the
Korean baseball league (2011).

Bat handedness. In this study, bat handedness is represented by a dummy
variable in which a value of zero represents a right-handed batter and a value of one
represents a left-handed batter. Although players are talented regardless of their
handedness and there are many very successful left-handed and right-handed batters, bat
handedness may have an effect on batting averages and SLG due to the opposite hand
advantage that occurs when a batter is facing a pitcher with opposing handedness. A
study investigating the opposite hand advantage determined that there is an advantage for
opposite handed batters for OPS, SLG, strikeouts, and walks (Chu et al., 2016). However,
Chu et al. claimed that the skill cut-off point for left-handed batters is likely lower than
right-handed batters because right-handed batters consistently perform better than left-
handed batters in every statistic except walks when facing a same handed pitcher (2016).
By using a fixed effects regression model, Chu et al. found that opposite hand advantage
explains about 15% of the variability in OPS on average for left-handed hitters, but only
7% for right-handed (2016). This result leads to the conclusion that there should be more
left-handed batters in the MLB because it would increase the frequency of opposite
handed batting and therefore increase batter advantage and performance (Chu et al.,
2016). Although this study is unable to explain why left-handed batters have a more
significant opposite hand advantage, it does demonstrate that bat handedness does effect

batting performance.
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Batting order. In this study, the batting order dummy variable represents the
position in the batting order at which a player has the most plate appearances in a single
season. The batting order in the MLB is usually designed so that a team has the best
chance to get runners on base by placing their best hitters early in the lineup. This means
that players are often put into the batting order based upon their existing batting statistics.
However, a specific position in the batting order may impact how well a batter will hit
due to the specific situations they are faced with along with the performance of the
players who bat after them. While many studies assume that a player’s batting
performance is independent of other players, Bradbury and Drinen demonstrated that the
quality of the on-deck batter negatively impacts the preceding batter (2008). This effect
was found to be very small with a change in one standard deviation from the mean on-
deck batter OPS only changing the batter’s batting average by about 0.0028 which is
around 1% of the mean batting average, however, the effect is still significant (Bradbury
& Drinen, 2008). Bradbury and Drinen claimed that this effect likely occurs because
pitchers often change their behavior due to the player on-deck, meaning that the pitcher
will try harder to get a player out or force them to hit weakly when a good hitter is going
to hit next (2008). Another study looking at the effect of anxiety on batting performance
in softball in critical situations, found that anxiety has an effect on batting performance
especially in very critical versus non-critical situations (Krane et al., 1994). The study
found that as the criticality of a situation rose, so did anxiety which has been shown to
reduce strategic thinking and negatively impact performance (Krane et al., 1994).
Although this study looks at softball as opposed to baseball, due to the similarity of the

sports, it is likely that there is a similar effect of critical situation anxiety on batting
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performance in baseball. If baseball players are in a certain position in the batting order
that often faces highly critical situations, they may have increased anxiety and lower
batting performance.

Pitching variables. Various pitching variables are included in this model due to
the direct impact of pitching on batting performance. Bradbury and Drinen stated within
their study that a player’s batting performance is positively correlated with their own
ability and negatively correlated with the pitcher’s ability (2008). Rotating between
different pitch types and pitch speeds has been shown to affect players’ batting
performance. Fortenbaugh et al. emphasized within their study the importance of shifting
weight for a batter in ensuring correct timing and balance in their swing (2011). The
study examined this weight shift against fastballs and changeups through maximum
horizontal and vertical ground reaction forces of professional baseball players
(Fortenbaugh et al., 2011). The results demonstrated that hitters shift their weight
differently on different pitch types and pitch speeds and that changing pitch type and
speed was able to disrupt the coordination of this weight shift for batters (Fortenbaugh et
al., 2011). The in-zone percent variable is also included as it is more likely for a player to
swing at a ball in the zone and therefore more of these balls are expected to be put in
play. A study examining coordination of hitting movement found that trunk and arm
movements differed as pitch location changed (Katsumata et al., 2017). The study also
found that the time taken to hit the ball differed based on pitch location, with inside balls
taking the most time to hit (Katsumata et al., 2017). These results demonstrate that timing

adjustments are required to succeed at hitting the ball in different locations (Katsumata et
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al., 2017) and therefore pitch location and in-zone percent may impact batting
performance.

Division/League. In this study, division and league are represented by dummy
variables. Although there usually are very successful hitters on all teams, division and
league are included as variables in the model because they determine which teams are
played the most and subsequently which pitchers and fielders are faced the most within a
given season. It has been demonstrated that pitching ability impacts batting performance
(Bradbury & Drinen, 2008) and therefore players who are in a division or league with
better pitchers will likely have lower batting statistics. In addition, team ERA has been
shown to significantly explain the variability in winning for a team, meaning the teams
with the best (lowest) ERAs are also likely the most successful teams (Peach et al., 2016).
Along similar lines, there may also be better fielding players in some divisions compared
to others, which could impact the batting performance of opposing teams or certain team
matchups that lead to higher or lower batting success.

Split models. Finally, the data from each season from 2016 to 2019 will be split
into separate models. As the infield shift, in its current use, has been implemented
consistently in the league for the past decade, it is possible that batters have begun to
adapt to the defensive formation, which may mean each season will have unique effects
from the percentage shifts variable. This is supported by the study performed by Peach et
al., which demonstrated that predictions in one baseball season may be very different
from another season and therefore the data from one specific season cannot necessarily

be used to predict the next (2016).
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Data and Results

Data was collected from baseballsavant.mlb.com and fangraphs.com, two reliable
and up to date public data sources for the MLB. Controls were implemented within the
dataset to make the model more precise. Data was only collected for players who had
more than or equal to 100 plate appearances within a given season. This limitation was
used to control for temporary players, such as pinch hitters or pinch runners, pitchers,
who only hit in the National league, bench players or playoff callups, and players who
were injured most of the season. Switch hitters were also omitted from the dataset as
many of their statistics were shown cumulatively and were not split between their left-
handed and right-handed performance. In total, data for 398 players were collected for
the 2019 season, 390 for the 2018 season, 374 for the 2017 season, and 379 for the 2016
season. Descriptive statistics were collected for both models in each season to determine
the means and standard errors of the variables, with dummy variables omitted (Tables 1-
4).

Table 1. 2016 Season Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
batting_avg 379 .2537916 .08345302 .164 .348
SLG 379 .4140475 .075113 .197 .657
player_age 379 28.86807 3.93714 21 43
b_total_pa 379 394.3615 187.935 101 744
pitch_coun~d 379 173.8602 93.92341 23 452
pitch_coun~1 379 932.6491 447.0905 217 1914
pitch_coun~g 379 409.2823 205.6019 78 889
pitch_count 379 1534.536 737.8915 353 3014
sprint_speed 379 26.9942 1.460365 22.6 30.8
in_zone_pe~t 379 48.78839 3.e0588 40.4 56.8
PitchMPH 379 88.75119 .5678954 86.9 90.4
Percentage~t 379 13.06966 19.30703 (] 93.8
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Table 2. 2017 Season Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
batting_avg 374 .2549691 .8353194 .144 -346
SLG 374 .4255455 .8789761 .203 .69
player_age 374 28.72995 3.851021 21 44
b_total_pa 374 398.7995 178.1855 102 725
pitch_coun~d 374 173.3182 91.03576 23 436
pitch_coun~1 374 937.2647 415.676 213 1930
pitch_coun~g 374 427.2888 206.2663 69 le02
pitch_count 374 1557.04 697.0639 382 2989
sprint_speed 374 27.08342 1.436201 21.9 30.5
in_zone_pe~t 374 49.00615 2.64583 42.1 57.6
PitchMPH 374 88.65642 .4993819 86.8 90.2
Percentage~t 374 11.21898 18.58313 ] 93.8

Table 3. 2018 Season Descriptive Statistics

Variable 0bs Mean Std. Dev. Min Max
batting_avg 300 .2467769 .035955 117 .346
SLG 390 .4055385 .077248 .165 671
player_age 390 28.61026 3.717795 20 40
b_total_pa 390 381.0846 180.0348 101 740
pitch_coun~d 390 169.3538 91.58582 28 476
pitch_coun~1 399 887.1256 420.6109 209 1839
pitch_coun~g 390 418.7179 209.2016 84 945
pitch_count 390 1483.944 702.9834 361 2942
sprint_speed 390 27.07744 1.447595 22.2 30.2
in_zone_pe~t 399 49.03615 2.394435 41.5 56.2
PitchMPH 390 88.59795 .5048311 86.6 9e.2
Perce~eShift 390 16.34795 20.59619 ] 92.1

Table 4. 2019 Season Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
batting_avg 398 .2497965 .8375143 .124 .344
SLG 398 .4303065 .0862466 .144 .671
player_age 398 28.44724 3.684125 20 39
b_total_pa 398 381.1307 174.5384 10l 747
pitch_coun~d 398 179.6709 95.32439 31 498
pitch_coun~1 398 870.505 401.4517 215 1907
pitch_coun~g 398 436.0503 209.1301 92 1029
pitch_count 398 1499.088 688.0538 368 3223
sprint_speed 398 27.01206 1.454466 22.2 30.8
in_zone_pe~t 398 47.75427 2.40895 39.8 56.7
PitchMPH 398 88.64799 .4604056 87.3 89.9
Percentage~s 398 24.78141 23.90565 ] 95.9

Bar graphs compared various statistics across the four seasons that were
examined. These graphs were created to determine if the means for the two dependent
variables, batting average and SLG, differed significantly from year to year as well as the
means for the percent shift variable, as it is the variable at the basis of the research

question.
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Figure 2. Batting Average Means Across Seasons with Standard Deviation Error Bars

Batting Average Across Seasons

0.254 0.255 0.247 0.250
0.35
&
030
g
z 0.25
@ 0.20
=
015
[an]
c 0.10
3
s 0.05
0.00
2016 2017 2018 2019
Season

As demonstrated in the graph comparing batting average means across seasons,
the mean player averages do not appear to vary significantly from year to year (Figure 2).
The means are very similar and the standard deviation error bars overlap, likely reflecting
that the means are not statistically significant from each other. In addition, there does not
appear to be an increasing or decreasing pattern between the means from 2016 to 2019.

Figure 3. SLG Means Across Seasons with Standard Deviation Error Bars
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Similar to batting average, as demonstrated in the graph comparing the mean SLG
statistic across seasons, the mean player SLG does not appear to vary significantly from
year to year (Figure 3). Like batting average, the means are similar and the standard
deviation error bars also overlap. Similarly, there also does not appear to be an increasing
or decreasing pattern across the seasons.

Figure 4. Percentage Shifts Means Across Seasons with Standard Deviation Error Bars

Percentage Shifts Across Seasons

60 13.070 11.219 16.348 24.781
£ 50
& 40
-
5 30
2 20
(O]
e 10
% 0
] 1 1
= 10 L

-20

2016 2017 2018 2019
Season

Unlike the graphs comparing batting average and SLG means across seasons, the
means of the percentage shifts variable visually appear to vary across seasons (Figure 4).
However, the standard deviation error bars are very large and all overlap, indicating that
the means likely are not statistically significant from each other. Similar to batting
average and SLG, there also does not appear to be an increasing or decreasing pattern of
the means for the percentage shifts across seasons.

Ordinary least square regression (OLS) was performed for each model for the

2016 to 2019 seasons (Figures 5-12).
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Figure 5. OLS 2016 Season Regression Results with SLG as the Dependent Variable

Source SS df MS Number of obs = 379

F{21, 357) = 14.52

Model .982543547 21 .046787788 Prob > F = a.ea00

Residual 1.1501156 357 .003221612 R-sguared = 0.4607

Adj R-squared = 9.4290

Total 2.13265915 378 .885641955 Root MSE = .085676
SLG Coef. Std. Err. t P>|t]| [95% Conf. Intervall
player_age -.0006962 .8008989 -0.77 0.439 -.002464 .0010717
b_total_pa -.0000859 -0001138 -8.75 9.451 -.0003098 .000138
pitch_count_fastball -.0003526 .0881098 -3.21 8.001 -.0005685 -.0801367
pitch_count_breaking -.000133 -8001176 -1.13 08.259 -.0003643 .0000983
pitch_count .e0e3e7 -e000988 3.11 0.002 .0001128 .0ee5012
sprint_speed .0009889  .0024948 0.4  0.692 -.0039174 .0058952
in_zone_percent -.0024017 -8013563 -1.77 2.077 -.0050691 .0002656
PitchMPH .00649 .0083421 0.78 0.437 -.08099159 .8228958
battingl .8160187 -8139366 1.15 9.251 -.0113894 .0434268
batting2 .8251554  .0143741 1.75 9.081 -.0031132 .053424
batting3 .B51366 -8163711 3.14 8.002 .81917 .8835619
batting4d .0282994 .8149659 1.89 08.859 -.8811331 .8577319
batting5 .8234143 .8139807 1.67 9.095 -.0040805 .8509091
batting6 .023176  .0133688 1.73  0.084 -.0031156 .0494676
batting7 -.8007342  .0129033 -0.06 0.955 -.0261103 .0246418
batting8 -.8241832 .012884 -1.88 0.061 —-.08495213 .8011549
American -.0112666 .0073865 -1.53 08.128 -.0257931 .8832598
East -.8089528 -8072147 -1.24 8.215 -.0231415 .80852359
Central .0006227 -8078363 06.08 08.937 -.0147884 .8160338
bat -.8272224 .8092525 -2.94 0.003 -.0454186 -.00890261
PercentageShift .0002746 .000224 1.23  0.221 -.000166 .0007151
_cons -.1046895 -7443055 -0.14 @.888 -1.568464 1.359085

Figure 6. OLS 2016 Season Regression Results with Batting Average as the Dependent

Variable

Source SS df MS Number of obs = 379

F(21, 357) = 9.46

Model .161138851 21 .807673279 Prob > F = 0.eeo0

Residual -289563682 357 .@eesllle3 R-squared = 0.3575

Adj R-squared = 9.3197

Total -450702533 378 .001192335 Root MSE = .02848
batting_avg Coef, Std. Err, t P=|t] [95% Conf. Intervall
player_age -.0003731 .000451 -0.83 0.409 -.0012601 .0008514
b_total_pa .000245 .0000571 4.29 8.000 .0001326 .8003573
pitch_count_fastball —-.0000448 .00088551 -8.81 9.416 -.0001531 00008635
pitch_count_breaking -.0000498 800059 -8.84 0.399 -.8001659 .0000662
pitch_count -5.83e-06 .0000496 -8.12 8.906 -.0001033 .8000916
sprint_speed .0004886 .8012518 0.39 8.697 -.8019732 .8029504
in_zone_percent .0000731 .0006805 9.11 8.915 -.0812653 .0014115
PitchMPH 0048157  .0041858 1.15 9.251 -.0034162 0130476
battingl .0178084 .0069929 2.55 8.011 .0040559 .8315609
batting2 .0193346  .0072125 2.68 0.008 .08051503 .9335188
batting3 .0308039  .0882145 3.75 9.000 .8146491 0469587
batting4 .013454 .0075094 1.79 8.074 -.00813143 .8282222
batting5 .0094543 .0087015 1.35 9.179 -.0043417 9232503
batting6 .8111599 .0a6708 1.66 8.097 -.00820323 .8243521
batting7 .0832614 .0064744 0.5 98.615 =-.0094715 .0159942
batting8 -.0029414 .0064648 -8.45 0.649 -.0156552 .0097724
American -.0041646 .0037063 -1.12 9.262 -.0114535 .0031243
East -.0022702 .8036201 -8.63 98.531 -.0093896 .0048493
Central -.0011587 .0083932 -0.29 8.768 -.00888914 .0065741
bat 0004404  .0046426 0.09 9,924 -.0086899 .0095706
PercentageShift -.000356 .0081124 =3.17 8.002 -.000577 -.0001349
_cons -.2081475  .3734672 -8.56 0.578 -.9426198 .5263249
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Figure 7. OLS 2017 Season Regression Results with SLG as the Dependent Variable

Source SS df MS Number of obs = 374

F(21, 352) = 12.98

Model 1.01542152 21 .048353406 Prob = F = 0.0000

Residual 1.31106121 352 .803724606 R-squared = 0.4365

Adj R-squared = 0.4028

Total 2.32648273 373 .886237219 Root MSE = .86103
SLG Coef. Std. Err. t P>|t| [95% Conf. Intervall
player_age -.00822435 .8009762 -2.30 0.022 -.0041633 -.0803236
b_total_pa -.0000178  .0001305 -0.14 0.892 -.0002744 .0002388
pitch_count_fastball -.0000438 .80010871 -08.41 0.683 -.0002544 .0001668
pitch_count_breaking .0000424 -0001124 .38 8.706 -.0001787 .80802635
pitch_count . 0000485 .8000955 8.51 0.612 -.0001394 .0002363
sprint_speed -.0022601  ,0027227 -0.83 0.407 -.007615 .0030948
in_zone_percent -.004827 -8014781 -3.27 0.001 -.0077341 -.0019199
PitchMPH .0014197  .0094091 0.15 @.880 -.08170855 .0199249
battingl .0342448 .014835 2.31 0.022 .0050684 .0634212
batting2 .0452315 .8142481 3.17 8.002 .8172093 .8732537
batting3 .8551582 -8160869 3.43 e.001 .8235117 .0867887
batting4 .0594202  .0162625 3.65 @.000 .0274364 .091404
batting5 .08317407 -8149608 2.12 8.035 .0023168 .0611646
batting6 .0235141 .0146738 1.60 8.110 -.08053453 .8523735
batting7 .08052442 -8136989 8.38 0.702 -.8216977 .8321861
batting® -.0169015  .08137074 -1.23 e@.218 -.0438603 .0100572
American -.0222675 .8071064 -3.13 8.002 -.0362439 -.0082912
East =-.001561 .8078619 =-0.28 0.843 =-.8170232 .8139012
Central =-.8063361 -8079108 -8.80 0.424 =-.8218944 .8892223
bat -.0172518  .0098254 -1.76 9@.080 -.0365757 .0020721
PercentageShift .8006586  .08002351 2,80  0.005 .0001962 .801121
_cons .60408085 .8433543 8.72 0.474 -1.854566 2.262727

Figure 8. OLS 2017 Season Regression Results with Batting Average as the Dependent

Variable

Source SS df M5 Number of obs = 374

F(21, 352) = 11.49

Model .189192632 21 .009009173 Prob > F = 0.0000

Residual .276110277 352 .000784404 R-squared = 0.4066

Adj R-squared = 8.3712

Total .465302909 373 .001247461 Root MSE = .02801
batting_avg Coef. Std. Err. t P>t [95% Conf. Intervall
player_age -.0000963 .000448 -8.22 0.830 -.0009774 .0007847
b_total_pa .0003554 0000599 5.94 ©9.000 .0002377 0004732
pitch_count_fastball -.0000209 .0000491 -0.43 0.670 -.0001176 .0000757
pitch_count_breaking -.0000223 .0000516 -0.43 0.666 -.080081238 .08080792
pitch_count -.0000564 . 0000438 -1.29 9.199 -.0001425 .0000298
sprint_speed -.0001125  ,0012495 -06.09 0.928 -.0025699 .002345
in_zone_percent -.0000239 . 0006783 -0.04 0.972 -.001358 .eel3lez
PitchMPH .0065801 004318 1.52 @.128 -.0019122 .0150724
battingl .0191491 .006808 2.81 8.065 .0057597 .@325385
batting2 .0280336 .0065386 4.29 0.000 .8151738 .0408933
batting3 .08287987 .8073825 3.90 e.e00 .0142794 .843318
battingd .0229657 007463 3.08 @9.002 .008288 8376435
batting5 .813331 .B068657 1.94 0.853 -.080172 .0826834
batting6 .0064183 006734 0.95 9.341 -.0068257 .0196622
batting7 .8013669 .0062866 8.22 8.828 -.81089971 .8137309
batting8 -.0016813 .0062905 -0.27 0.789 —-.014053 .0106904
American -.0854802 .8032612 =1.68 0.094 -.0118941 .0009338
East .0039672  .0036079 1.1e 0.272 -.0031286 .011063
Central -00620399 .0036304 0.56 0.575 -.0051 .8891799
bat .0068141 .004509 1.51 9.132 -.8820539 .8156821
PercentageShift -.0004629 .0001079 -4,29 e.000 -.0006751 -.0002507
_cons -.3556102 .3870257 -0.92 0.359 -1.116784 .4855635
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Figure 9. OLS 2018 Season Regression Results with SLG as the Dependent Variable

Source 58 df Ms Number of obs = 390

F(21, 368) = 14.43

Model 1.0480989 21 .049909471 Prob > F = 0.0000

Residual 1.27316003 368 .003459674 R-squared = 98.4515

Adj R-squared = 0.4202

Total 2.32125892 389 .005967247 Root MSE = .085882
SLG Coef. Std. Err. t P>t [95% Conf. Intervall
player_age -.0028296 .8009615 -2.94 e.083 -.0047204 -.8009388
b_total_pa -.0001231 .0001281 -0.96 9.337 -.0003751 .0001288
pitch_count_fastball -.000229 .0001169 -1.96 8.051 -.000459 8.98e-07
pitch_count_breaking -.0001275 .0001137 -1.12 0.263 -.0003512 -0000961
pitch_count .00082356 .000lell 2.33 e.020 .0000368 .0e004345
sprint_speed -.0015396 0025075 -0.61 0.540 -.0064704 .0033913
in_zone_percent -.0046784 .0015349 -3.85 0.002 -.00876967 -.00166
PitchMPH .0128158 .0882934 1.55 0.123 -.0034925 .8291241
battingl .8537722 .0143036 3.76 e.e00 .08256452 .8818992
batting2 .0812748  ,0147252 5.52 ©9.000 .0523187 .1102308
batting3 .8779076 .0156367 4.98 0.000 .0471591 .108656
battingd .0834609 .08154366 5.41 0.000 .8531059 -1138159
batting5s .06106 .0142995 4.27 0.000 .832941 .8891791
batting6 .0416382  .0142697 2,92 0.004 .0135778 .0696987
batting? .0487479  .0135386 3.e1 @.003 .8141251 .86737086
batting8 .0089238 .91285 0.69 0.488 -.0163448 .8341924
American .08510829 006446 0.79 0.429 -.8075728 .8177785
East -.0072794 .0079381 -0.92 0.360 -.0228891 .e083304
Central .0000765 .0075257 0.01 0.992 -.0147223 -0148752
bat -.0195841 .0101973 -1.92 0.056 -.0396364 .0004682
PercentageShift .00008  .0002012 6.4 0.691 -.0003157 .8004756
_cons -.4671083 .7372522 -8.63 8.527 -1.916864 -9B26476

Figure 10. OLS 2018 Season Regression Results with Batting Average as the Dependent

Variable

Source 5SS df MS Number of obs = 390

F(21, 368) = 13.26

Model +216617688 21 .081e315128 Prob > F = 0.0000

Residual .286267904 368 .000777902 R-squared = @.43087

Adj R-squared = 0.3983

Total .502885592 389 .001292765 Root MSE = .02789
batting_avg Coef.  Std. Err. t P>|t] [95% Conf. Intervall
player_age =.0005917 .00084559 =1.30 0.195 -.0014882 .0003049
b_total_pa .0002483 .0000608 4.09 0.000 .0001288 .0003678
pitch_count_fastball -.0000621 .2080554 -1.12 0.263 -.0001711 .0000469
pitch_count_breaking ~.0000785 .0000539 =1.46 0.146 -.0001845 .0000276
pitch_count .0000125 .0000479 0.26 0.794 -.0000817 .0001068
sprint_speed -.0020428 .001189 -1.72 0.087 -.0043809 .08002953
in_zone_percent .0006109 .0007278 @.84 0.402 -.0008204 .0020421
PitchMPH .8859757 .09839326 1.52 0.129 -.0017574 .8137089
battingl .0294781 .0067825 4.35 0.000 .0161407 .0428154
batting2 .04344 .0069824 6.22 0.000 .0297096 .8571785
batting3 .0366256 .0074146 4.94 0.000 .0220453 2051206
batting4 .0394039  .0073198 5.38  0.000 .0250101 .0537977
batting5 .0297378 .0067806 4.39 0.e00 .0164043 .0430714
batting6 .023186 .0067665 3.43 0.001 .0098802 .0364917
batting? .0171064 .0064198 2.66 0.008 .0044823 .8297304
batting8 .8835837 .0060932 8.59 8.557 -.0083982 .8155656
American .0038667 .0030566 1.27 0.207 -.0021439 .0098772
East .0027921 .0037641 0.74 0.459 -.0046097 .010194
Central .0053298 .0035685 1.49 08.136 -.0016875 .0123471
bat .0034734 .0048354 8.72 0.473 -.006035 .0129819
PercentageShift -.0005781  .0000954 -6.06 0.000 -.0007657 -.0003905
_cons ~.2861724 .3495916 -0.82 0.414 ~.9736201 .4012754
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Figure 11. OLS 2019 Season Regression Results with SLG as the Dependent Variable

Source 5§ df MS Number of obs = 398

F(21, 376) = 12.78

Model 1.22984105 21 .05856386 Prob > F = 0.0000

Residual 1.72323155 376 .004583063 R-squared = 8.4165

Adj R-squared = 0.3839

Total 2.9530726 397 .00743847 Root MSE = .0677
SLG Coef. Std. Err. t P=|t| [95% Conf. Intervall
player_age -.0009581 .001071 -8.89 8.372 -.003064 .0011478
b_total_pa -0000342 .0001386 08.25 8.805 -.0002382 .0003067
pitch_count_fastball =-.0083158 .0001269 =-2.49 8.013 -.8805654 -.080008663
pitch_count_breaking -.0001246 0001127 -1.11 0.270 -.0003462 .0000971
pitch_count .0002489  .0001036 2.40 0.017 .0000452 .0004526
sprint_speed .0044856 .0028185 1.59 8.112 -.008108565 .0100276
in_zone_percent -.004565 .001771 -2.58 @.010 -.0080472 -,0010827
PitchMPH .B263815 .0110474 2.39 8.017 .8046589 .048104
battingl .0448949 .0163677 2.74 0.006 .8127112 .0770787
batting2 .0414377 .0169772 2.44 8.015 .88808556 .0748198
batting3 .0629118 .017727 3.55 0.000 .0280554 .0977682
battingd -0462451 .0171764 2.69 8.e07 .0124712 .0800189
batting5 .0495536 .0160398 3.09 0.002 .0180147 .0810925
battingb .8349377 .0162093 2.16 9.0832 .0838655 0668099
batting7 .0001919 .0150619 9.01 0.990 -.0294242 .029808
batting8 -.00279  ,0151902 -0.18 0.854 -.0326584 .0270784
American .0084217 .0076232 1.1@ 8.270 ~.0865677 .0234111
East .0020779  .0085422 0.24 0.808 -.0147185 .0188743
Central -.0081831  .0087655 -8.93 9.351 -.8254187 .0090524
bat -.08317665 .8112963 -2.81 8.005 -.8539783 -.0095548
PercentageShifts -6005481 .0002041 2.69 0.008 .0001468 .08089495
_cons -1.874724 .9945019 -1.89 0.060 -3.830207 .0BOT758

Figure 12. OLS 2019 Season Regression Results with Batting Average as the Dependent

Variable

Source SS df MS Number of obs = 398

F(21, 376) = 11.79

Model .221869774 21 .elese5227 Prob = F = 0.0000

Residual .336838741 376 .000895848 R-squared = 0.3971

Adj R-squared = 0.3634

Total .558788515 397 .001487326 Root MSE = .02993
batting_avg Coef. Std. Err. t P>|t| [95% Conf. Interval
player_age -.0004394 .0004735 -0.93 0.354 -.0013704 .8804917
b_total_pa .0002665 .00080613 4.35 0.eae .000146 .0003869
pitch_count_fastball -.0000871 .0880561 -1.55 0.121 -.0001974 .8000232
pitch_count_breaking -.0000566 .0000498 =1.14 0.257 -.00881546 .0000414
pitch_count .0000174 .0000458 0.38 0.704 -.0000726 .0e01075
sprint_speed .0010037 .0012461 0.81 0.421 -.0014465 .003454
in_zone_percent -.0003426 .000783 -0.44 0.662 -.0018821 .801197
PitchMPH .01082848 .0048843 2.11 0.836 .00086809 .8198887
battingl .820849 .8872365 2.88 0.e04 .80662 .8350781
batting2 .0186981 .0075059 2.49 0.813 .08839392 .833457
batting3 .0261599 .0078374 3.34 e.001 .0107492 .0415706
batting4 .0164891 .007594 2.17 0.031 .80815571 .8314212
batting5 .0194127 .0070915 2.74 0.0806 .0054688 .8333566
batting6 .e10e87 .0071664 1.52 0.1308 -.0832212 .98249613
batting? =.00812794 .0866592 -8.19 0.848 -.08143732 .98118145
batting8 -.0857371 .0067159 -0.85 0.394 -.8189425 .0074683
American .0021264 .0033703 .63 0.528 -.0045007 .0087535
East .0016262 .0037767 0.43 0.667 -.0857998 .8890522
Central -.0034243 .0038754 -0.88 0.377 -.0110445 .0041958
bat .0045253 .0049943 .91 8.365 -.885295 .08143455
PercentageShifts ~-.000462 .e000902 =5.12 0.eee8 -.0086394 -.0002846
_cons -.6892487 .4396882 -1.57 9.118 -1.553805 .1753073
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A RESET test (Ramsey, 1969) was performed for each model to test for omitted
variable bias and specification errors within the models (Figures A1-AS8). All the p-values
from each model in four seasons were above 0.10 meaning that we can fail to reject the
null hypothesis that there is no omitted variable bias within the models. A White test
(White, 1980) was performed on each model to test for heteroskedasticity within the
regression models (Figures A9-A16). Heteroskedasticity violates the classical
assumption of ordinary least squares regression that the variances of the error term are
constant. While it does not cause bias in the estimates, it may underestimate the standard
errors and possibly make the model seem better than it actually is. All the p-values from
each model in the four seasons were above 0.10 meaning that we can fail to reject the null
hypothesis that there is no heteroskedasticity in the models.

The results from the bar graphs which demonstrated that there did not appear
significant differences in the means for batting average, SLG, or percentage shifts across
seasons led to a question of whether the data for each season should be analyzed
separately or together. Two tests were performed to determine whether the data should be
kept in separate models divided by year or if they could be incorporated together. The
first test determined if the percentage shifts variable differed year to year by creating
interaction terms. Ordinary least squares regression was run on the pooled data including
year dummy variables and interaction variables between each year dummy and the
percentage shifts variable. The results found that the three interaction terms (the 2016
season was omitted due to redundancy) all had high p values in both the SLG and batting
average models, demonstrating that the percentage shifts variable did not vary

significantly from year to year (Figures 13 and 14).
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Figure 13. OLS Pooled Model Regression Results Including Interaction Terms with SLG

as the Dependent Variable

Source 55 df MS Number of obs = 1,541
F(27, 1513) = 41.84
Model 4.22353527 27 .156427232 Prob = F = @.0000
Residual 5.65678894 1,513 .80373879 R-squared = 0.4275
Adj R-squared = 9.4173
Total 9.88032421 1,540 .006415795 Root MSE = .86115
SLG Coef. std. Err. t P>|t| [95% Conf. Intervall
player_age -.0018172 .0004821 -3.77 0.000 -.0027628 -.00808715
b_total_pa -.0000469 .0000629 -8.75 0.456 -.0001702 .0000765
pitch_count_fastball -.0002331 .0000544 -4.29 @.000 -.00803398 -.0001265
pitch_count_breaking -.0000967 .0000539 -1.79 8.873 -.0002024 8.99e-06
pitch_count .6002117 .0000474 4.47 0.000 .0001188 .0003046
sprint_speed .6007134 .8e13014 @.55 @.584 -.00818393 .8032662
in_zone_percent -.0040449 .0007291 -5.55 0.000 -.0854751 -.0026147
PitchMPH .0120216 .0043398 2.77 0.006 .0835089 .0205343
battingl .08364598 .80873758 4.94 0.000 .0821992 .08509276
batting2 .0470162 .0874749 6.29 0.000 .032354 .0616785
batting3 .8610145 .8081302 7.50 @.000 .8450668 .8769622
batting4 .08547635 .0807895 6.94 0.000 .0392772 .0702497
batting5 .0426718  .0073421 5.81 0.000 .0282701 .08570735
batting6 .8310982 .0072614 4.28 0.000 .8168547 .8453418
batting? «0108678 -8068461 1.59 8.113 -.00825611 -8242967
batting8 -.0090879 .8867619 -1.34 8.179 -.98223515 .0841758
American -.08031235 .8034183 -08.91 8.361 -.00898286 .8035817
East -.0039444 .0038625 -1.02 e.307 -.0115209 .0036321
Central —-.0040078 .080839249 -1.02 e.307 -.0117066 .0036909
bat -.0242798 .0049064 -4.95 0.000 -.0339038 ~-.0146558
PercentageShifts .0003014 .0001876 1.61 @.108 -.0000666 .0006693
y2 .0088471 .0853373 1.66 0.098 -.0016221 .0193163
¥3 -.8061058 .8055863 -1.09 8.275 -.0170636 .604852
¥4 .8003469 .006832 0.06 8.954 -.0114851 .8121789
interactiony2 .0002798 .0002384 1.17 0.241 -.0001878 .0007474
interactiony3 -.0000251 .0002258 -0.11 0.911 -.000468 .0004178
interactiony4 .0001645 .8802145 0.77 0.443 -.8002562 .8805853
_cons -.4918717 .387955 -1.27 0.205 -1.252858 -2691149

Figure 14. OLS Pooled Model Regression Results Including Interaction Terms with

Batting Average as the Dependent Variable

Source S5 df Ms Number of obs = 1,541
F(27, 1513) = 35.18
Model .768960399 27 .028480015 Prob > F = 0.e000
Residual 1.22473886 1,513 .000809477 R-squared = 08.3857
Adj R-squared = 0.3747
Total 1.99369926 1,548 .00129461 Root MSE = .082845
batting_avg Coef. std. Err. t P=|t]| [95% Conf. Interval
player_age -.0004265 .0002243 -1.9¢ 9.857 -.00088665 .0000136
b_total_pa .0002763 .0000293 9.44 0.000 .00802189 .00083337
pitch_count_fastball -.0000492 .0000253 -1.94 9.852 -.0000988 4.24e-07
pitch_count_breaking -.0000509 .0000251 -2.83 08.042 -.0001001 -1.74e-86
pitch_count -.0000104 .000022 -0.47 8.636 -.8080537 .0000328
sprint_speed -.0000105 .0006055 -8.082 0.986 -.0011983 .0011773
in_zone_percent .0000409 .80083393 8.12 8.904 -.0086246 .8007064
PitchMPH .0078286 .8020193 3.48 8.001 .8030676 .8109896
battingl .0214952 .003432 6.26 8.000 .8147633 .8282271
batting2 .8273081 .0034781 7.85 0.000 .08204857 .083413085
batting3 .08301869 .003783 7.98 8.000 .8227663 .8376074
battingd .0233566 10036736 6.36 0.000 .08161508 .0305625
batting5 .0179478 .0034163 5.25 0.000 .0112466 .824649
batting6 .0131341 .0033788 3.89 0.000 .0065065 .0197617
batting? .0051487 .0031855 1.61 @.1087 -.0011079 .0113892
batting8 -.0022549 .0031463 -8.72 0.474 -.0084265 .0039167
American -.00071838 .8015906 -8.45 9.651 -.8838387 .0024011
East .08015895 .0017972 0.88 8.377 -.80819359 .8851148
Central .00086335 .0018263 8.35 8.729 -.0029488 .0042158
bat .00836657 .002283 1.61 8.109 -.0088124 .8081438
PercentageShifts -.0004124 .0000873 -4.73 0.000 -.0005837 -.0002412
y2 .0022172 .0024834 08.89 8.372 -.0026542 .0070885
y3 -.0020137 0025993 -8.77 9.439 -.0071124 .003085
vy .080833813 .0028067 1.2e 8.229 -.00821242 .0088867
interactiony2 -.000101 .0001109 -8.91 8.363 -.0003186 .0001166
interactiony3 -.000071 .8001851 -0.68 8.499 -.00882771 .080135
interactionyd -9.07e-06 .0000998 -0.09 0.928 -.0002048 0001867
_cons ~-.3966168 .180517 =-2.20 0.028 ~.7587069 -.0425268
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The second test used was a Chow test which was performed to determine if the
separate season models were statistically significant or confirm that all the data could be
pooled together into an inclusive model (Chow, 1960).

Figure 15. OLS Pooled Model Regression Results with SLG as the Dependent Variable

Source 55 df M5 Number of obs = 1,541

F(21, 1519) = 52.26

Model 4.14441705 21 .197353193 Prob > F = 0.0000

Residual 5.73590715 1,519 .003776107 R-squared = 0.4195

Adj R-squared = 0.4114

Total 9.88032421 1,548 .086415795 Root MSE = .086145
5LG Coef. Std. Err. t P>t [95% Conf. Intervall
player_age =-.0018041 .8004838 0.000 =.08827531 -.0008855
b_total_pa -.0000584 .0000631 @.354 -.0001822 .8000653
pitch_count_fastball -.0002541 .0000541 0.000 -.0003602 -.000148
pitch_count_breaking -.0001132  ,0000534 0.034 -.0002179  -8.50e-06
pitch_count .0002324 .0000472 0.000 .00601399 .0803249
sprint_speed .8006804 .0013057 9.602 -.0018808 .8032416
in_zone_percent =.0840321 .8007142 0.000 =.085433 =.0026311
PitchMPH .0128063  ,0042392 0.003 004491 .8211215
battingl .8356363 .0073982 0.000 .0211246 .850148
batting2 .8467008 .08075032 0.000 .831983 .8614185
batting3 . 0601657 .8081582 0.000 .0441632 .8761681
battingd +0532649 .00791 0.000 .0377493 .0687806
batting5 .0423867 .8073592 0.000 .8279513 .856822
batting6 .0308015  .0072899 0.000 .016502 .0451009
batting? .8185563 .8068781 9.125 -.0029352 .8240479
batting8 -.0094432 .0067913 8.165 -.0227644 .8038781
American -.0029968 .0034296 9.382 -.0097242 .8837305
East -.0039192  ,0038779 0.312 -.0115259 .0036875
Central -.0041514 .0039402 @.292 -.0118802 .0035773
bat -.0244363 .0049065 @.000 -.0340606 -.0148121
PercentageShifts .8003664 .0001025 0.000 .0001654 .8005675
_cons -.5606754 +3786879 9.139 =-1.303482 +1821311

Figure 16. OLS Pooled Model Regression Results with Batting Average as the

Dependent Variable

Source ss df MS Number of obs = 1,541

F(21, 1519) = 44.52

Model .759586707 21 .836170796 Prob > F = 0.0000

Residual 1.23411256 1,519 .@08812451 R-squared = 08.3818

Adj R-squared = 0.3724

Total 1.99369926 1,540 .008129461 Root MSE = .8285
batting_avg Coef. Std. Err. t P>t [95% Conf. Intervall
player_age -.0004228 .0002244 -1.88 9.0680 -.000863 .0000175
b_total_pa .8082745 .8000293 9.38 0.000 .0002171 .8003319
pitch_count_fastball -.0000599 .0000251 -2.39 9.017 -.0001091 -.0000107
pitch_count_breaking | -.8000542 .6000248  -2.19 ©0.629  -.0001027 -5.50e-06
pitch_count -2.85e-06 .0000219 -0.13 8.896 -.0000458 .00800401
sprint_speed 8.36e-06 .8006057 8.81 0.989 -.0011796 .8011964
in_zone_percent =.0000911 .0003313 -0.28 9.783 =.000741 .8005587
PitchMPH .8080375 .8019663 4.89 0.000 .8041805 .8118945
battingl .8213442 .0034316 6.22 9.0080 .014613 .0280754
batting2 .0269422  ,0034804 7.74  0.000 .0201154 .033769
batting3 .0296201 .0037841 7.83 8.0080 .0221974 .8370428
batting4 .022647 .0083669 6.17 a.000 .8154501 .829844
batting5 .0174161 .0034136 5.10 9.0080 .81e7203 .8241119
batting6 .8127478 .8033814 3.77 a.000 .006115 .8193806
batting7 .8049915 .0031904 1.56 9.118 ~-.0012665 .0112496
batting8 -.0024058  ,0031501 -0.76  0.445 -.0085848 .0037733
American -.0006369 .00159088 -0.40 8.689 -.0037574 .00824836
East .0014021 .8017988 8.78 0.436 -.0021262 .8049305
Central .08083761 .0018276 .21 9.837 =.0032088 .8839611
bat .80831299 .8022759 1.38 08.169 -.0013343 .8075941
PercentageShifts -.0004418 .0000475 -9.29 8.0080 -.0005351 -.0003486
_cons -.4786476 .1756539 -2.72 0.007 -.8231975 -.1340978
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The residual sum of squares was collected from each separate model (Figures 5-12) and
from the pooled models (Figures 15 and 16) and used within the Chow test equation for

four separate models:

RSS, — (RSS; + RSS, + RSS; + RSS,)
3(k+1)
(RSS; + RSS, + RSS; + RSS.,)
(Ny + Ny + N3 + N,) — (4(k + 1))

F = Equation 2

Within this equation, RSS, denotes the residual sum of squares from the pooled seasons
model while RSS;, RSS,, RSS3, and RSS4 denote the residual sum of squares from each
separate season model. N1, N2, N3, and N4 denote the number of observations from the
four separate season models. And finally, k denotes the number of independent variables
within the model. This test was performed for both the batting average models and SLG
models. The F-statistic result for the batting average models was approximately 0.840
and the result for the SLG models was approximately 1.123. The numerator degrees of
freedom for this model is equal to 3(k + 1) which in this case equals 66 and the
denominator degrees of freedom is equal to (N1 + N2 + N3 + Na) - (4(k + 1)) which in
this case equals 1453. The F-statistic values found are both below the F-distribution
critical value at the 5% level for the given degrees of freedom and therefore the null
hypothesis, which assumes that the models are not statistically significant from each
other, fails to be rejected. These results lead to two finalized models for analysis, one for
the combined seasons batting average and one for the combined seasons SLG.
Descriptive statistics were collected for these pooled data models with dummy variables

omitted (Table 5).
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Table 5. Pooled Model Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
batting_avg 1,541 .2512557 .0359807 .117 .348
SLG 1,541 .4188838 .0800987 .144 .69
player_age 1,541 28.66061 3.79623 20 44
b_total_pa 1,541 388.6613 180.1728 10l 747
pitch_coun~d 1,541 174.0889 92.99333 23 498
pitch_coun~1 1,541 906.1979 421.8728 209 1930
pitch_coun~g 1,541 422.9539 207.6293 69 1029
pitch_count 1,541 1518.038 706.4216 353 3223
sprint_speed 1,541 27.04153 1.448887 21.9 30.8
in_zone_pe~t 1,541 48.63686 2.671699 39.8 57.6
PitchMPH 1,541 88.66275 .5115052 86.6 90.4
Percentage~s 1,541 16.47502 21.37785 ] 95.9
Discussion

The r-squared value for the SLG model was approximately 0.420, meaning that
the variables in the model were able to explain 42% of the variability in SLG. The r-
squared value for the batting average model was approximately 0.382, meaning that the
variables in the model were able to explain 38.2% of the variability in batting average.
The independent variables that were found to be statistically significant to the 90% level
in the batting average model were player age, number of plate appearances, number of
fastballs, number of breaking balls, pitch speed, batting positions first through sixth, and
percent of plate appearances facing a shift. The independent variables that were found to
be statistically significant to the 90% level in the SLG model were player age, number of
fastballs, number of breaking balls, total number of pitches, percent of pitches in the
strike zone, pitch speed, batting positions first through sixth, bat handedness, and percent
of plate appearances facing a shift. The variables that were not statistically significant in
either model were sprint speed, the seventh and eighth batting positions, league, and

division. Sprint speed likely does not have a significant effect on either batting average or
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slugging percentage because most players in the MLB have similar sprint speeds, which
is demonstrated by the descriptive statistics showing the standard deviation for sprint
speed to be only approximately 1.449 feet per second. Since the bases in an MLB field
are 90 feet apart, a 1.449 foot difference per second would likely not create a major
difference in batting success for most players. Because the batting order variables are
dummy variables with the ninth batting position omitted, the results of the regression
demonstrate that, unlike other batting positions, the seventh and eighth position in the
batting order are not statistically significant in their effect on batting success in
comparison the ninth position. This result is unsurprising as batting orders are often
created so that the best performing players hit earlier in the order and the less performing
players, who would likely have similar batting statistics, hit at the end. The division and
league dummy variables not being statistically significant is also not very surprising, as
mentioned previously, because it would be expected that all divisions and leagues have a
mix of successful and less successful batters. However, this may also mean that the ERAs
in individual leagues or divisions are less impactful on batting success than expected.
The direction of the beta estimates demonstrates the relationship between the
independent variables and the dependent variables. Notably, the beta estimate directions
for the percentage shifts variable are opposite for the batting average model and SLG
model, with a negative estimate in the batting average model and a positive estimate in
the SLG model. This result answers the core research question, demonstrating that the
implementation of the shift is successful at decreasing batting average, but consequently

also increases SLG.
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Beyond examining the directional effect of the independent variables, the
magnitudes of the estimates were evaluated to determine the amount of impact each
variable has on batting average and SLG. Since the variables are recorded in many
different types of units, the standard deviations for the continuous variables were
investigated to determine their effect on the dependent variables. Because standard
deviations do not have distinct units, they can be compared across variables that use
different units of measure. The standard deviations for the variables were multiplied by
their corresponding beta estimates and these values were then analyzed (Table 6).

Table 6. Continuous Independent Variable Standard Deviations, Beta Estimates, and

Effect Magnitudes

Variable Standard Deviation Batting Average Estimate Batting Average Effect SLG Estimate SLG Effect

Player Age 3.796 -0.0004228 -0.001604949 -0.0018041 -0.006848364
Plate Appearances 180.173 0.0002745 0.049457489 -0.0000584 -0.010522103
Fastballs 421.873 -0.0000599 -0.025270193 -0.0002541 -0.107197929
Breaking Balls 207.63 -0.0000542 -0.011253546 -0.0001132 -0.023503716
Total Pitches 706.422 -0.00000285 -0.002013303 0.0002324 0.164172473
Sprint Speed 27.042 0.00000836 0.000226071 0.0006804 0.018399377
In Zone Percent 2672 -0.0000911 -0.000243419 -0.0040321 -0.010773771
Pitch Speed 0.512 0.0080375 0.0041152 0.0128063 0.006556826
Percentage Shifts 21.378 -0.0004418 -0.0094448 0.0003664 0.007832899

The results of this comparison demonstrate that a one standard deviation increase
in the percentage shifts variable leads to a decrease of about 0.009 or 25% of a standard
deviation in batting average and an increase of about 0.008 or 10% of a standard
deviation in SLG. This means that a one standard deviation increase in the percent of a
player’s plate appearances facing a shift has a greater effect on batting average than on
SLG. This trade off favoring the impact on batting average may explain why the shift is
still valued and implemented today even though it likely leads to an increase in SLG.
Although the infield shift is a significantly impactful variable on both batting average and

SLG, there are other variables for which a one standard deviation increase has a greater
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impact, specifically the number plate appearances and the total number of pitches. The
number of plate appearances resulted in the greatest effect on batting average with an
increase of one standard deviation resulting in an increase of about 0.049 or 136% of a
standard deviation in batting average. This result supports the hypothesis that as a player
has more plate appearances, they gain experience and skill throughout the season and
therefore would increase their batting average. The total number of pitches resulted in the
greatest effect on SLG with an increase of one standard deviation of pitches resulting in
an increase of about 0.164 or 205% of a standard deviation in SLG. This result may mean
that players who face more pitches are more selective on what pitches they choose to hit
and therefore are more likely to get better hits on the pitches they choose to hit. When
examining the effects of standard deviation changes in the independent variables, it is
apparent that the pitch type and total pitch count have a greater effect on SLG than they
do on batting average. This result makes sense as the pitch type will likely matter more in

terms of getting an extra base hit than getting a hit in general.

Conclusion
From the regression model results it can be concluded that the infield shift has a
significant impact on both batting average and SLG, with a negative effect on batting
average and a positive effect on SLG. The resulting negative effect on batting average
was found to be greater than the positive effect on SLG, meaning that the total effect on
batting performance is likely negative. These results suggest that teams should continue
to use the infield shift to decrease their opponents’ batting success. Although there are

other variables that have a greater impact on batting average and SLG, indicating that the
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shift cannot completely overcome the ability of a batter, it is a successful way for
defenses to decrease their opponents’ chances. This conclusion is important because
batting average and SLG can impact both the number of runs a team scores and the
number of games that they win. Because the total effect of the infield shift on batting
success appears to be negative, implementing the shift would also presumably decrease
the number of runs an opposing team scores and decrease the chances of the opposing
team to win the game. A future study determining the exact effect of batting average and
SLG on number of wins would be required to confirm this assumption. As demonstrated
by the previous studies analyzed, winning is important for a franchise because it increases
fan attendance and team revenues, which can lead to more success in the future.
Winning has also been shown to positively impact housing values, income, and
general well-being in the area in which the team is located. Team success typically leads
to increased team spending, including building new stadiums. A study using hedonic
model analyses compared the pricing of single-family homes in the immediate area
around FedEx Field with comparable homes further from the field to determine the effect
of a sports stadium on housing value (Tu, 2005). The study found that, in this case, the
construction of a new stadium improved housing values in the area in close proximity to
the field (Tu, 2005). Beyond housing values, a cross-section time-series analysis in
another study determined the effect of the construction of NFL and MLB stadiums on
income (Santo, 2016). The results of the study demonstrated that in some cases stadiums
have positive effects on income in the local area, but that the context of the national
economic conditions matter (Santo, 2016). In addition to impacting economic prosperity,

successful teams could also have an impact on fan wellbeing. When examining the
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effects of emotional shocks of college football teams’ wins and losses on the wellbeing of
local population, Janhuba found that unexpected wins positively affect the life
satisfaction of local citizens (2019). It was also demonstrated that this effect increases
with stadium size relative to the population, which suggests that the number of fans
sharing the same experience increases the effect of the experience (Janhuba, 2019). These
findings illustrate that the knock-on effect of using the infield shift may be more
impactful than just altering batting success and have an influence on not just players’
incomes and lives, but also on the lives of those around them.

While the infield shift study results show significant impact of the shift on batting
average and slugging, further controls could be implemented to make the regression
models more precise. One possible control could be to examine the effects of the shift in
specific base runner situations. This could help improve the precision of the beta estimate
for the variables in the models as different situations with runners on base cause changes
in batting behavior and, subsequently, batting performance. Another possible control
could be to limit the data to only include regular season data. Strategies in post-season
baseball can often be different than those used in the regular season, which also may
influence the beta estimates within the models. Additionally, using more seasons of data
would be able to increase the sample size of the study in order to make the overall model
more accurate. However, because the recording mechanics of Statcast have only been
used in the MLB since 2015, this would not be possible until a future time.

While this study is able to demonstrate the aggregate effect of the infield shift on
batters’ performance, it is not able to demonstrate the efficiency of the shift on individual

batters. It may be the case that the implementation of the shift is much more successful
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against some players than others, which could potentially be the focus of future research.
In addition, this study has focused on the changes in batting behavior with the
implementation of the infield shift and another future study could be performed to
determine how possible pitcher behavior changes the shift’s impact. Pitchers may attempt
to throw the ball in specific locations so that hitters are more likely to hit into the shifted
fielders. Some pitchers may be more successful at this than others and, even if the shift is
successful against a specific batter, it may be detrimental for a given pitcher facing that
batter. Along similar lines, specific fielders may perform better with the implementation
of the shift than others and, therefore, using the shift may be more advisable with certain
fielders than others. Future studies on these topics could potentially provide a deeper
understanding for the real-world application of the infield shift. Another interesting
finding that arose during the regression modeling was the beta estimate directions for the
various pitch types. The regression results demonstrated that both the fastball pitches
variable and the breaking ball pitches variable had negative estimates within the models,
indicating that in comparison to off-speed pitches, both fastballs and breaking balls lead
to lower batting performance. This surprising finding could be very important for
pitchers’ performance and should be investigated further in a future study to determine
why this occurs. Although there are many possibilities for future research, this study has
been able to show some effects of the infield shift and sets the groundwork for further

research on the topic.

37



Additional Figures

Figure A1. 2016 Season RESET Test on SLG Model

Ramsey RESET test using powers of the fitted values of SLG
Ho: model has no omitted variables
F(3, 354) = 0.57
Prob > F = 0.6336

Figure A2. 2016 Season RESET Test on Batting Average Model

Ramsey RESET test using powers of the fitted values of batting_avg
Ho: model has no omitted variables
F(3, 354) = 0.40
Prob > F = 0.7512

Figure A3. 2017 Season RESET Test on SLG Model

Ramsey RESET test using powers of the fitted values of SLG
Ho: model has no omitted variables
F(3, 349) = 1.24
Prob > F = 0.2958

Figure A4. 2017 Season RESET Test on Batting Average Model

Ramsey RESET test using powers of the fitted values of batting_avg
Ho: model has no omitted variables
F(3, 349) = 1.02
Prob > F = 0.3840

Figure AS. 2018 Season RESET Test on SLG Model

Ramsey RESET test using powers of the fitted values of SLG
Ho: model has no omitted variables
F(3, 365) = 0.38
Prob > F = 0.7677

Figure A6. 2018 Season RESET Test on Batting Average Model

Ramsey RESET test using powers of the fitted values of batting_avg
Ho: model has no omitted variables
F(3, 365) = 0.53
Prob > F = 0.6642

Figure A7. 2019 Season RESET Test on SLG Model

Ramsey RESET test using powers of the fitted values of SLG
Ho: model has no omitted variables
F(3, 373) = 0.08
Prob > F = 0.9696
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Figure A8. 2019 Season RESET Test on Batting Average Model

Ramsey RESET test using powers of the fitted values of batting_avg
Ho: model has no omitted variables
F(3, 373) = 0.67
Prob > F = 0.5684

Figure A9. 2016 Season White Test on SLG Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) 227.06
Prob > chi2 = 0.2133

Figure A10. 2016 Season White Test on Batting Average Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211)
Prob > chi2

223.23
0.2687

Figure A11. 2017 Season White Test on SLG Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) 206.34
Prob > chi2 = 0.5777

Figure A12. 2017 Season White Test on Batting Average Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chiz(211) 203.16
Prob > chiz = 0.6383

Figure A13. 2018 Season White Test on SLG Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) 192.25
Prob > chi2z = 0.8183

39



Figure A14. 2018 Season White Test on Batting Average Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) = 204.00
Prob > chi2 0.6226

Figure A15. 2019 Season White Test on SLG Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) 226.53
Prob > chi2 = 0.2205

Figure A16. 2019 Season White Test on Batting Average Model

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(211) = 232.39
Prob > chi2 = 0.1491
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