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ABSTRACT  

Contemporary climate change in Alaska has caused amplification and unpredictability in 

disturbance regimes that drive ecosystem function. As a result, many ecosystems across the 

Boreal and Arctic regions are undergoing abrupt transitions that are recharacterizing landscape 

patterns, ecological processes, species composition, structure, and trophic biophysical 

interactions. In this study, I used remote sensing and spatial analyses to classify a dynamic 

ecosystem in the Caribou Hills Grassland region of Alaska’s Kenai Peninsula, USA. This region 

is currently undergoing a shift from a historical boreal spruce forest to a savannah-like system as 

a result of an extensive spruce bark beetle outbreak in the 1990s through the early 2000s that 

killed thousands of acres of trees, followed by a rapid and intense human-caused fire that burned 

about 56,000 acres in 2007. To characterize the landcover of the Carious Hills and develop a 

protocol for monitoring future landcover transitions, I collected two sets of aerial imagery in 

2019 and 2021, each collected at a separate spatial resolution and time of year, and used a 

maximum likelihood classification approach to classify the dominant land cover types (grass, 

shrub, and spruce). Overall, classification accuracies across both images were above 78%, and I 

found that the Caribou Hills landscape is currently comprised, on average, of 67% grass, 27% 

shrub, and 3% spruce. Assessing post-disturbance succession and ecosystem transitions requires 

long-term monitoring. Because the Caribou Hills Grassland region is large and remote, frequent 

monitoring through aerial imagery will be valuable for assessing land cover change over time. As 

the management of shifting ecosystems is relatively new to land managers, approaches such as 

the one developed in this study can be used as guidance towards innovative monitoring efforts 

and land stewardship.   
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INTRODUCTION  

Ecosystem shifts under climate change  

Climate change has the potential to alter ecosystem structure and function through 

largescale changes to disturbance regimes (Buma, 2015; Malhi et al., 2020). As disturbance 

regimes of ecosystems are altered, they are more likely to transition into new ecosystems 

characterized by different landscape patterns, ecological processes, and species (Gonzalez et al., 

2010). These ecosystem shifts involve complex interactions, causing diverse effects to ecosystem 

dynamics, structure, function, species composition, and biophysical interactions across entire 

biomes. Changes in climate can impact vegetation mortality and recruitment (Gonzalez et al., 

2010). For example, if vegetation in a given ecosystem is not acclimated to drought, warmer 

temperatures, or increased fire or other disturbance, increased rates of mortality and decreased 

recruitment may cause shifts in the dominant vegetation towards species that can thrive under 

these new climate conditions (Gonzalez et al., 2010).  

Under current climate change, biomes and the species that comprise them are, as a 

general trend, moving latitudinally and in increasing elevation to stay within their climate 

envelopes (Gonzalez et al., 2010). While many species are capable of adapting to new 

environmental conditions, feedback loops between natural processes and human-induced 

warming may amplify climatic impacts that exceed species’ physiological thresholds (Mann et 

al., 2012). For example, carbon cycling and albedo are strongly controlled by warming 

temperatures and vegetation cover, which in turn dictate energy absorption at the surface 

(Gonzalez et al., 2010). With increases in atmospheric carbon and decreased albedo, atmospheric 

temperature and landcover may experience significant alterations (Gonzalez et al., 2010). As 



  5  

ecological tipping points are being reached and climate change is further intensified, some 

ecosystems may be permanently altered, while others may prove to be more resistant to change  

(Gonzalez et al., 2010).  

An ecosystem shift – the transition of an ecosystem from one type to another – is 

considered to represent an “abrupt change in an ecological system” (ACES). Disturbances 

interacting with each other or with climate can also generate ACES (Turner et al., 2020). It is 

important to consider the variables, processes, and events that may be important in driving 

ecosystem shifts (Chapin & Starfield, n.d.). To determine the relevant drivers of ecosystem 

shifts, there is a critical need for place-based studies in order to identify the mechanisms and 

factors impacting particular regions, which in turn can be more easily incorporated into potential 

ACES monitoring or modeling efforts. Furthermore, accurately modeling and predicting 

environmental trajectories is challenging, particularly for ecosystems that are experiencing rapid 

ecological change. For these ecosystems, precedent conditions and regimes are often unknown. 

Accordingly, there is a need to invest more energy into developing innovative approaches for 

capturing long-term data and sustaining process-focused data collection.   

Alaska as a model study system  

Alaska represents an ideal location to explore the effects of climate change on ecosystem 

shifts, as the region is experiencing warming faster than any other part of the globe (Mann et al., 

2012). Interior Alaska has experienced an increase of 1.4℃ in the last century compared to 0.8℃ 

worldwide (Wendler et al., 2009). Precipitation has decreased by 11%, and since the 1970’s, the 

growing season has increased by 3 days per decade, resulting in earlier spring onset and frost 

occurring later in the fall. Permafrost temperatures have increased by 2-4℃ in the past 50-100 

years (Hinzman et al., 2005) and American Arctic glaciers have experienced among the greatest 
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mass loss, many displaying 30% reductions in just 40 years (Hinzman et al., 2005). In 

combination, these climatic alterations are causing cascading effects to ecosystem structure and 

function (Box et al., 2019). Warmer temperatures and drought are causing not only longer 

growing seasons and land and sea ice melt, but increased disturbances such as wildfire, abrupt 

permafrost thaw, and more frequent and intense insect outbreaks (Box et al., 2019; Grimm et al., 

2013). These physical disturbances may alter tree density, expansion of shrub biomass trees into 

tundra, or shifts in vegetation. Changes in tree density in combination with permafrost thaw play 

a key role in carbon uptake, cycling, local hydrology, in turn leading to changes in species 

distributions across both aquatic and terrestrial ecosystems (Box et al., 2019; Grimm et al.,  

2013).   

Alaska is comprised largely by boreal forests which collectively store more than one third 

of terrestrial stored carbon stocks, making them key contributors to carbon cycling (Bradshaw & 

Warkentin, 2015). Boreal forests have historically served as important carbon sinks, being 

responsible for significant carbon uptake during the Last Glacial Maximum (19-26.5 kyr ago; 

Bradshaw & Warkentin, 2015). However, as a result of deforestation and rapid temperature 

increases in the Arctic, it appears that these sinks may be weakening (Stephens et al., 2007; 

Bonan, n.d.; Hayes et al., 2011). Furthermore, boreal forests contain more freshwater than any 

other biome and contribute to climate regulation through water and energy cycling (Baughman et 

al., 2020). Increased climate stress and disturbance from deforestation may further promote 

ecosystem shifts (Baughman et al., 2020; Peng et al., 2011; Soja et al., 2007). In addition to 

impacts to ecosystem services, increased disturbance is predicted to cause extensive habitat loss  

(Hess et al., 2019).  
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Ecosystem shifts have the potential to impact Alaska’s economy and global carbon sinks. 

Alaska’s economy is primarily based on natural resource extraction; federal, civilian, and 

military spending; and tourism (BEA 2018; Goldsmith 2010; McDowell 2016). Oil production, 

commercial fishing, and nature-based tourism make up a large portion of Alaska’s economy and 

may all be affected by ecosystem shifts (Berman et al., n.d.). Furthermore, subsistence is a 

prominent practice in both tribal and non-tribal communities in the Arctic, emphasizing the need 

to maintain valuable subsistence species. Emblematic species will be forced to migrate to new 

ecosystems that meet their habitat needs. Exploring the best ways to monitor and manage these 

anticipated changes is important to consider in an effort to increase understanding of ecosystem 

shifts in the Arctic (Melvin, 2019).  

Alaska has a large percentage of protected areas, including a diverse network of lands 

managed by the Federal Refuge system. As a result of numerous abrupt system-wide shifts, 

conservation of these unique ecosystems has proven challenging. As climate envelopes and 

ecosystems move, collaborating with land managers and other agencies to bolster connectivity 

and linkages between protected lands could help species to migrate or maintain diversity in 

species and habitat (Bernhardt & Leslie, 2013). Additionally, targeting species or areas of 

particular known resilience for reserves or refuges may also help to maintain greater function and 

diversity (Bernhardt & Leslie, 2013).   

The Kenai Peninsula of Alaska is particularly well-suited for addressing questions related 

to ecosystem shifts. The Kenai Peninsula was settled by the Dena’ina and Alutiiq people around  

1000 A.D. who practiced subsistence (Baughman et al., 2020). The region was then colonized by 

Russia and the United States in the late 17th and 18th centuries, where fisheries, fur trade and fox 

farming took off (Baughman et al., 2020). Homesteading increased after gold, oil and gas were 

later discovered in the late 1800s. In response to the discovery of these resources, increased 
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human development, road construction, agriculture or city infrastructure has greatly altered land 

cover and risk of human-caused wildfire (Baughman et al., 2020). The Kenai Peninsula is also 

one of Alaska’s largest sectors for nature-based tourism, contributing approximately 175 million 

USD as found in 2016 (Baughman, 2020).   

With increased warming, drought, and human population, fire and spruce bark beetle 

(SBB) outbreak intensity is projected to increase and shorten intervals, in turn causing major 

landscape shifts in this region.  In the 1990s through the early 2000s, an extensive SBB outbreak 

across the Caribou Hills on the Kenai Peninsula killed thousands of acres of trees, causing up to 

87% mortality in some areas (Hess et al., 2019). In 2007, a rapid and intense human-caused fire 

burned about 56,000 acres (Kenai Peninsula Borough, 2007). Typically, SBB outbreaks would 

occur every couple of decades on the Kenai Peninsula when colder temperatures could regulate 

SBB populations. However, warming has been found to influence SBB population size through 

increased overwinter survival, larval maturation, and increased drought-induced stress on mature 

host trees which weakens their natural defense tactics against SBB (Berg et al., 2006; Hess et al.,  

2019). Endemic levels of SBB populations will be high enough to perennially thin forests. While 

SBB outbreak, independently, has not been shown to significantly increase wildfire 

susceptibility, its increasing presence on the Kenai Peninsula, in correlation with shifts towards a 

grassland-like system, may create conditions similar to the surface fuel ignition typical of boreal 

forests (Hess et al., 2019). Full boreal systems typically have fire intervals of 79 years which is 

much shorter than the Kenai Peninsula’s historical 400-600 year interval (Berg & Anderson, 

2006). It is speculated that shorter fire intervals, in addition to increased SBB disturbance, will 

only further promote this ecosystem shift. While preliminary observations show the beginning of 

a major ecosystem shift, the Caribou Hills are very familiar with disturbance and may show 

substantial resilience and plasticity despite intensification and changes in climate.  
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Remote sensing as a tool to monitor ecosystems  

The ability to monitor and describe the dynamics of shifting ecosystems has become 

increasingly possible with advances in remote sensing and Geographic Information Systems 

(GIS) technology. Detection and investigation of change in ecosystems using aerial imagery 

allows managers to monitor landscape dynamics over large areas, including those that are 

hazardous or difficult to access. Furthermore, it facilitates the extrapolation of costly ground 

measurements (Kennedy et al., 2009; Li et al., 2003; Petersen et al., 2005; Schuck et al., 2003). 

As climate change acts not only on specific species, habitats or ecosystem characteristics, it also 

acts across landscapes of much greater spatial extents; in turn, larger-scale studies are often 

required (Kerr & Ostrovsky, 2003). Traditional ecological field studies do not translate readily to 

regional or global extents as they are often time consuming, expensive, and restricted by access 

(Kerr & Ostrovsky, 2003). Remote sensing technology, in the form of aerial imagery or satellite 

imagery, can capture consistent measurements of landscape condition, allowing detection of both 

abrupt changes or slow trends over time (Kennedy et al., 2009). Furthermore, remotely based 

measurements can be used in conjunction with field work to gather large scale data and develop a 

valuable understanding of changing ecosystems. Remote sensing allows for the collection of a 

large range of ecological and biological metrics and observations, including details of habitat 

type (e.g., land cover classification) and their biophysical properties (e.g., integrated ecosystem 

measurements), as well as the ability to detect natural and human-induced changes across 

landscapes (change detection; Kerr & Ostrovsky, 2003).  

Multispectral imagery (Red, Green, Blue, LWIR, NIR) of varying resolutions can be 

leveraged to differentiate land cover and produce land cover classifications, providing the basis 

to address numerous important ecological questions. Classifications may be spectral-based 
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supervised and unsupervised, or object-based, which uses both spatial and spectral data to 

determine land cover composition. Peterson et al (2005), for example, used spectral aerial 

imagery to classify willow species in southeastern Oregon. Furthermore, Iverson (1989) showed 

that that the long (30-year) temporal archive of imagery offered by satellites such as Landsat 

could be used to delineate land-use changes, including conversion of forests for urban or 

agricultural development (Cohen et al., 2007; Hansen et al., 2013; Iverson et al., 1989). Landsat 

imagery over the state of Alaska has been used to make observations of shrub expansion; coastal 

erosion and alterations in wetting/drying trends; increased thermokarst from warm and wet 

summers; glacial retreat from rising temperatures, declining snowfall, and mechanical processes; 

as well as fire/SBB regimes and post-fire/SBB productivity with feedback implications (Pastick 

et al., 2019). Classifications of remotely sensed imagery can provide researchers and land 

managers with a strong sense of ecosystem dynamics, enabling timely management of 

biodiversity. Additionally, spatial analysis of trees can offer important insights into recruitment 

dynamics, which are of increasing interest to ecologists studying rapid changes in climates.   

Objectives  

      In this study, I sought to develop an approach to classify land cover from aerial 

imagery collected in the Caribou Hills grassland region on the Kenai Peninsula, Alaska, United 

States. The main objectives of this research were to: (1) create an efficient workflow to collect, 

process, and analyze aerial imagery to generate accurate land cover classifications; (2) assess the 

effect of image acquisition variables, including time of year, weather, spatial resolution and 

extent, on classification accuracy; and (3) evaluate the utility of remote sensing technologies for 

monitoring ecosystem transitions and informing adaptive management strategies.                          

 To date, few studies exploring landscape delineation and recruitment have been conducted in 
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ecosystems that have experienced disturbance intensity and rates of change as high as in the 

Caribou Hills. This research will be valuable in not only developing an approach to identify 

patterns of spruce recruitment in the grassland, but to provide information relevant to the 

conservation and management of landscapes susceptible to ecosystem shifts under projected 

climate change, which in turn will promote biodiversity and resilience (Melvin, 2019).  

METHODS  

Study area  

This study was conducted in the Caribou Hills region, located on the Kenai Peninsula in 

south-central Alaska, United States (Fig. 1). The Kenai Peninsula lies between Cook Inlet and 

Prince William Sound and consists of the Gulf Coast, Kenai Mountains, and Kenai Lowlands 

ecoregions. This region represents a transitional maritime environment situated between coastal 

rainforests and boreal forests of the arid Interior of Alaska (Berg & Anderson, 2006). Its position 

between biomes results in many of the key landcover components of Arctic, sub-Arctic, Boreal, 

and coastal ecosystems being situated within close range of one another (Baughman et al., 2020). 

The Kenai Peninsula also has a relatively dense human population, relative to the rest of the state 

(Morton et al., 2006).  

The Caribou Hills region comprises a roughly 40,000-acre grassland along the southern 

Kenai Lowlands between Homer and Ninilchik. The area consists of a broad plateau of hilly 

morainal belts, flat glacial lake beds, outwash plains, and multi-terraced river channels, with 

elevations generally ranging from 15 to 100 m (Berg & Anderson, 2006). Dominant vegetation 

includes black spruce (Picea mariana), paper birch (Betula neoalaskana), Kenai birch (Betula 

kenaica), white spruce (Picea glauca), quaking aspen (Populus tremuloides), and Lutz spruce 
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(Picea x lutzii). The area historically had fire intervals of 400-600 years, with spruce bark beetle 

(SBB) outbreaks occurring up to 10 times in between (Berg & Anderson, 2006).  

Image collection and processing  

Color-infrared aerial photographs of the Caribou Hills Grassland region were collected in 

two separate years: 2019 and 2021 (Fig. 1). Aerial imagery collected in 2019 encompassed a 

spatial extent of 251 km2 with a spatial resolution of 0.1 m (10 cm; Fig. 2), whereas the 2021 

imagery encompassed a smaller spatial extent of 38 km2, but a much finer spatial resolution of 

0.05 m (5 cm; Fig. 3). The 2021 imagery was collected in a single day across a 3-hour period. 

However, because the spatial extent of the image collection was much larger in 2019, imagery 

was collected over the span of two days. To investigate if the timing of imagery acquisition 

would affect the ability to delineate between vegetation types, imagery from each year was 

collected at different times across the growing season. In 2019, imagery was collected in May 

when the grass was khaki-colored, shrubs were dark-brown, and spruce trees were green. In 

2021, on the other hand, imagery was collected in August when vegetation classes appeared 

more similar in color.  

The 2019 imagery was acquired using two Nikon D810 cameras mounted aboard a 

CubCrafters CC18 Top Cub aircraft. One camera was unmodified and collected red/green/blue 

(RGB). The other camera was modified by Maxmax.com to collect in the infrared spectrum (> 

715) by removing the cameras infrared cut filter. In 2021, the LUCINT12 multispectral imaging 

system was mounted on a rack below the aircraft. The LUCINT12 had an array of cameras that 

simultaneously captured RGB, IR, Red Edge (RE), and long-wave infrared (LWIR) imagery. In 

addition to the LUCINT12 two Nikon 850 camera were mounted on the aircraft. One Nikon 

collecting RGB and the other GBIR (green, blue and infrared > 715nm). The GBIR camera 
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produced false color infrared (CIR) images. The two camera systems operated independently 

though both systems used a GPS receiver to trigger the cameras to achieve a 75% overlap. The 

Nikon cameras stored RAW images to internal flash drives. The LUCINT12 cameras had 

internal hard drives and computer processors that immediately started to process the imagery into 

a single multi-layer tif from the different spectrums of the camera array. 

 To fly these systems on the fixed-wing aircraft, flight lines were created according to 

specified spatial extents and resolutions using both Aviatrix and LUCINT12 software. For the 

2019 acquisition, there were 46 flight lines, at 80 knots, flown at 1780 ft above ground level 

(AGL). For the 2021 acquisition, there were 18 flight lines at 80 knots, flown at 2000 ft AGL.  

Maintaining consistent AGL was crucial for consistent resolution and imagery across varying 

topography. For the Nikon system, flight lines were built or loaded into Aviatrix Systems where 

the trigger time could also be selected. In the LUCINT12 system, simple polygons encompassing 

the flight area were uploaded with trigger times: once the aircraft entered the geographic location 

of the polygon, the cameras were activated and began collecting imagery. While cameras could 

be triggered based upon distance, I found that establishing consistent time intervals was more 

reliable overall. Regardless of the camera system used, the pilot was provided with the Aviatrix 

flight lines that included fixed resolution, height, and speed. Additionally, auto-exposure was 

completed before image collection and maintained for the duration of the flight. Camera 

operation tests were performed prior to or in flight to ensure that images were being taken and 

GPS correspondence was occurring.   

During flights, all camera positions were recorded using a Trimble R7 GNSS rover  

(Trimble Navigation Unlimited, Sunnyvale, CA) with a NAD83 (2011) datum projection. 

Positioning error across images was less than 5 cm on average. All images were recorded in 

14bit RAW (NEF) files, which were subsequently converted to 8-bit JPEG files using Adobe  
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Lightroom software (Adobe, Inc., San Jose, CA). Agisoft Metashape (Agisoft LLC, St.  

Petersburg, Russia) was then used for photogrammetric processing of the digital JPEG images.  

First, aerial control points were added and initial alignment reference settings were determined 

(e.g., reporting camera accuracies and selecting accuracy requirements). Once an initial 

alignment was performed, optimization was conducted to improve alignment. This involved 

cleaning by removing outliers to re-optimize and reduce reconstruction uncertainty. This process 

of cleaning and optimizing was repeated until alignment distortion was sufficiently minimized. I 

then created digital elevation models (DEMs) from the processed sparse and dense clouds. I used 

only the sparse cloud to build the orthomosaic images. Although the DEM from the dense cloud 

was not necessary for building the orthomosaic, it may be useful for future studies with higher 

spatial resolution. Finally, I performed color calibration on both orthomosaics in order to even 

out the overall exposure and color variance. Spatial resolution for the 2019 imagery was 0.1 m 

(10 cm) and 0.05 m (5 cm) for the 2021 imagery. All imagery and spatial data points were 

projected into NAD83(2011) UTM zone 5N.   

Aerial orthoimagery classification  

Both the 2019 and 2020 imagery were exported into tiles and mosaiced together using 

ArcGIS Pro (ESRI Inc., Redlands, CA, United States). From the resulting orthomosaics, I created 

a training data set consisting of points assigned to three of the dominant land cover classes 

represented across the grassland: tree, shrub, and grass. I also included snow as a land cover class 

in the 2019 classification in order to prevent potential classification errors. Snow was not present 

in the 2021 imagery.  

I sought to create training data for each class that reflected the range of spectral 

variability represented across each class (e.g., selecting training data for the tree class that 
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corresponded with both overexposed or light-colored trees and trees with dark foliage). The 

training data was then imported into the “Create Signature File” tool in ArcGIS Pro to assign 

corresponding spectral data values to each class. I then used the “Maximum Likelihood 

Classification” tool to classify the imagery. In some portions of the classified imagery, I 

observed some speckling due to misclassified pixels. Because misclassified pixels were generally 

isolated and surrounded by correctly classified pixels, I applied an aggregation function in 

ArcGIS Pro to the 2021 classification using a cell factor of 6 and the “maximum’ aggregation 

technique in an effort to minimize the salt-and-pepper effect. For the 2019 classification, the 

aggregation was performed with a cell factor of 2 rather than 6 since the classification was less 

affected by speckling. As a result, spatial resolution for the 2019 classification 0.3 m (30 cm)  

and 0.2 m (20 cm) for the 2021 classification.  

Lastly, variable cloud cover present during the 2021 image acquisition caused differences 

in exposure that made consistent classifications across the imagery difficult. To minimize 

spectral differences owing to variable exposure, I divided the imagery into five separate tiles of 

similar exposure, classified each tile individually, and then mosaiced the tiles together to recreate 

the full orthomosaic. Variability in exposure was less prevalent in the 2019 imagery; accordingly, 

I was able to classify the imagery using only two larger tiles.    

Ground-truth data collection  

          During summer 2021, I conducted field surveys across Caribou Hills to validate the 

location and number of trees on the ground. While ground data is often used as both training and 

validation data for supervised classifications, I only used the ground data to validate the 

classifications, as the large spatial extent of the study area, in combination with time and access 

restrictions, limited the amount of data that would otherwise be necessary. Due to the limited 
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accessibility across the Caribou Hills grassland, I collected ground-truth data from plots (n=25) 

spaced roughly 200 m apart along an ATV trail that spanned the boundary of the 2021 imagery.  

This sampling design allowed me to account for spatial variability across the study area. At 

each plot, I collected the location of the plot center using a Trimble rover and remote. By 

communicating with local base stations, the location recorded by the rover was estimated to be 

accurate within a couple millimeters. I then counted and measured all spruce trees that 

occurred within a 10 m radius of the plot center (Fig. 6a). For each tree, metrics included: 

species; height (m); diameter at breast height (DBH, inches); estimated tree canopy radius 

(cm); distance from plot center (m); and bearing from plot center (degrees; Fig 6c). To assist 

with visualization of individual tree locations within the plots, I also recorded their locations 

on a cardinal birds-eye view graph. Lastly, I took a photograph in each cardinal direction from 

the plot center (Fig. 6d). If live spruce trees were not present in the plot, I recorded dead 

spruce, as they are visible in the aerial imagery and could still be used as validation data. After 

plot 25, the trail was no longer passable. The downloaded spatial location data was processed 

using GrafNav post-processing software (NovAtel Inc.) and time stamp logs were investigated 

to differentially correct the GNSS coordinates accordingly. This produced a table of 

coordinates in latitude and longitude to be used later for downstream accuracy assessments.  

Classification accuracy assessments  

To assess the performance of the land cover classification models, I calculated a series of 

Confusion matrices using two separate independently-derived sets of validation data for which 

the true land cover classes values were known: (1) points created via on-screen digitization of 

high-resolution aerial imagery; and (2) ground-truth field data collection points.  
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To build validation data from the high-resolution aerial imagery, I created a gridded 

fishnet across the imagery and created one point for each class (tree, shrub, grass) within each 

grid block. I used this sampling design in order to create a systematic sample of the imagery and 

provide an equal representation of each land cover class, regardless of its abundance across the 

image. In the 2019 imagery, I created 85 validation points for each class from a 5x17 grid (n=85 

grid polygons). In the 2021 imagery, 65 validation points were created from a 5x13 grid (n=65 

grid polygons).  

To create the ground-truth validation data, I used ArcGIS Pro to create a shapefile of plot 

centers from the GPS coordinates that I collected in the field. Next, I created 10-meter buffers 

around each plot center point to depict the size of each plot on the classified image (Fig. 6a). The 

ground-truth data (tree species/number, distance from plot center, bearing, tree size [radius, 

DBH, height]) and corresponding photographs were then used to identify where in the imagery 

trees were present on the ground. If the trees recorded on the ground had a DBH less than 2 

inches, then they were not selected in the imagery, as these trees were generally too small to 

observe in the imagery given the spatial-resolution. All other trees recorded on the ground were 

identified and marked as belonging to the “tree” class across 23 plots and both sets of imagery 

(n=90). Grass and shrub points were not recorded on the ground; therefore, I selected 90 points 

per class as evenly as possible across the 23 plots using the aerial imagery and ground 

photographs as a reference.  

For each set of validation points, I extracted the pixel values (i.e., land cover class) from 

the classified orthomosaic and computed a confusion matrix between the values assigned to the 

validation points and the classified values in ArcGIS Pro. To estimate the classification accuracy 

of the 2019 and 2021 imagery, I calculated total overall classification accuracy, as well as 

Producer’s Accuracy and User’s Accuracy for each class. Producer’s accuracy was calculated by 
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dividing the number of correctly classified pixels, along the matrix diagonal, assigned to a 

category by the total number of reference pixels that were classified in that class (i.e., error of 

omission). This metric indicates the level to which the reference points have been accurately 

mapped. User’s accuracy, on the other hand, was calculated by dividing the number of correctly 

classified pixels in each class by the total number of pixels that were classified in that class (i.e., 

error of commission). It indicates the probability that a pixel assigned to a particular class 

actually represents that same class on the ground (Petersen et al., 2005; Congalton, 1991). To 

compute Producer’s Accuracy and User’s Accuracy, the confusion matrix lists the number of 

data points associated with each class and then calculates how that pixel compares to the ground 

data, as well as how it compares to other classes.  

  

RESULTS  

Land cover classification accuracy  

Using a supervised Maximum Likelihood Classification approach, I classified trees, 

shrubs, grass, and snow (where applicable) from aerial imagery collected in the Caribou Hills 

grassland in 2019 (Fig. 2) and 2021 (Fig. 3). This approach produced highly accurate land cover 

classifications across both years and across areas of differing vegetation composition and 

configuration, including in areas with fewer, more isolated trees (Fig. 4a), as well as in areas with 

high vegetative cover characterized by densely clumped trees and shrubs (Fig. 4b).  

Overall, classification accuracies across both images were above 78% (Table 1 & 2). 

Differences in accuracy across a single image collection may be due to the restricted area of 

ground validation data compared to gridded based validation data, particularly in the case of the 

2019 classification. Overall, the classification of the RGB imagery collected in 2019 produced a 
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higher gridded accuracy than that of the RGB imagery collected in 2021, using both gridded and 

ground-truth accuracy assessment methods. The highest overall accuracy obtained for the 2019 

classification was 96.8% (kappa = 0.96; Table 1), whereas the highest overall accuracy obtained 

for the 2021 classification was 89.7% (kappa = 0.85; Table 2). When accuracy was assessed 

using the ground-truth validation data, the highest overall accuracy obtained for the 2019 

classification was 78.6% (kappa = 0.712; Table 1), while the highest overall accuracy obtained 

for the 2021 classification was 89.0% (kappa = 0.83; Table 2).  

User’s and Producer’s accuracies across both years were above 83%, with the exception 

of two cases (Table 1). In the 2019 classification gridded accuracy assessment, all User’s and 

Producer’s accuracies were above 89% (Table 1). In the 2021 classification ground-truth 

accuracy assessment, the lowest Producer’s accuracy was 74.7% in the tree class (Table 2). The 

rest of both User’s and Producer’s accuracy were above 70%. In the 2021 classification gridded 

accuracy assessment, the lowest Producer's accuracy was 83.1% (Table 2). The rest of both  

User’s and Producer’s accuracy were above 83% (Table 2).   

In the 2019 classification ground-truth accuracy assessment, the lowest User’s accuracy 

was 59.6% in the grass class (error of commission; 90/151 grass classified points were 

groundtruthed as grass; Table 1). The lowest Producer’s accuracy was 49.5% in the shrub class 

(error of omission; 47/95 ground-truthed shrub points were classified as shrub as opposed to 

another class or 48/95 were misclassified as other classes; Table 1).   

Accuracy assessment of aggregated vs. non-aggregated classifications   

To minimize the salt-and pepper effect that resulted from the classification of the high 

resolution (0.05 m) 2021 imagery, I applied an aggregation function to the 2021 land cover 

classification (Fig. 5). Overall accuracies (gridded or ground-truth) for the classification with the 
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aggregation function applied were lower than the classification without aggregation. The average 

overall accuracy for the classification with aggregation applied was 77.85% and 89.35% for the 

classification with no aggregation (Table 3). Additionally, Producer’s accuracies for the tree 

class were lower in both gridded and ground-truth accuracy assessments of the aggregated 

classification at 67.7% and 51.6%, respectively, in comparison to the same classification without 

aggregation (Table 3). Producer’s accuracies for the tree class in both gridded and ground-truth 

accuracies for the classification without aggregation were 84.6% and 74.7%, respectively (Table  

3).   

Coverage of classified land cover classes  

The 2019 imagery covered an area of about 251 km2 while the 2021 covered 38 km2 

(roughly 15% of the 2019 area (Fig. 1 and Fig. 2).  Based on the 2019 classification of the RGB 

imagery, 3. 13% ( 7.9 km2) of the image was classified as tree; 25.3% (63.5 km2) was classified 

as shrub; 67.4% (169.2 km2) was classified as grass; and 4.1% (10.3 km2) was classified as snow 

(Table 4).  The 2021 classification with aggregation applied, had 2.75% (1 km2) of the area 

classified as tree cover; 29.6% (11.3 km2) classified as shrub; and 67.6% (25.7 km2) classified as 

grass (Table 4). In contrast, for the 2021 classification without aggregation, about 7.25% (2.75 

km2) was classified as tree cover; 34.38% (13.1 km2) was classified as shrub; and 58.36% (22.2 

km2) was classified as grass (Table 4). Based on these data, the difference in tree cover between 

the 2019 and 2021 (with aggregation) classifications was 0.38%; the difference in shrub cover 

was 4.3%; and the difference in grass cover was 0.2% (Table 4). The differences in percent cover 

between the 2019 and 2021 classifications were greater without aggregation: the difference in 

tree cover was 4.12%; the difference in shrub cover was 9.07%; and the difference in grass cover 
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was 9.07%. As there was no snow present in the 2021 imagery, I did not calculate change in the 

snow class between years.  

DISCUSSION  

In this study, I used high-resolution aerial imagery to classify land cover across the  

Caribou Hills grassland region on the Kenai Peninsula of Alaska, USA following large-scale 

disturbance from SBB outbreak and wildfire events to provide preliminary insights regarding 

whether, or to what degree, this landscape may be shifting from a forested to a savannah-like 

ecosystem. By doing so, I sought to develop an accurate and efficient approach that could be 

used by land managers as a tool to monitor ecosystem shifts in this and other similarly dynamic 

landscapes into the future. I classified aerial imagery from two separate aerial acquisitions, each 

collected from a different time period within the growing season and each with varied spatial 

resolution, to evaluate how seasonality, size, and spatial grain influenced classification accuracy. 

I also assessed how classification accuracy varied in response to the use of different filtering and 

validation approaches.  

Accuracy of land cover classifications  

I generated accurate predictions of land cover from aerial imagery collected in 2019 and 

2021 across the Caribou Hills grassland on the Kenai Peninsula of Alaska. Using two separate 

approaches to assess classification accuracy, I obtained overall accuracies ranging from 89% to 

97% (Table 1 & 2). Despite high overall accuracies, however, accuracies varied between the 

2019 and 2021 aerial imagery land cover classifications, suggesting that seasonality and the 

spatial resolution of the imagery had an effect on the ability of the classification approach to 

distinguish between assigned land cover classes.   
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I found that the 2019 spring collection was visually cleaner with minimal speckling, and 

had slightly stronger accuracies. Because this acquisition was collected in the spring, before 

deciduous trees and shrubs had leafed out, the tree and shrub classes appeared very distinct from 

the surrounding matrix of grass. In contrast, the land cover classes appeared less distinct from 

one another in the August 2021 image collection, with trees, shrubs, and grass exhibiting 

relatively similar spectral characteristics in the visible range. The goal behind the Summer 2021 

collection was to equip cameras with a sensor to capture IR, in addition to RGB, in order to 

obtain a stronger ability to distinguish between the three landcover classes. However, the 

addition of the IR band in the summer acquisition did not contribute to delineation as much as 

expected. Extracting and performing the classification with just the IR band would be worth 

testing in the future for both delineation purposes, as well as for additional classification 

objectives. Lastly, while a summer acquisition may be more useful for identifying biodiversity or 

species delineation, the spring acquisition (prior to leaf-out) proved more effective for land cover 

classification in this region.   

Effect of spatial aggregation on classification accuracy  

While the classification of the summer 2021 imagery did characterize trees and shrubs 

well, many small, isolated grass pixels were misclassified as trees causing more speckling as a 

result of greater similarity in natural color compared to the spring imagery collection. Given that 

the majority of these misclassified pixels were isolated and surrounded by accurately-classified 

pixels, I used the “Aggregate” tool in ArcGIS Pro to resample the classified image to a coarser 

resolution using the ‘maximum’ technique with a cell factor of 6 (Fig. 5). The “Aggregate” tool 

takes the number of selected pixels (i.e., cell factor of 6 as defined in this study), determines of 

the 6 pixels which class was most common, and assigns all 6 pixels that class. For example, if 
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there was one tree pixel surrounded by five grass pixels, the “Aggregate” tool would assign all 

six pixels to the grass class based on a “maximum” rule. While the tool worked well to eliminate 

most small discretions, there were several instances in which the tool created larger blocks of 

incorrectly classified pixels. Accordingly, I evaluated multiple cell factor values factors to 

determine which struck the best balance between these two components. For example, the 

nonaggregated 2021 classification captured the trees much better than the aggregated version, but 

the salt and pepper speckled effect was much more prevalent (Fig. 5). On the other hand, the 

aggregated version appeared cleaner with less speckling, but created larger misclassified blocks, 

which were especially noticeable within captured trees (Fig. 5). The non-aggregated 

classification also resulted in higher overall accuracies but because of the salt and pepper effect, 

the incorrectly classified pixels spread among the grass class likely resulted in less accurate 

percent cover values (Table 3 & 4), where the percent cover values are likely over-estimated for 

trees and underestimated for grass. On the other hand, the percent cover values among the 

aggregated classification (where there was less speckling present), are likely to be more accurate 

overall but potentially under-estimated the tree class percent cover value. I used the “Aggregate” 

tool for the 2019 imagery but with a much smaller cell factor of 2 as it had minimal salt and 

pepper effect. While acquisition of aerial imagery during the summer may be preferable when the 

goal is to monitor biodiversity, spring imagery acquisitions are more likely to generate 

classifications of higher accuracy owing to the greater ability to delineate between vegetation 

cover types before leaf out.   

Ground-truthed vs. image-based validation approaches  

As expected, I found that the method by which I derived validation data – whether via 

ground-truthed data collection or via an independently-derived systematic sample of the original 
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imagery (“gridded method”) – influenced my resulting estimates of classification accuracy.  

 Because accessibility in the Caribou Hills was restricted to public land, as well as to areas 

accessible via ATV and foot, I was only able to collect ground validation data from along a 

single trail spanning in the East-West direction across the grassland. While I attempted to capture 

as much variation in my ground-truthed samples as possible, the ground-truthed validation data 

was relatively clumped and limited to a smaller spatial extent that did not include the geographic 

spread, spectral quality and spectral diversity across the landscape as compared to the validation 

data that I created by using the gridded method. The gridded method contained validation points 

derived from nearly 70 locations or “plots” across the landscape; validation points collected on 

the ground came from 20 plots distributed across a smaller area. Furthermore, to ensure that data 

collection was feasible and practical, plot sizes were limited to a 10 m radius and contained more 

clumped trees, which I found to be more difficult to distinguish from one another in the 

classifications.  

The ground data-based 2019 classification accuracy assessment was notably lower than 

the gridded assessment in 2019. The overall accuracy for the 2019 gridded assessment was 

96.8% while the accuracy for the 2019 ground-truth assessment was 78.6% (Table 1). The 

ground-truth plots traverse a portion of the imagery with particularly low exposure (Fig.1). It is 

possible that the quality of classification was poorer in this region due to the low exposure, 

rendering lower accuracies. Additionally, the ratio between the area the ground data covered to 

the entire region is much smaller in the 2019 imagery in comparison to the 2021 imagery. The 

ground data is not as strong as a representative dataset for validating the 2019 classification. In 

the 2021 classification, the difference between the ground-data assessment and the gridded 

assessment was not as striking as it was in 2019. The overall accuracy for the 2021 gridded 

assessment was 89.7% while the accuracy for the 2021 ground-truth assessment was 89.0% 
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(Table 2). In this case, the ground plots traversed a portion of the imagery that was situated 

within one of the five tiles, signifying that exposure was a bit more consistent across this area 

compared to 2019 which crossed both tiles with high variation in exposure.   

          Although estimates of classification accuracy were lower when I used the ground-truthed 

data to validate the classifications (Table 1 & 2), ground-truthed data provided less biased data, 

as trees, shrubs and grass were visually accounted for on the ground. This contrasts the gridded 

method validation, where each class was identified visually in the original imagery, but not 

identified on the ground. Accordingly, future image classification efforts should consider both 

validation methods in order to account for the benefits and limitations associated with each when 

performing classification accuracy assessments.   

          In the future, several considerations should be taken into account when collecting ground 

validation data that may improve their use. First, although recording the GPS location of only a 

single point at the center of the plot and then identifying the number and approximate location of 

each tree within the plot was efficient, this method necessitated discretion to confidently match 

trees marked on the ground to their respective counterparts in the imagery. To avoid this 

discretion in the future, I recommend instead marking individual trees with a survey-grade GPS 

unit and recording its associated attribute data. Second, I recommend selecting plots with trees 

spaced further apart, or without overlapping canopies, as opposed to plots with trees in more 

clumped configurations in order to make it easier to match trees on the ground to trees in the 

corresponding imagery. While I dictated that ground-truthed trees needed to have a DBH of 2 

inches to adequately account for the spruce seen on the ground and in both sets of imagery, some 

spruce as small as 1.5 inch DBH, 2 meter height, and 40-50 cm radius were visible in both sets of 

imagery. The 2021 classification, which had a higher spatial resolution performed better in 

capturing smaller individual spruce trees, whereas the 2019 classification rarely captured spruce 
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with DBH under 2 inches.  Lastly, depending on research objectives, it may be important to 

collect attributes of each tree on the ground, such as height, radius and DBH; however, in the 

case of this study, tree radius was the most useful metric for illustrating the ground data.   

Implications of land cover class composition  

The percent cover values were calculated using the total pixel number for each class 

divided by total number of pixels. As seen in both 2019 and 2021 classifications, grass has the 

highest percent cover, followed by shrub and then tree, which had the lowest percent cover. 

Given that this region was historically considered to be a spruce-dominated forest, as recent as 

the 1990s, this shift to a landscape dominated by grass is a significant point to consider (Hess et 

al., 2019). While what classifies a grassland is vague and precedent, Dixon et al. 2014 in their 

study on global grassland types highlights some defining characteristics based around the 

International Vegetation Classification (IVC), and Terrestrial Ecoregions of the World (TEOW):  

stating that, “Grass dominance is expressed when graminoids have over 25% grass cover 

(Kucera, 1981); Shrub cover in grasslands is typically less than 25%; and trees in temperate 

zones, typically have less than 10% canopy cover, are over 5 m tall and single-layered; Single 

dry season over 4 months; Fires regular; often in sites with seasonal waterlogging; Shrublands 

can be defined where shrubs are over 0.5 m tall and have over 25% shrub cover; and tree cover is 

less than 10%.” Accordingly, if the Caribou Hills region, which was classified as being 

composed of 67.54% grass on average (between 2019 and 2021 classifications), was to be 

defined based on the aforementioned characteristics, it would imply strong grass dominance 

(Table 4).  However, because shrub coverage was estimated to comprise 27.46% on average, of 

the landscape, this suggests that this landscape may alternatively be considered a shrubland 
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under the IVC designation (Table 4). Lastly, tree coverage was estimated to be below 10% 

canopy cover, at about 2.94% on average (Table 4).   

While these definitions are useful in identifying whether or what kind of grassland this 

landscape falls under, these acquisitions are only a snapshot in time. Warm, dry summer seasons 

are becoming longer and more extreme (Wendler et al., 2009; Hinzman et al., 2005). These 

trends, along with anthropogenic factors, are increasing wildfire risk and the fire season length in 

this region. This raises questions surrounding how effective prior grassland definitions are in 

studying or managing increasingly dynamic landscapes. A study surrounding global grassland 

types, emphasized the diversity in grassland landscapes, identifying 49 taxonomically and 

spatially distinct grassland types (Dixon et al., 2014). With high anthropogenic influence, 

whether development or climate-based, grasslands span from human-made grass pastures to 

large-scale ecosystems that could be a fusion of grassland, a shrubland or late succession forest 

(FAO, 2005; Dixon et al., 2014). Landscapes such as the Caribou Hills are therefore forcing 

managers to rethink management strategies and question if stewardship may offer more 

biodiversity or flourishment than conservation of preceding or familiar landscapes. New 

definitions should be considered that allow for greater flexibility in grassland ecosystems in order 

to better manage and study grassland or other ecosystem conversions (Dixon et al., 2014).  

The estimated percentages of each land cover class, when considered across 

classifications of both 2019 and 2021 years, offer additional interesting insights into the 

dynamics occurring in the Caribou Hills region. Considering the recent disturbance history of the 

Caribou Hills, a shrub cover of 27.46% on average, is quite high, suggesting possible 

shrubification. Shrubification is the process of shrub expansion across Boreal and Arctic systems 

(Mekonnen et al., 2021). Shrub expansion has been shown to be a response to climate warming 
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and may drive changes in competitive interactions, altering landscape composition, ecosystem 

structure, function, feedbacks, fire, animal habitat and subsistence practices (Mekonnen et al.,  

2021; Forbes et al 2010; Cornelissen et al 2001; Elmendorf et al 2012; Loranty and Goetz 2012;  

Camac et al 2017; Tape et al 2016; Henry et al 2012). Although shrubification has been found to 

be a more common phenomenon in northern Alaska (Mekonnen et al., 2021), it has been recently 

recorded in south-central Boreal and coastal ecosystems (Berg et al., 2009; Boucher et al., 2006)   

Similar to how shrubs are showing perseverance in regions experiencing intense climatic 

changes, graminoid species are also competitive in dry, warm areas due to their ability to perform 

C4 photosynthesis. C4 grasses evolved with seasonal climatic aridification or atmospheric 

change and typically grow in exclusively open terrestrial areas (Dixon et al 2014). The Boreal 

region is seeing dramatic atmospheric change and climatic aridification that, in combination with 

large effects from disturbance, provide grasses and shrubs greater competitive ability over slow-

recruiting species such as spruce. Once established, grasses have a much shorter fire regime than 

that of a spruce forest. The Caribou Hills has historically been characterized as having a 400–

600-year fire regime (Berg & Anderson, 2006); recently, the region is experiencing annual spring 

fires and land managers have already demanded that the local fire department expand its fire 

season as a result of changing ecosystems (Alaska Interagency Coordination Center, 2010). This 

reduced length of the historical fire regime is predicted to further perpetuate slow or non-existent 

forest succession, while promoting grass dominance.   

When considered across the two years of aerial imagery classifications, I found slight 

changes associated with percent coverages of each land cover type. For example, tree coverage 

declined by 0.38% between 2019 and 2021 (with aggregation), shrub coverage increased by 

4.3% and grass coverage remained relatively stable (67.43% to 67.65% from 2019 to 2021; Table 
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4). This compositional distribution may be explained by spruce recruitment being suppressed by 

competition from grasses and shrubs. The dominant species of grass in the  

Caribou Hills Grassland region is Calamagrostis canadensis, commonly known as Bluejoint 

Reedgrass (Tracy Melvin, personal communication). While this species is native, it is an 

aggressive repopulator that thrives and disperses rapidly in post-disturbance landscapes. It builds 

a thick root mat at the surface of the soil, often preventing other species from establishing.  

Previous studies have shown that seedling abundance was significantly lower in plots with over 

60% bluejoint litter coverage, yet significantly greater in plots with bluejoint litter below 60%, 

indicating a threshold of bluejoint grass in restricting seedling establishment (Boggs et al., 2008). 

While it may be geographically dependent, grass did cover over 60% of this landscape in both 

2019 and 2021 classifications (Table 4): this indicates that a threshold may have been exceeded, 

potentially explaining slow and minimal spruce recruitment across the region. The Caribou Hills 

Grassland ecosystem also currently lacks a foundation species. During the Pleistocene, when the 

climate was arid and the Caribou Hills were grassy, steppe-bison initiated nutrient recycling and 

grazed on dominant grasses. While there are a few small herds of caribou in this region, there is 

not a large enough grazer presence to keep a grassland of this scale in balance. Nonetheless, the 

observed increase in shrub coverage by almost 5% may be indicative of successful and rapid 

establishment in the grassland. Comparing changes in the overall coverages of each land cover 

class over time will provide managers with a better understanding of the ecological trajectory of 

the Caribou Hills, in turn offering valuable insights into its management.  

However, in this study, it is important to note that the two years of classified imagery 

may not be directly comparable, as the imagery was collected at two different times of year, 

using two different camera systems, and encompassing two separate areas of varied spatial 

extent. For example, the 2019 land cover classification represented a much larger spatial extent 
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than that in 2021. Nonetheless, in spite of differences in image acquisition extents, the percent 

coverage values of each land cover class were very similar between the two classifications.  

Given the challenges associated with collecting and processing aerial imagery (e.g., cost and 

time) for the entire Caribou Hills region, which spans approximately 251 km2, the observed 

similarities between the two classifications indicates that image acquisition and ground-truth 

validation from smaller spatial extents, such as that conducted in 2021, may serve as a useful 

proxy for the Caribou Hills region as a whole, provided that the area captures sufficient variation 

across the land cover classes. In turn, the classifications and methodology presented here provide 

a valuable framework for assessing changes in vegetation cover over time or to model ecosystem  

shifts.  

Recommendations for aerial imagery classification efforts  

Both land cover classifications were highly accurate and offer significant insight into 

what is known about land cover in this region. However, there are several considerations that 

should be taken into account that could further improve classifications of aerial imagery in the 

future. First, as mentioned previously, processing the 2019 imagery, which covered a very large 

spatial extent took a very long time and required significant processing power. Accordingly, 

acquiring imagery over a smaller area representative of the grassland overall would serve as a 

useful proxy and would enable managers to process images more efficiently and with similar 

accuracy. Alternatively, imagery could be divided into tiles and processed individually before 

mosaiced back together. This would help eliminate some exposure implications.  

Second, aerial imagery should ideally be collected on a clear or overcast day. Due to 

variable cloud cover in the 2021 acquisition, differences in exposure across the acquisition area 

resulted in spectral differences across the image that made classification of the full spatial extent 
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difficult. It was likely for this reason that the classification gridded accuracy was lower for the 

2021 classification compared to the 2019 classification gridded accuracy (Table 1 & 2). In an 

effort to reduce the effect of spectral confusion between land cover classes due to differences in 

exposure across the image, I divided the orthomosaic into several tiles of smaller extent and that 

minimized variability in exposure in each. I then classified each tile individually and finally 

mosaiced the tiles back together to recreate the full classified orthomosaic. The 2019 imagery 

was split into two tiles based on exposure, while the 2021 imagery was split into five tiles based 

on exposure. Doing this enhanced the overall quality and cohesiveness of the classification. 

Differences in classification as a result of exposure can be seen in Fig. 7; there is a distinct line 

that highlights how grass is incorrectly classified as shrub below but correctly classified as grass 

above it. Which class was chosen was dependent on the exposure of the tile it was contained 

within. Ideally, exposure would be consistent across the entire study area but cloud movement 

caused exposure to differ even within a single flight line. While tiling the study area into areas of 

similar exposure enhanced the overall quality and cohesiveness of the classifications, variability 

in exposure within a single tile still impacted classification accuracy.  

Lastly, while the maximum likelihood classification method used in this study was 

successful and replicable; numerous other approaches exist to classify aerial imagery, including 

image segmentation (using the “Mean Shift” tool), object-based classification, creating training 

data with polygons as opposed to points, or using a convolution filter. Different classification 

methods should be considered depending on the research objectives of a given study. 

Additionally, other related classification objectives could be studied with remote sensing or aerial 

imagery. For example, aerial imagery can be used to measure biodiversity. Because species 

reflect different amounts of infrared light back into the atmosphere, infrared aerial imagery can 
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be used to identify between species types and abundance. If infrared imagery is not feasible, 

NDVI can be calculated from near-infrared and RGB bands for a similar effect.  

Classification using IR or NDVI would be useful in measuring and monitoring biodiversity on a 

larger scale or in more remote areas where field work methods are not able be performed. 

However, the workflow in this study may offer complementary insights when the objective is to 

classify broad vegetation types across the landscape.  

Future directions  

The classification method presented in this study aided in identifying the composition of 

the Caribou Hills Grassland and has implications for monitoring vegetation change over time. 

The Caribou Hills Grassland has experienced a significant and rapid ecosystem shift over the last 

several decades, transitioning from a historically spruce-dominated forest to what is now 

primarily a grassland with less than 5% tree cover. Nevertheless, as the SBB outbreak and 

wildfires were relatively recent, there is potential for forest succession to occur slowly yet 

steadily over time. Using the approach developed in this study to classify major vegetation types 

in the grassland will be important for monitoring the future of the region as a whole. In addition 

to monitoring the potential ecosystem shift from forest to grassland, this method may be 

extended to monitor other processes including shrubification, spruce recruitment, and 

disturbances.    

Furthermore, it may be of interest to classify spruce trees as points across the grassland to 

perform point-pattern analyses. Point-pattern analyses could provide valuable insight into the 

recruitment and succession of spruce which will largely dictate the ecology of the region and 

future biodiversity. Consistent work flows to classify individual spruce trees as points is 
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currently still in development, but will provide valuable information to enhance our collective 

understanding of spruce recruitment within the grassland.   

  Using remote sensing and classification methods similar to those in this study should be 

taken advantage of across other regions of the Arctic, or globally to monitor and understand 

large-scale and/or remote landscape change. The ways in which aerial imagery and classification 

methods can be used is expanding and constantly being explored. This study focused on one of 

these ways but with larger aims to encourage further use of remote sensing and GIS approaches.   

However, it is imperative to consider the challenges associated with using remote sensing 

technology for monitoring. Managers and remote sensing scientists must work together as both 

fields are specialized in method and ideology (Kennedy et al., 2009). Remote sensing scientists 

must understand the needs and approach of the managers' goals, and the managers must have or 

develop an understanding of the fundamental remote sensing issues that arise in detection and 

monitoring projects (Kennedy et al., 2009). Remote sensing technology is still being built and 

tested, which contributes to present restrictions. It can take decades to acquire and develop a 

reliable system that encompasses a diversity in acquisitions. Education, training and experience 

will be key in sharing remote sensing knowledge across disciplines  

Conclusion  

By developing an approach to delineate land cover in a dynamic landscape such as the 

Caribou Hills grassland – an area that has experienced significant impacts from SBB outbreak, 

wildfire, and drought conditions in the past three decades – this study provides a strong 

foundation for future research and monitoring. Furthermore, while monitoring patterns of 

recruitment, succession, and biodiversity will be incredibly valuable for adaptive management in 

the Caribou Hills grassland region, the workflow developed in this study is flexible and may 
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serve as a useful framework for remote monitoring of other regions experiencing similar 

ecological or climatic shifts.   
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TABLES AND FIGURES 

 

Table 1. Confusion matrices for the 2019 classification. Confusion matrices are reported for 

accuracy assessments performed using both the ‘gridded’ (fishnet) validation method and 

‘ground-truth’ validation method. User’s Accuracy and Producer’s Accuracy are reported, with 

the overall accuracy outlined in black.   

 

 

 

 

 

 

 

 

 

 

 

 

 

GRIDDED ASSESSMENT    

Class Tree  Shrub  Grass  Snow  
Total 

Points 

User's 

Accuracy 
Kappa 

Tree  83 0 0 0 83 100% 0 

Shrub  0 76 0 0 76 100% 0 

Grass  0 2 78 2 82 95.1% 0 

Snow  0 0 5 40 45 88.9% 0 

Total Points 83 78 83 42 286 0 0 

Producer's Accuracy 100% 97.4% 93.9% 95.2% 0 96.8% 0 

Kappa 0 0 0 0 0 0 0.96 

        

GROUND-TRUTH ASSESSMENT    

Class Tree  Shrub  Grass  Snow  

Total 

Points 

User’s 

Accuracy Kappa 

Tree  86 0 0 0 86 100% 0 

Shrub  3 47 0 0 50 94% 0 

Grass  6 48 90 7 151 59.6% 0 

Snow  1 0 10 53 64 82.8% 0 

Total Points 96 95 100 60 351 0 0 

Producer's Accuracy 89.6% 49.5% 90% 88.3% 0 78.6% 0 

Kappa 0 0 0 0 0 0 0.71 
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Table 2. Confusion matrices assessing accuracy for the 2021 imagery classification, without 

aggregation applied. Confusion matrices are reported for accuracy assessments performed using 

both the ‘gridded’ (fishnet) validation method and ‘ground-truth’ validation method. User’s 

Accuracy and Producer’s Accuracy are reported, with the overall accuracy outlined in black. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRIDDED ASSESSMENT     

Class Tree  Shrub  Grass  Total Points User's Accuracy Kappa 

Tree  55 0 1 56 98.2% 0 

Shrub  9 59 3 71 83.1% 0 

Grass  1 6 61 68 89.7% 0 

Total Points 65 65 65 195 0 0 

Producer's Accuracy 84.6% 90.8% 93.8% 0 89.7% 0 

Kappa 0 0 0 0 0 0.85 

       

GROUND-TRUTH ASSESSMENT     

Class Tree  Shrub  Grass  Total Points User's Accuracy Kappa 

Tree  68 1 1 70 97.10% 0 

Shrub  12 85 0 97 87.60% 0 

Grass  11 5 89 105 84.80% 0 

Total Points 91 91 90 272 0 0 

Producer's Accuracy 74.7% 93.4% 98.9% 0 89.0% 0 

Kappa 0 0 0 0 0 0.83 
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Table 3. Confusion matrices for the 2021 classification. Confusion matrices are reported for 

accuracy assessments performed using both the ‘gridded’ (fishnet) validation method and 

‘ground-truth’ validation method with aggregation applied (top two matrices), and without 

aggregation applied (bottom two matrices). User’s Accuracy and Producer’s Accuracy are 

reported, with the overall accuracy outlined in black. 

2021 GRIDDED ASSESSMENT (WITH AGGREGATION) 

Class Tree Shrub Grass Total Points User's Accuracy Kappa 

Tree 44 3 6 53 83.0% 0 

Shrub 16 52 2 70 74.3% 0 

Grass 5 10 57 72 79.2% 0 

Total Points 65 65 65 195 0.0% 0 

Producer's Accuracy 67.7% 80.0% 87.7% 0.0% 78.5% 0.0% 

Kappa 0 0 0 0 0.0% 0.68 
       

2021 GRIDDED ASSESSMENT (WITH AGGREGATION) 

Class Tree Shrub Grass Total Points User's Accuracy Kappa 

Tree 47 0 0 47 100.0% 0 

Shrub 25 73 0 98 74.5% 0 

Grass 19 18 90 127 70.9% 0 

Total Points 91 91 90 272 0.0% 0 

Producer's Accuracy 51.6% 80.2% 100% 0.0% 77.2% 0.0% 

Kappa 0 0 0 0 0.0% 0.66 
       

2021 GRIDDED ASSESSMENT (WITH NO AGGREGATION) 

Class Tree Shrub Grass Total Points User's Accuracy Kappa 

Tree 55 0 1 56 98.2% 0 

Shrub 9 59 3 71 83.1% 0 

Grass 1 6 61 68 89.7% 0 

Total Points 65 65 65 195 0.0% 0 

Producer's Accuracy 84.6% 90.8% 93.8% 0.0% 89.7% 0.0% 

Kappa 0 0 0 0 0.0% 0.85 
       

2021 GROUND ASSESSMENT (WITH NO AGGREGATION) 

Class Tree Shrub Grass Total Points User's Accuracy Kappa 

Tree 68 1 1 70 97.1% 0 

Shrub 12 85 0 97 87.6% 0 

Grass 11 5 89 105 84.8% 0 

Total Points 91 91 90 272 0.0% 0 

Producer's Accuracy 74.7% 93.4% 98.9% 0.0% 89.0% 0.0% 

Kappa 0 0 0 0 0.0% 0.83 
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Table 4. Percent Cover of each class for the 2019 classification, the 2021 classification with 

aggregation, and the 2021 classification without aggregation. Snow was not present during the 

collection of the 2021 imagery. 

 

 

Class 

Percent Coverage 

2019 
 2021 

  w/aggregation w/out aggregation 

Tree  3.13%  2.75% 7.25% 

Shrub 25.31%  29.61% 34.38% 

Grass  67.43%  67.65% 58.36% 

Snow 4.12%   0% 0% 
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Figure 1. Location of the Kenai Peninsula in Alaska, United States. The Caribou Hills Grassland 

is located in the west-central portion of the Kenai Peninsula on the western boundary of the 

Kenai National Wildlife Refuge (upper right), with the 2019 and 2021 imagery acquisition 

boundaries within the Caribou Hills Grassland (lower right). Locations of ground-truthed plots 

within the 2021 image acquisition boundary are depicted by green pins.   
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Figure 2. (a) 2019 RGB aerial imagery acquired at 0.1 m (10 cm) resolution. (b) 2019 land cover 

classification of the aerial imagery with a resolution of 0.3 m (30 cm). Land cover classes 

include tree, in green; shrub, in brown; grass, in yellow; and snow, in white.  
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Figure 3. (a) 2021 RGB aerial imagery acquired at 0.05 m (5 cm) resolution. (b) 2021 land 

cover classification of the aerial imagery with a resolution of 0.2 m (20 cm). Land cover classes 

include tree, in green; shrub, in brown; and grass, in yellow.  
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 2019 2021 2019 2021 

  
  

Figure 4. (a) Comparison of the 2019 and 2021 imagery and corresponding classifications from 

an area with sparse vegetation cover; and (b) Comparison of the 2019 and 2021 imagery and 

corresponding classifications from an area with dense vegetation cover.   
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Figure 5. A comparison of the classification with and without the aggregation effect (a) zoomed-

in area of the 2021 classification without aggregation (5 cm resolution) (b) zoomed-in area of the 

2021 with aggregation (cell factor: 6, aggregation technique: maximum resulting in 20 cm 

resolution).   
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Figure 6. An example of data from ground-truth plot 24 collected during August 2021 (a) 2021 

imagery with plot 24, including a 10-m radius plot drawn, and four trees labeled that were 

ground-truthed (b) Classification of plot 24 with four labeled trees that were ground-truthed (c) 

Data collected on the ground for each recorded tree; includes species and number, DBH, tree 

canopy radius, height, distance from plot center, and tree bearing from plot center (d) Photograph 

taken on the ground from plot center in the eastern direction, capturing trees 1, 2 and 4 (tree 3 

was not visible while facing east, but was captured in the north facing image).  
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Figure 7. A comparison of 2021 imagery and classification along a polygon boundary where 

exposure changed drastically (a) 2021 zoomed-in imagery (b) 2021 zoomed-in classification of 

the same area.  
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