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Abstract 

 

As a result of climate change driving global resource scarcity, ecosystems are pressured 

to respond to recent regime shifts. Specifically, in arid ecosystems, stronger droughts and rapidly 

rising annual temperatures are increasing water scarcity and forcing arid landscapes to become 

more resilient to these environmental changes. Self-organized patchiness of vegetation structure 

has been observed in arid ecosystems worldwide as a response to water scarcity. Mathematical 

models have explored the significance of these patterned landscapes and have suggested their 

existence as a sign of resiliency in arid ecosystems, but also as a possible forewarning of a 

catastrophic shift to a homogenous bare ecosystem. Several factors, like slope orientation and 

mechanisms such as positive feedbacks and bistability, create a periodic banded vegetation 

pattern. We investigated the formation of the periodic banded vegetation patterns in Southern 

Colorado at Chico Basin Ranch. We expected the landscape at Chico Basin Ranch to start as a 

spatially random, homogenous landscape that developed periodic patterns over time in response 

to a change in climate. A Fast Fourier Transform (FFT) analysis method was developed on R 

Studio and then applied to high resolution imagery of the 1x2 km area of interest for the years 

1999, 2003, 2015, 2017 and 2019. The quantitative analysis searched for statistically significant 

banded vegetation patterns, the dominant waves in each AOI and the orientation of the pattern. 

Climate trends observed in El Paso County, CO show an upward linear trend in temperature 

maxima/minima combined with three significant droughts which occurred during the 20-year 

period of this study. We observed a notable increase in significant banded vegetation patterns 

after the droughts occurred. We found that there are statistically significant banded vegetation 

patterns at Chico Basin Ranch and the coverage of significant patterns has increased since 1999 

from 14.7% to 36% in 2019 of the AOI. The landscape at Chico Basin did not begin as a 
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spatially random homogenous landscape, as we had originally expected, but rather as a landscape 

with a low proportion of statistically significant patterns that was not spatially random. 

Generally, the patterns are oriented at ~90° (North). The effects of climate change could be 

driving the continued formation of the vegetation patterns at Chico Basin Ranch.  

 

Introduction 

 

 

 Self-organized patchiness of vegetation structure in desert and arid ecosystems have been 

observed around the globe but have been studied in detail in arid regions of Africa and Australia 

(Dunkerley et. al, 2018). Arid ecosystems are defined as ecosystems with mean annual 

precipitation rates of 150-250 mm of rainfall during the growing season and 60 – 100 mm the 

rest of the year (Noy-Meir, 1973). Since rainfall is infrequent and variable throughout the year, 

competition for water is a necessary controlling factor that drives important processes in arid 

ecosystems (Noy-Meir, 1973).  

This study will focus on the formation of a periodic anisotropic pattern that is dependent on 

slope characteristics and water availability. The patterns follow slope contour lines and improve 

water efficiency in arid ecosystems where water conservation is necessary (Valentin and 

d’Herbés, 1999; D’Odorico et. al, 2006). These patterns vary in length and width, alternating 

between bands of vegetated and bare sections (Figure 2).   

Limited water resources in these regions force ecosystems to create efficient capture and 

storage mechanisms. The organization of vegetation bands on a downhill slope hinder surface 

runoff and promote more efficient water conservation. Spatial patterns are created under certain 

drought conditions (Vega and Montaña, 2011). The bare patches, called intergroves, create a 

smooth runoff surface for sheet flow the vegetated groves can absorb (Noy-Meir, 1973; Ludwig 
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et. al, 1998). It is a source (intergrove) to sink (grove) system (Valentin and d’Hérbes, 1999). 

Banded vegetation patterns are slope dependent and will not form on flat ground, as they play a 

necessary role in water collection from runoff (Dunkerley, 1999; Rietkerk et. al 2002; Dagbovie 

and Sherratt, 2014). 

The differences in the soil profile of the groves and intergroves drive water infiltration during 

rainfall. The organization of vegetation bands on a downhill slope is aided by the different soil 

properties of the grove/intergrove bands. Intergrove sections promote runoff with smooth, 

crusted surface layers of soil that create a strong, stable soil surface which rainfall will not 

absorb easily into. The soil properties of the groves show a stark difference; the vegetation 

patches promote water absorption and retention (Dunkerley et. al 1999). This is due to the 

presence of roots and lower evaporation rates which are attributed to the reduction of radiation 

and wind speeds with vegetation cover (Noy-Meir, 1973). 

General theory for the formation of periodic spatial patterns was originally developed by 

Turing in 1954 as a system of two interacting and diffusing agents: activator and inhibitor 

(Turing, 1953). This theory was later modified into a conceptual model of long-range inhibition 

and short-range facilitation. At a short range, there is a strong positive feedback loop between 

vegetation growth and soil moisture (Reitkerk et.al, 2004; D’Odorico et. al, 2005). Meaning, 

higher vegetation density will have a greater infiltration rate, and if there is enough water, root 

depth will increase which then increases infiltration and soil moisture, making the vegetation 

patches retain more water and continue to grow. At a larger scale, moisture in soil is depleted by 

vegetated patches. This depletion of moisture constitutes long-range inhibition, because the 

vegetation patches deplete water beyond their margins to levels that cannot sustain vegetation 

growth. There are several mechanisms for this long-range water depletion. Vegetation can 
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deplete runoff through higher infiltration, as mentioned previously. Vegetation can also deplete 

water through extensive root systems or via soil hydraulic conductivity, where soil water moves 

from areas of less negative water potential to that of more negative soil water potential (caused 

by local depletion of water resources by the roots) (Vandervaere et al, 1997).  

Quantitative models have explored the formation of periodic banded vegetation patterns 

as a forewarning for a sudden catastrophic change (Reitkerk et. al, 2004). Multiple possible 

stable states and the sudden catastrophic shifts between them are typically a result of underlying 

positive feedbacks (Sheffer et. al, 2001; Sheffer and Carpenter, 2003); therefore, the facilitation 

that increases the ecological efficiency and resiliency can also extend the existence of the system 

into the assertion of external variables, such as rainfall, that do not allow for the establishment of 

the vegetation. This creates two equally plausible alternative states: grassland and desert. 

Bistability is often associated with sudden catastrophic shifts from one state to another that are 

hard to reverse. Several numerical models have explored the possibility that a decline in rainfall 

and the availability of water may lead to a sudden catastrophic shift in the environment. Instead 

of having two bistable states, plant cover declines rapidly and the ecosystem shifts to a 

homogenous bare environment. This bare state is stable and difficult to manipulate back into a 

vegetated ecosystem (Reitkerk et. al, 2004). It takes a major increase in the limiting resource—

rainfall—to disturb the bare ecosystem enough to disrupt the stable state and renew vegetation 

cover (D’Odorico et. al, 2005). Before the catastrophic shift, two alternative stable states, the 

bare and the vegetated states, exist in these arid ecosystems. Bistability and positive feedback 

loops, as mentioned previously, are two factors that are seen to be the principles causing 

catastrophic ecosystem shifts (Reitkerk et. al, 2004; Sheffer and Carpenter, 2003). Studies link 
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the self-organized vegetation bands to catastrophic shifts, the emergence of the latent desertified 

equilibrium in the models coincides with the emergence of banded vegetation patterns.  

It is important to note that the link between the catastrophic bifurcation and spatial 

patterning is still poorly understood. Quantitative mathematical models leave out several 

potentially important details including the rate and variability of precipitation and key details of 

plant life, history and physiology (Dunkerley et. al, 2018). Models also made the conclusion that 

if annual rainfall decreased at a rate that was slower, representing gradual climate change, stable 

vegetation bands would develop in order to accommodate this change in water availability (Chen 

et. al, 2015). Other studies have supported the hypothesis that vegetation patterns increase the 

efficiency and resiliency of arid ecosystems (D’Odorico et. al, 2006, 2005; Dunkerley et. al, 

2018). A study by D’Odorico et. al (2006) interpreted the formation of patterns as a sign that 

dryland ecosystems were improving their productivity and chance for survival. The numerical 

models are an important aspect of the studies on vegetation patterns, and their findings need to 

be accounted for and recognized, however, should be thought of as an exploration and not a 

definitive conclusion. Numerical models serve as an exploration of these vegetation patterns. 

They are groundwork towards understand how specific spatial patterns might form and what they 

could mean. Quantitative models are an important part of gathering a better understanding of the 

mechanisms and dynamics of arid ecosystems, but they do not serve as a firm explanation to the 

formation and meaning of banded vegetation patterns. It is important to consider their findings 

moving forward, but these models must be paired local studies.  

There are a wide diversity of locations and unique arid ecosystems that banded vegetation 

patterns have developed in. Local studies where the findings are more site-specific and include 

unique soil types, vegetation floristics, accurate mean annual rainfall, and rooting depths will 
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greatly increase the knowledge and understanding of dryland mechanisms and dynamics 

(Dunkerly et. al, 2018). These studies can pair direct observations with the outcomes of modelled 

predictions to compare the important similarities and differences between the two in order to 

make conclusions on if these vegetated bands are actually a forewarning for a catastrophic shift. 

As Bokulich (2014) explains, this will shift the research on vegetation bands from a “how 

possibly” explanation to a “how-actually” explanation.  

Presently, there are not any studies where a catastrophic shift to a desert was preceded by 

clear spatial self-organization of the vegetation. However, several studies demonstrated the 

patterning itself can be relatively fluid and responsive to local conditions. At the same time, to 

our knowledge, there are not any studies that have investigated a system where patterns have 

emerged from previously un-patterned vegetation. 

 This research aims to understand the change and development of a banded vegetation 

pattern found in an arid region of the High Plains in Colorado (Figure 1). In order to study this 

site, we wanted to analyze the pattern from high-resolution aerial images from the years 1999-

2019 to quantify if the observed specific vegetation patterns were significant and how they 

formed over time. Understanding the development and transition of these organized patterns 

could provide important insight into how past, current and future changes in the climate could 

potentially affect arid ecosystems globally. By analyzing natural spatial patterns, we aim to 

gather information on the significance, presence, strength, and orientation of the waves in each 

banded pattern in order to gain understanding of how these patterns are affected exogenously and 

endogenously in the plot studied in the High Plains (Penny et. al 2013).  

 

Methods 

 

2.1. Chico Basin Study Area 
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The site analyzed for specific vegetation patterns is found on the border between El Paso 

County and Pueblo County in Colorado at Chico Basin Ranch. The El Paso County region gets 

approximately 10-15 inches of precipitation annually (CO Airport). There were severe drought 

years in El Paso County during 2002, 2010 and 2012. Data show that average temperatures at a 

study site at the Pueblo Chemical Depot in Pueblo County (coordinates: 38.360426, -

104.345081), approximately 18 km from the AOI at the Chico Basin Ranch, are increasing 0.06 

C° per decade (Rondeau et. al, 2016).  

The study site is a shortgrass prairie which is predominantly covered in a signature 

species of grass called Blue Grama (Chondrosum gracile). Blue Grama grass is nutrient rich and 

an important food-source for cattle. However, from the years 1999-2015, the Colorado Natural 

Heritage Program noted a significant decline in Blue Grama populations (in El Paso County, 

several miles south of our study site) due to the drought years that occurred during their study. 

The population decreased 62% from 1999 to 2015 (Rondeau et. al, 2016), which led to the 

emergence of the specific vegetation bands that will be analyzed in this study (Sticpewich, 

2021). Other dominant vegetation species include other varieties of perennials like the Buffalo 

grass (Bouteloua dactyloides) and the Cholla cactus (Cylindropuntia) (Foster, 2021). 

The site used is a 2 km2 plot located immediately east of the Chico Basin Ranch airstrip 

and approximately 61 km southeast of Colorado Springs, CO (coordinates: 38.513424, -

104.418923). Images taken for analysis were collected from Google Earth aerial imagery for the 

years 1999, 2003, 2017 and 2019. As can be seen in Figure 1, the plot has several notable 

features. There is an airstrip on the western side of the plot which was constructed during the 

analysis period. There are also several cow trails and a watering hole that can be seen in each 

year. Since Chico Basin Ranch is a cattle ranch, it is important to note that the study site has 
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been impacted by grazing. The site contains specific banded vegetation patterns that are 

approximately 30 m long and 5 m wide. These banded vegetation patterns at Chico Basin have 

become more prevalent in the last five years.  

 

2.2 Preparing Climate Data 

The Colorado Climate Center provided the climate information collected for this study. 

The weather station is at the Colorado Springs Municipal Airport, which provides climate data 

from 1948-2022 of El Paso County. The Colorado Springs Airport (coordinates: 38°48'05.9"N 

104°42'09.3"W) is located approximately 56 km northwest of the study site at Chico Basin 

Ranch. Data were extracted from an online database and uploaded into Excel for analysis (Figure 

3). 

 

2.3 Preparing Geospatial Imagery 

 

Data were collected by taking several clippings from Google Earth high-resolution aerial 

imagery. The images taken from Google Earth had a resolution of 0.5-meter pixels. We used 

high-resolution imagery for fine-scale analysis and to be able to classify the differences between 

bare and vegetated patches (Penny et. al, 2013). The area studied in Chico Basin did not have 

high resolution imagery for every year. The majority of the years, half of the research plot did 

not have images taken of it. In the end, the years 1999, 2003, 2015, 2017, and 2019 were chosen 

since they had the high-resolution imagery available for the whole plot (Figure 1).  

The imagery from Google Earth was then uploaded into ArcGIS Pro and prepared for 

further analysis in R Studio (V 1.2.5033). Each year was clipped to the 1 x 2 km plot and 

georeferenced to assure there was not any variance in location of the plot. The images were 
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classified using a two-class quantile classification based on total brightness. Darker patches that 

were vegetation were given the value of 1; whereas the bright, bare sections were given the value 

of 0. The upper values of the classification for each year were recorded and used in later 

analysis. 

 

2.4 Data Analysis 

 

2.4.1 Basic Theory for the Analysis of Compound Waves in Two Dimensions by Fast-Fourier 

Transform 

 

A standard way of analyzing complex patterns is a Fast-Fourier Transform (FFT). An 

FFT takes images with recognizable patterns, which are products of a series of waves combined, 

and takes the pattern apart, extracts each individual cos and sin wave and gives the information 

on the characteristics of each wave found. The resulting product is a two-dimensional 

periodogram. Periodograms offer a more compact description of spatial patterns by showing the 

different frequencies, amplitudes, and orientations of the waves found in the pattern (Ford and 

Renshaw, 1984). Each wave is represented by a pair of signals that represent the direction, 

frequency, and amplitude of the wave. The frequency of the wave is distance from origin which 

is also known as the wave number. The amplitude of the wave is the value behind the pixel, 

shown as a color. It is at a gradient from blue to red, the red waves having the higher amplitudes. 

The direction of the wave is shown by the location of the wave on the periodogram. Figure 4 (c) 

shows the resulting periodogram of the FFT analysis for the propagating wave in Figure 4 (b).  

Before the data could be entered into R Studio to be analyzed, several steps had to 

happen. Below are the annotated steps in the R Studio code used for the analysis. The spectral, 

raster, and rgdal packages are necessary for running the analysis. Patterns are a series of waves 

that are combined which each having its own orientation, magnitude and frequency. In order to 
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analyze the aerial imagery of the banded vegetation patterns, simple wave patterns needed to be 

made and analyzed first. This first section of code makes a periodic pattern in two dimensions 

where the waves are oriented at 45° with a frequency of 3 and an amplitude of 2 (Figure 4 (a)). 

The mathematical formula for a two-dimensional wave is  

 

𝑧 = 𝑎 ∗ 𝑠𝑖𝑛(2𝜋 ∗ (𝑓𝑥)𝑥 + 2𝜋(𝑓𝑦) ∗ 𝑦 

 

where a = amplitude and fx/y are the varying frequencies of x and y. 

 

library(spectral) 

library(raster) 

library(rgdal) 

x <- seq(0, 1, length.out = 100)  

y <- seq(0, 1, length.out = 100) 

 

# calculate the data 

m <- matrix(0, nrow=length(x), ncol=length(y))  

for (i in 1:length(x)) 

  for (j in 1:length(y)) 

    m[i, j] <- 2* sin(2 * pi* 3 * x[i] + 2 * pi *3* y[j]) 

 

#plotting the wave 

rasterImage2(x = x, 

             y = y, 

             z = m, 

             main = "Wave at 45°") 

 

 

Periodic patterns can consist of waves in multiple directions. The code below shows the 

creation of a more complex pattern where three waves are combined. It combines a diagonal 

wave, similar to the code above, with a North-South wave and an East-West wave of varying 

amplitudes and frequencies Figure 4 (b). 

 

x <- seq(0, 1, length.out = 100)  
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y <- seq(0, 1, length.out = 100) 

 

# calculate the data 

m <- matrix(0, nrow=length(x), ncol=length(y))  

for (i in 1:length(x)) 

  for (j in 1:length(y)) 

    m[i, j] <- sin(2*pi*3*x[i] + 2*pi*3* y[j]) + sin(2*pi*0*x[i] + 2*pi*7*y[j]) + sin(2*pi*12*x[i] 

+2*pi*0*y[j]) 

 

#plotting the wave 

rasterImage2(x = x, 

             y = y, 

             z = m, 

             main = "Propagating Wave") 

 

 

Figure 4 (c) shows the periodogram for the propagating wave in Figure 4 (b) created by the 

code below. The periodogram produces results that are symmetrical at 0,0; meaning, if there is a 

peak at 90°, the peak will also show up on the periodogram reflected at 270°. This would create 

an analysis that is not accurate since there are two peaks associated to one wave. This issue is 

resolved by cutting the matrix in half and only using the upper half of the periodogram for 

analysis. After fy is cut in half, the fx and fy vectors, defined in the code below, are joined 

together to create a final matrix (I.for.analysis) that is the upper half of the original matrix. 

 

 

FT <- spec.fft(x = x1, y = y1, z = m) 

# plot 

plot(FT,xlim = c(-15, 15), ylim = c(-15, 15)) 

 

fx<-FT$fx # x axis of periodogram 

fy<-FT$fy # y axis of periodogram 

I<-abs(FT$A) # raster image of periodogram  

 

#I.for.analysis<-I[,51:100] 

I.for.analysis<-I.final[,(1+.5*length(fy)):length(fy)] 
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There are several ways the FFT can be further analyzed. The waves can be extracted 

individually and the direction of the waves can be focused on through the theta spectrum. This 

splits the periodogram into slices, similar to that of a pie, and aggregates the signal within each 

slice (Figure 4 (d)). The aggregated signals are the degrees at which the orientation of the waves 

are trending. The angles go counterclockwise. Directly East is 0°, North is 90°, West is 180° and 

South is 260°.  

 

 

fy.for.analysis<-fy[(1+.5*length(fy)):length(fy)] 

theta.matrix<-matrix(NA,nrow=length(fx),ncol=length(fy.for.analysis)) 

dim(theta.matrix) 

for (i in 1:length(fx)){ 

  for (j in 1:length(fy.for.analysis)){ 

    theta.matrix[i, j] <- (180/pi)*atan2(fy.for.analysis[j],fx[i]) 

  }} 

image(theta.matrix) 

 

ang.bin.size<-10 # how many degrees is each bin 

ang.bin.number<-180/ang.bin.size #needs to be an integer 

ang.bin.cutoffs<-seq(from=0,to=180,by=ang.bin.size) 

#ang.bins are the centers of the ang bin cut offs for plotting 

ang.bins<-(ang.bin.cutoffs[1:(length(ang.bin.cutoffs)-

1)]+ang.bin.cutoffs[2:(length(ang.bin.cutoffs))])/2 

 

ang.bin.cell.counter<-numeric(length = ang.bin.number) #records the number of pixels in each 

bin 

ang.bin.aggregated.signal<-numeric(length = ang.bin.number) #records the sum of values of all 

pixels counted in each bin  

 

####actual theta spectrum analysis#### 

for (a in 1:ang.bin.number){  

  for (i in 1:length(fx)){  

    for (j in 1: length(fy.for.analysis)){  

      if(theta.matrix[i,j]>=ang.bin.cutoffs[a]&theta.matrix[i,j]<ang.bin.cutoffs[a+1]){ 

        ang.bin.cell.counter[a]<-ang.bin.cell.counter[a]+1 

        ang.bin.aggregated.signal[a]<-ang.bin.aggregated.signal[a]+I.for.analysis[i,j] 

      }}}} 

ang.bin.averaged.signal<-ang.bin.aggregated.signal/ang.bin.cell.counter 

plot(ang.bins,ang.bin.averaged.signal,type="l") 
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The wavelength signal can also be interpreted. This is done using the radial spectrum 

analysis. The radial analysis aggregates signals that share the same frequency into rings of 

concentric circles. The orientation of the signals is not accounted for. The signals show the 

wavelengths that are present in the pattern. In the code, each ring is isolated so that the number 

of cells can be counted and the signals can be aggregated. This produces a radial spectrum graph 

that peaks at each wave frequency (Figure 4 (e)). 

 

 

##Radial spectrum 

radial.matrix<-matrix(data=0,nrow=length(fx), ncol=length(fy))  

 

#calculates the distance of each pixel from the center 

for (i in 1:length(fx)){ 

  for (j in 1:length(fy)){ 

    radial.matrix[i, j] <- ((fx[i]^2)+(fy[j])^2)^0.5 #calculates the distance of each pixel from  

thecenter 

  }} 

image(radial.matrix) #mid-processing check 

 

r.max<-round(max(radial.matrix)) #this is the maximum wave number (frequency) that is 

detectable 

#here r.max is 70 when rounded (distance to the corners) 

r.max<-70 

r.bin.size<-1  

r.bin.number<-r.max/r.bin.size #=70 

r.bin.cutoffs<-seq(from=0,to=r.max,by=r.bin.size) 

r.bins<-(r.bin.cutoffs[1:(length(r.bin.cutoffs)-1)]+r.bin.cutoffs[2:(length(r.bin.cutoffs))])/2 

 

####actual radial spectrum analysis#### 

r.bin.cell.counter<-numeric(length = r.bin.number) #records the count of the number pixels per 

bin (as we move out, the number of pixels increases) 

r.bin.aggregated.signal<-numeric(length = r.bin.number) #records the sum of  values of pixels in 

each bin 

for (a in 1:r.bin.number){ 

  for (i in 1:length(fx)){ 

    for (j in 1: length(fy)){ 

      if(radial.matrix[i,j]>=r.bin.cutoffs[a]&radial.matrix[i,j]<r.bin.cutoffs[a+1]){ 

        r.bin.cell.counter[a]<-r.bin.cell.counter[a]+1 

        r.bin.aggregated.signal[a]<-r.bin.aggregated.signal[a]+I.final[i,j] 
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      }}}} 

 

r.bin.averaged.signal<-r.bin.aggregated.signal/r.bin.cell.counter 

 

 

3.2.2 Site Imagery Analysis 

The 1x2 km clips from ArcGIS Pro were uploaded into R Studio. The images acquired 

from ArcGIS were adjusted to an 8-bit grey scale in preparation to upload them into R. The code 

below creates a raster of the 1x2 km plot from the 8-bit grey scale images made in ArcGIS. The 

raster created in the code is from the image of the 1x2 km plot in 2017. The 2017 raster is loaded 

into an automation which analyzes the raster by cutting out 80 m tiles of the image and running 

an FFT analysis, as explained above, on them. The entire 1x2 km plot is analyzed in a series of 

80 m tiles which provides information on the characteristics of the significant waves in the 

patterns of each tile. This automation will examine the plot for each year available. 

 

AOI.tiff<- raster("AOI_2017_clip.tif") 

AOI.tiff 

plot(AOI.tiff)  

 

 

The image of the area of interest (AOI) undergoes a two-step classification based on the 

upper values from the quantile classification extracted from ArcGIS Pro. For example, with the 

8-bit (ranging 0 – 255) grey scale image of the AOI in 2017, any values less than 109 are 

replaced with zero and any values greater than 109 with one. This creates an image with two 

values. This is required in order to run the FFT analysis on the images of the AOI. The upper 

values are different for each year. The AOI is then made into an isolated matrix, which removes 

extra geospatial information that is not needed. 
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# upper values for 2019:110, 2017:109, 2015:90, 2003:121, 1999:87 

r.mat<-c(-Inf,109,0,109,Inf,1) 

rclmat<-matrix(r.mat, ncol=3, byrow=TRUE) 

AOI.tiff<-reclassify(AOI.tiff, rclmat) 

 

#extracting the matrix that codes the image 

mat.AOI.tiff<- as.matrix(AOI.tiff)  

 

 

The code automates the extraction and analysis of each 80 m tiles in the 1x2 km AOI to 

determine if patterns are present. There was an exploration of tile sizes before deciding that 80 m 

fit the best. This is because waves come at different sizes, and different patterns would be 

recognized depending on the size of the tile. We elected 80 m to be the tile size after exploring 

60 m, 80 m, 100 m, 120 m and 140 m tiles. 80 m tiles maximized the algorithm’s ability to find 

waves, as shown in Figure 5. The 1x2 km clip was trimmed to in order to be divisible by 80 m. 

The trimmed AOI matrix was then rotated to the correct orientation, where North on the clip 

corresponded to 90° with respect with to the x axis. 

 

 

tile.size<-80*2 #this is in number of pixels, we have 0.5m pixels 

k<-dim(mat.AOI.tiff)[1] 

k # number of rows 

l<-dim(mat.AOI.tiff)[2] 

l # number of columns 

new.row<-trunc(k/tile.size)*tile.size 

new.row 

new.col<-trunc(l/tile.size)*tile.size 

new.col 

 

#trim clip to make it (1x2km) divisible by tile size 

mat.AOI.tiff<-mat.AOI.tiff[1:new.row,1:new.col] 

 

#rotating the matrix so when plotted North in north 

rotate <- function(x) t(apply(x, 2, rev)) 

AOI<-rotate(mat.AOI.tiff) 
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 A portion of the code that cut a test tile out of the AOI was implemented before the 

automation ran in order to assure the code was functioning properly. Additionally, x and y 

coordinates were created for the image and the analysis. The coordinates started at 0,0 in the 

upper right corner of the tile. There are 25 rows and 12 columns to the AOI clip. 

 

 

i<-6 # i goes to 25 

j<-6 # j goes to 12 

tile.ij<-AOI[((tile.size*i-tile.size)+1):(tile.size*i),((tile.size*j-tile.size)+1):(tile.size*j)] 

 

x <- seq(0, 1, length.out = dim(tile.ij)[1])  

length(x) #must be the same as number of rows in the image matrix 

y <- seq(0, 1, length.out = dim(tile.ij)[2]) 

length(y) #must be the same as number of columns in the image matrix 

 

 

Several parts of the code are repeating parts of the analysis that could be kept out of the 

automation. Most of this code defines characters that will repeat as the same value each time the 

FFT is run on a different 80 m tile of the plot. This includes cutting the periodogram matrix in 

half to prevent symmetrical wave peaks and creating empty matrices with the same dimensions 

as the matrix cut in half to input theta and radial spectrum values. Angles are corrected so zero is 

pointing east in the theta matrix in order to identify proper orientation values for the theta 

spectrum analysis. The sister matrix created for the radial spectrum analysis populates each cell 

with their distance from 0,0. The rest of the repeating parts are important cutoff values that 

define the bin sizes of the theta and radial analyses.  

 

 

FT<-spec.fft(x = x, y = y, z = tile.ij)  

fx<-FT$fx 

fy<-FT$fy 

 

fy.for.analysis<-fy[(1+.5*length(fy)):length(fy)] 
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theta.matrix<-matrix(data=0,nrow=length(fx),ncol=length(fy.for.analysis))  

radial.matrix<-matrix(data=0,nrow=length(fx),ncol=length(fy.for.analysis)) 

 

#calculating angles for the theta matrix .... zero is pointing east 

for (i in 1:length(fx)){ 

  for (j in 1:length(fy.for.analysis)){ 

    theta.matrix[i, j] <- (180/pi)*atan2(fy.for.analysis[j],fx[i]) 

  }} 

 

#populating the radial matrix with distances from the (0,0) on fx and fy vectors 

for (i in 1:length(fx)){ 

  for (j in 1:length(fy.for.analysis)){ 

    radial.matrix[i,j] <- ((fx[i]^2)+(fy.for.analysis[j])^2)^0.5  

  }} 

 

### setting angular bin size cutoffs ### 

ang.bin.size<-5 

ang.bin.number<-180/ang.bin.size 

ang.bin.cutoffs<-seq(from=0,to=180,by=ang.bin.size) 

 

### setting radial bin size cutoffs #### 

r.max.mk<-20 

r.bin.size<-1/3 #bin sizes are adjusted here  

r.bin.number<-r.max.mk/r.bin.size #figuring out how many bins we have 

r.bin.cutoffs<-seq(from=0,to=r.max.mk,by=r.bin.size) 

 

 

The last repeating section of the code is called the ‘doughnut’. This is an integral part of 

the analysis. The ‘doughnut’ is first created by making an empty matrix with the dimensions of 

fx and fy. For each 80 m tile that is examined in the FFT automation, any values less than one 

and greater than 12 in the periodogram produced by the FFT will be replaced with zero. The 

result is a periodogram which only records values between one and twelve, resembling a 

doughnut. The cutoff values are important and the doughnut needs to be of an appropriate size in 

order to recognize the relevant patterns (Penny et. al, 2013). The doughnut was first applied to 

three different 80 m tiles of the AOI as an exploration to determine the appropriate cutoff values. 

One tile did not have any recognizable banded vegetation patterns, the next had a mix of banded 
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patterns and patchiness and the last tile had a significant amount of banded vegetation patterns. 

The banded vegetation patterns consist of wavelengths that repeat every 10-15 meters. Any 

wavenumbers larger than 12 would analyze noise-like variability at the level of individual 

patterns. Wavenumbers of 1 would be the dominant wavelength. This is because anytime there is 

a gradient-like pattern in the image, the densest sections will create significant wavelengths of 

one. After the exploration, it was decided that the cutoff values of 1 and 12 removed any static 

and waves that would undermine the analysis. 

 

doughnut<-matrix(data=0,nrow=length(fx), ncol=length(fy)) 

for (i in 1:length(fx)){ 

  for (j in 1:length(fy)){ 

    doughnut[i, j] <- ((fx[i]^2)+(fy[j])^2)^0.5 #calculates data of pixels from each direction ie 

distance from center 

  }} 

doughnut[doughnut <=1] <-0 

doughnut[doughnut >=12] <-0 

doughnut[doughnut >1 & doughnut <12] <-1 #replace numbers between 1 and 12 with 1 

 

 

Empty matrices were also created to put the results of the automation into. The results 

include the radial spectrum, the theta spectrum and the dominant wave for each 80 m tile, which 

appropriate empty matrices have been made for. 

 

 

### Define output matrices ### 

# R.mat is an empty matrix to put our r-spectrum (peak wave) data into 

# If smaller than statistically significant cut off value, values will be zero 

R.mat<-matrix(data=0,nrow=dim(AOI)[1]/tile.size,ncol=dim(AOI)[2]/tile.size) 

#R.mat 

 

# Th.mat is an empty matrix to put our theta-spectrum (dominant orientation) data into 

Th.mat<-matrix(data=0,nrow=dim(AOI)[1]/tile.size,ncol=dim(AOI)[2]/tile.size) 

 

# Dominant wave matrix 

W1.wave.number <-matrix(data=0,nrow=dim(AOI)[1]/tile.size,ncol=dim(AOI)[2]/tile.size) 
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W1.dir<-matrix(data=0,nrow=dim(AOI)[1]/tile.size,ncol=dim(AOI)[2]/tile.size) 

W1.pc.var<-matrix(data=0,nrow=dim(AOI)[1]/tile.size,ncol=dim(AOI)[2]/tile.size) 

 

 

After all repeating parts of the code are defined, the automation for the analysis can be 

run. The automation is a large for-loop which analyzes the entire 1x2 km AOI in 80 m 

increments for the orientation, wavelength and dominant wave of the pattern in each tile. The 

theta and radial spectrum in the for-loop also are compared against a confidence interval (in the 

code: qchisq()) that assures the values are statistically significantly different from complete 

spatial randomness (Ford and Renshaw, 1984). The result is a culmination of analyses which 

show the presence of the banded vegetation patterns of the given year. The code was applied to 

rasters of the years 1999, 2003, 2015, 2017 and 2019. It begins by cutting an 80 m tile out of the 

plot starting at (0, 0). After the analysis is run on one 80 m tile, the next tile is cut out and the 

analysis is run again on the new tile. The analysis runs until the last tile is cut out at the bottom 

right corner, (12, 25), on the 1x2 km plot. After the tile is cut out, the FFT is ran on the tile. The 

doughnut is placed on the periodogram created by the FFT and the lower half of the periodogram 

is thrown out. Only the pixels in the doughnut are analyzed. Theta spectrum, radial spectrum and 

dominant wave analyses are run and the results for the tile are placed into the empty matrices 

(Th.mat, R.mat, W1.dir, W1.pc.var & W1.wave.number) created earlier.  

  

 

### Automation ### 

dim(R.mat) # setting up the loop that fills the matrix 

dim(AOI) 

r.row<-dim(R.mat)[1] 

c.col<-dim(R.mat)[2] 

 

for(r in 1:r.row) { # r = rows 

  for(c in 1:c.col) { # c = columns 

   #cutting the tile 
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    tile<-AOI[((tile.size*r-tile.size)+1):(tile.size*r),((tile.size*c-tile.size)+1):(tile.size*c)] #cutting     

the tile 

     

    #centering tile 

    mean.tile <- mean(tile) 

    tile<-tile-mean.tile 

    #running the FFT 

    FT<-spec.fft(x = x, y = y, z = tile) 

    I<-abs(FT$A) #extracting the periodogram matrix 

    #calculating variance 

    mean.tile <- mean(tile) #calculate mean 

    tile.prime <-tile-mean.tile #calculating departures from the mean 

    tile.prime.squared <- tile.prime^2 #gets rid of negatives and shows stronger values 

    sum.squares <- sum(tile.prime.squared) #add squares together 

    variance.tile <- sum.squares/(dim(tile)[1]*dim(tile)[2]) #divide by sample size 

    #adjusting periodogram matrix by the variance 

    I.mr <- (dim(tile)[1]*dim(tile)[2])*I^2 

    I.final <- I.mr/variance.tile 

    #I.final<-I^2 

    I.final<-I.final*doughnut 

    #throw away the bottom half of the periodogram 

    I.for.analysis<-I.final[,(1+.5*length(fy)):length(fy)] 

    fy.for.analysis<-fy[(1+.5*length(fy)):length(fy)] 

    # sets the angular analysis vectors 

    ang.bin.cell.counter<-numeric(length = ang.bin.number) #counts number of pixels  

    ang.bin.aggregated.signal<-numeric(length = ang.bin.number) #sum of values of all pixels  

    #ang.bins are the centers of the ang bin cut offs for plotting 

    ang.bins<-(ang.bin.cutoffs[1:(length(ang.bin.cutoffs)-

1)]+ang.bin.cutoffs[2:(length(ang.bin.cutoffs))])/2 

    for (a in 1:ang.bin.number){ #180/10 

      for (i in 1:length(fx)){ #length of x-axis 

        for (j in 1: length(fy.for.analysis)){ #length of y-axis 

          if(theta.matrix[i,j]>=ang.bin.cutoffs[a]&theta.matrix[i,j]<ang.bin.cutoffs[a+1]){  

            if(I.for.analysis[i,j]>0){ang.bin.cell.counter[a]<-ang.bin.cell.counter[a]+1} 

            ang.bin.aggregated.signal[a]<-ang.bin.aggregated.signal[a]+I.for.analysis[i,j] 

          }}}} 

    ang.interval<- (1/(2*ang.bin.cell.counter))*qchisq(.99999, df=ang.bin.cell.counter*2) # 

confidence interval from Renshaw and Ford (1984) 

    ang.bin.avg.signal<-ang.bin.aggregated.signal/ang.bin.cell.counter 

    ang.max<-max(ang.bin.avg.signal) # value of the peak 

    ang.max.index<-which.max(ang.bin.avg.signal) 

    ang.max.location<-ang.bins[ang.max.index] 

    ang.max.interval.cutoff<-ang.interval[ang.max.index] 

    if(ang.max>ang.max.interval.cutoff){Th.mat[r,c]<-ang.max.location} else {Th.mat[r,c]<-(-

999)}  
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    # radial analysis set up  

    r.bin.cell.counter<-numeric(length = r.bin.number) #counts number pixels per bin (as we 

move out, the number of pixels increases), how many elements/bins are in each element of the 

radial bin 

    r.bin.aggregated.signal<-numeric(length = r.bin.number) #sum on values of pixels 

    r.bins<-(r.bin.cutoffs[1:(length(r.bin.cutoffs)-1)]+r.bin.cutoffs[2:(length(r.bin.cutoffs))])/2 

     

    for (b in 1:r.bin.number){ 

      for (k in 1:length(fx)){ 

        for (l in 1:length(fy.for.analysis)){ 

          if(radial.matrix[k,l]>=r.bin.cutoffs[b]&radial.matrix[k,l]<r.bin.cutoffs[b+1]){ 

            if(I.for.analysis[k,l]>0){r.bin.cell.counter[b]<-r.bin.cell.counter[b]+1} 

            r.bin.aggregated.signal[b]<-r.bin.aggregated.signal[b]+I.for.analysis[k,l] 

          }}}}  

    r.interval<- qchisq(.99999, df=(r.bin.cell.counter)) 

    r.interval[is.na(r.interval)] <- 0 

   # r.bin.avg.signal<-r.bin.aggregated.signal/(r.bin.cell.counter) 

    r.bin.aggregated.signal[is.na(r.bin.aggregated.signal)] <- 0 

    r.max<-max(r.bin.aggregated.signal) # value of the peak 

    r.max.index<-which.max(r.bin.aggregated.signal) 

    r.max.location<-r.bins[r.max.index] 

    r.max.interval.cutoff<-r.interval[r.max.index] 

    if(r.max>r.max.interval.cutoff){R.mat[r,c]<-r.max.location} else {R.mat[r,c]<-(-999)}  

     

    ########## Dominant Wave 

    I.2<-I^2 

    I.2<-I.2*doughnut 

    I.pc.variance<-100*(I.2/variance.tile) 

    I.pc.variance_TopHalf<-I.pc.variance[,(1+.5*length(fy)):length(fy)] 

    correction.mat<-matrix(data=1,nrow=length(fx),ncol=length(fy.for.analysis)) 

    correction.mat[1:(1+(0.5*length(fx))),1]<-0 #replace top half of first half of column with 0 

    I.pc.variance_TopHalf<-I.pc.variance_TopHalf*correction.mat 

    ###finding the frequency and direction of the wave with the largest amplitude. 

    max1.location<- which(I.pc.variance_TopHalf == max(I.pc.variance_TopHalf), arr.ind = 

TRUE) 

    #find the percent of variance explained by the largest wave and compare to cut offs above 

    W1.pc.var[r,c]<-I.pc.variance_TopHalf[max1.location[1],max1.location[2]] 

    ### translate the location to x-y coordinate of the periodogram (remembering that each wave 

is represented by two points) 

    max1.XY<-c(fx[max1.location[1,1]],fy.for.analysis[max1.location[1,2]]) 

    #Wave number  

    W1.wave.number[r,c]<-(max1.XY[1]^2+max1.XY[2]^2)^(0.5) #write this down 

    #direction of the largest wave in degrees (east=0) 

    W1.dir[r,c]<-(180/pi)*atan2(max1.XY[2],max1.XY[1]) 

    } 

} 



 23 

 

The final section of the code extracts the information in the newly filled matrices and 

prepares the results. An exploration of wavelengths had to be conducted before a cutoff value for 

statistically significant banded vegetation patterns could be defined and appropriate figures 

made. According to Penny et. al (2013), the wavelength cutoff chosen improves the ability for 

the radial spectrum analysis to recognize appropriate pattern. In their study, they chose a cutoff 

value of 5, meaning that the wave had to repeat at least five times within the tile in order to the 

banded pattern to be statistically significant. However, their tiles were 120x120 m and banded 

patterns generally repeated every 20 meters at their AOI. Our AOI is 80x80 m and banded 

patterns repeat about every 10 meters. Therefore, we explored wavenumber cutoff values of 4 

and 5 (Figure 5). We concluded a wavenumber of 4 was the appropriate value to optimize 

recognition of the statistically significant banded patterns found by the radial spectrum analysis. 

The radial spectrum analysis was then reviewed and percentages of statistically significant 

banded vegetation patterns and percentages of dominant waves for each year in the AOI was 

made. The theta spectrum results were converted into compass degrees. The results were then 

created into Figures 6-8.  

 

R.mat 

image(R.mat) # where all of the patterns are 

 

#simplifying Rmat 

R.mat.4<-0*R.mat 

R.mat.4 

for(r in 1:r.row) { # r = rows 

  for(c in 1:c.col) {  

    if(R.mat[r,c]>4){R.mat.4[r,c]<-1} else {R.mat.4[r,c]<-0}  

  }} 

image(R.mat.4) 

sum(R.mat.4) 
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49/(dim(R.mat.4)[1]*dim(R.mat.4)[2]) #percentage statistically significant banded patterns 

present in AOI 

 

#wave number 

W1.wave.number.4<-0*W1.wave.number 

W1.wave.number.4 

for(r in 1:r.row) { # r = rows 

  for(c in 1:c.col) {  

    if(W1.wave.number[r,c]>4){W1.wave.number.4[r,c]<-1} else {W1.wave.number.4[r,c]<-0}  

  }} 

image(W1.wave.number.4) 

sum(W1.wave.number.4 

22/(dim(W1.wave.number.4)[1]*dim(W1.wave.number.4)[2]) #percentage dominant waves in 

AOI 

 

### averaging angles for orientation graph 

Th.mat.sin<-sin((pi/180)*Th.mat) 

mean.sin<-mean(Th.mat.sin) 

Th.mat.cos<-cos((pi/180)*Th.mat) 

mean.cos<-mean(Th.mat.cos) 

(180/pi)*atan2(mean.sin,mean.cos) # in radians 

 

W1.dir.sin<-sin((pi/180)*W1.dir) 

mean.W1.sin<-mean(W1.dir.sin) 

W1.dir.cos<-cos((pi/180)*W1.dir) 

mean.W1.cos<-mean(W1.dir.cos) 

(180/pi)*atan2(mean.W1.sin,mean.W1.cos) # in radians 

 

 

Results 

4.1 Analysis of climate over time 

The data collected from the Colorado Climate Center provided insight into climate patterns at 

the Colorado Springs Airport over a 70-year study period. Noticeable temperature maxima 

changes began during 1995~2005, which suggests that the regime shift occurred around then. 

Figure 3 shows annual averages from daily minimum/maximum temperatures and precipitation 

data collected from the weather station at the airport. Temperature maxima in Figure 3 a/b show 

an important shift in the climate regime in El Paso County. Temperature maxima (a) show an 
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upward linear trend that minima (b) has a consistent upward linear trend for the 70-year record. 

The precipitation data (Figure 3 c/d) do not show a distinct linear trend and would require a 

regime shift analysis, which is beyond the scope of this thesis. However, they do show evident 

droughts that took place in 2002, 2010 and 2012. The driest year on record was 2002, in which 

the airport received 7.85 in of precipitation. 2012 was the second driest year, at 8.11 in, and 2010 

the fourth driest, at 9.37 in. These significant droughts can also be seen in the temperature data as 

well. Three out of the four strongest droughts in the 70-year record happened during a 20-year 

period from 1999-2019 which coincides with the period of observation for this study.  

4.2 Fast Fourier Transform Results 

 The automated code provided several results about the banded vegetation patterns in the 

study plot from 1999 – 2019. To begin, the proportion of the AOI with banded patterned tiles has 

increased over time. Figure 7 shows the upward linear trend in the increased development of 

significant banded vegetation patterns in the AOI from 1999 to 2019. These results are 

complemented with Figure 6, which shows the trend visually. In 1999, the pattern was present in 

14.7% of the plot; whereas, in 2019, 36% of the plot contained the pattern. The radial spectrum 

analysis on these plots also revealed the presence of dominant waves in each AOI. The results 

show the number of dominant waves in the study plot, which increased from 3.7% in 1999 to 

22.3% in 2019. The theta spectrum analysis concluded the orientation of the banded vegetation 

patterns generally face North (90°) and the orientation of the pattern was already established 

when the tiles consisted mostly of aperiodic patchiness (Figure 8). Qualitatively, the pattern 

orientation is congruent with the slope (Figure 9). The slope of the AOI declines at a N-S 

orientation and there is not a slope in the E-W direction.  
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Significant periodic anisotropic patterns are present at Chico Basin Ranch in all years 

analyzed. Figure 6 shows the portion of the 1999 AOI with 80 m tiles that contain significant 

banded vegetation patterns that have a wavelength greater than 4 meters (a) compared to a map 

of tiles in 1999 that contains all patterns found (c). The AOI during 1999 is not completely 

spatially random. The tiles that did not contain statistically significantly different from complete 

spatial randomness and were anisotropic. The radial spectrum analyses for the tiles were 

completely different when compared to results from a plot that was completely spatially random.  

Discussion  

 

 With climate change shifting temperature regimes to hotter and drier climates 

overall, arid ecosystems are expected to shift into a pattern state. Global and local changes in 

precipitation and an increase in risk of desertification have been observed due to climate change. 

This should drive pattern formation in arid grasslands due its effect on the availability of water. 

Patterning should increase water efficiency. Continued climate change could further drive the 

pattern formation at arid grasslands, increasing their water use efficiency and overall resiliency. 

However, banded vegetation patterns could also be seen as a forewarning to climate-induced 

desertification. 

The climate in Chico Basin is trending to be drier and hotter. The average daily minima 

and maxima show an upward linear trend and point out a shift in temperature regime (Fig. 3 a/b). 

It is important to note the minima temperatures show a consistent upward linear trend during the 

entire 70-year record, while an upward linear trend appears in the temperature maxima data in 

the last 20-year recorded period of data for the Colorado Springs airport. Qualitative analysis 

suggests the onset of this trend began around 1995~2005 for El Paso County. Temperatures in 

Chico Basin are rapidly increasing. The precipitation data does not show a distinct linear trend 
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(Figure 3, c/d). However, they do suggest in the last 20 years, the variability of precipitation in 

El Paso County has shifted to having stronger droughts. The data show three out of the four most 

significant droughts of the 70-year record occurred during our 20-year period of study (in 2002, 

2010 and 2012). The strongest drought on record occurred during 2002, where the Colorado 

Springs airport received 7.85 inches of rainfall, about 50% of their normal average annual 

precipitation. This is significant finding even though there is not a clearly defined regime shift 

for precipitation. The combined effects of an upward linear trend in temperatures and more 

substantial drought years have a significant consequence on evaporation rates in El Paso County. 

Higher evaporation rates could encourage a positive feedback between diminished water 

availability and decreased vegetation cover (Noy-Meir, 1973). The temperature regime shift and 

substantial drought years have happened during the 20-year period of our study and subsequently 

affected the proportion of statistically significant banded vegetation patterns at the AOI. 

Periodic anisotropic patterns are currently found at Chico Basin Ranch. Visual analysis 

on Google Earth has shown the presence of these banded vegetation patterns. The FFT analysis 

on the study plot in Chico Basin Ranch demonstrates the banded patterns are present and 

statistically significant. The results show that the 1x2 km AOI at Chico Basin Ranch has a higher 

coverage of periodic anisotropic banded vegetation patterns in 2019 than it did in 1999. There 

was a substantial increase in the formation of periodic anisotropic patterns in the years after 

considerable droughts in the 20-year period of study. As shown in the 1999 analysis, significant 

banded patterns were present at low proportions of the AOI (14.7%) before the most substantial 

drought of the 70-year record which occurred in 2002. There was a delayed reaction in the 

formation of more patterns after 2002. In 2003, the AOI had 16.3% significant banded patterns; 

whereas, in the next available year (2015), significant patterns were present in 38% of the AOI 
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(Figure 7). This delay could be attributed to vegetation in the arid grasslands having their own 

resources stored up that could be used for a period of time in order to not respond immediately to 

the 2002 drought. However, as temperatures continued to increase and two more significant 

droughts occurred, banded vegetation patterns expanded considerably. Between 1999 and 2019, 

there was a 21.3% increase in the coverage of statistically significant banded patterns (Figure 7). 

There has not been a significant drought since 2012, and the patterns in 2015, 2017 and 2019 

stay more consistent. This could be because since the banded vegetation patterns are established, 

they became a stable part of the landscape or the temperature regime is further concreting the 

patterns into the AOI.  

Another important finding from the FFT analysis is the areas that do not have significant 

periodic patterns in the AOI are still statistically significantly different from complete spatial 

randomness (CSR). Initially, we expected the arid grassland at Chico Basin Ranch to be a 

homogenous landscape that developed periodic anisotropic patterns over time. The quantitative 

models created in others studies start their explorations with a fully spatially random landscape 

(Reitkerk et. al, 2004). However, as seen in the 1999 results, the landscape began with aperiodic 

anisotropic patchiness. The FFT explorations of all of the tiles found patterns that statistically 

significantly differed from CSR; however, not all of the dominant wavelengths were greater than 

4, meaning that they were not within the commonly defined constraints of banded periodic 

patterns (Penny et. al, 2013). The low dominant wavenumbers signify a high degree of 

patchiness (Ford and Renshaw, 1984). Therefore, originally the landscape was patchy and 

anisotropic but not periodic; much of the landscape in 2019 still retains this character. 

The patchy anisotropic vegetation structure could be explained by several mechanisms 

similar to those that drive the formation of periodic pattern formation. Periodic patterns form 
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from spatial coupling of positive feedbacks that lead to short-distance facilitation and long-

distance inhibition. However, spatial patchiness can originate from positive feedbacks without 

the spatial coupling. Primarily, the positive feedback between infiltration and root density. The 

greater the root density, the higher the infiltration rate, the more water vegetation can absorb, 

which furthers the root depth and density and so forth. The positive feedback could also proceed 

in the opposite direction and further inhibit infiltration which inhibits plant growth, leading to an 

area of bare ground. Whether the positive feedback will lead to a patch of vegetation or a patch 

of bare ground depends on the initial vegetation density. Where initial vegetation density is 

above the threshold, commonly known as an Alee point, the patch will develop full vegetation 

coverage compare to when the initial vegetation density is below the Alee point. Hence, simple 

facilitation on landscapes allows patchiness to develop. The aperiodic anisotropic patchiness was 

present before the 2002 drought occurred, but the drought most likely encouraged the spatial 

coupling, resulting in short-distance facilitation and long-distance inhibition where the 

vegetation patches substantially depleted water from the bare patches.  

The orientation of the patchy anisotropic vegetation structure appeared to be stable over 

time through the development of the periodic patterns (Figure 8). The orientation of the 

structures remained approximately N-S (about 90° counterclockwise from East). Overall, the 

AOI slopes predominantly from North to South at a slight decline (Figure 9). The patchiness, 

regardless if it is aperiodic or periodic, follows the slope contour lines. This suggests that the 

aperiodic patchiness most likely resulted from intercepting runoff.  

The key finding of the present study is that the proportion of statistically significant 

banded vegetation patterns have increased in the 20-year period of study in response to three 

strong droughts and a sharp increase in annual temperatures. Previous studies have observed 
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changes in the width and spacing of pre-existing periodic vegetation patterns in response to 

changes in rainfall regime (Dunkerley et. al, 2018). With a decline in precipitation, there is an 

increase in the ratio of the run-off zone and the infiltration zone (Dunkerley et. al, 2018). The 

bare intergrove bands expanded while the vegetated grove bands shrank during years where there 

the annual rainfall was decreased. Thicker intergrove sections compensate for the lack of water 

(Valentin and d’Herbés, 1999). In the years of drought, vegetation cover decreases significantly 

and sometimes leads to desertification (Holmgren et. al, 2001). Previously, there had not been a 

study looking at an arid landscape with a low proportion of patterns and their development over 

time. Additionally, this study observed the formation of periodic patterns develop from patchy 

anisotropic aperiodic vegetation structures. Observing the formation of statistically significant 

banded vegetation patterns over time from a homogenous, random landscape could provide 

important insight into the mechanism behind these patterns and what they could mean for the 

future of arid ecosystems. 

Quantitative models have concluded that the presence and formation of specific periodic 

vegetation patterns could coincide with a sudden catastrophic shift to a stable, bare homogenous 

landscape (Reitkerk et. al, 2004). However, findings of several local studies conducted on sites 

with banded vegetation patterns have contradicted the conclusions of quantitative models. In the 

study of the Broken Hill region, a semi-arid landscape in Australia, it was found that severe 

drought did not create the irreversible change of a vegetated landscape to a uniform bare 

landscape (Dunkerley et. al, 2018).  The banded vegetation patterns did not die off, as predicted 

by quantitative models, like that of Reitkerk et. al (2004) and Vega & Montaña (2011), which 

concluded previously that an increased decline in rainfall and imposed grazing on an arid 

landscape would create homogenous bare landscapes.  
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It is necessary to keep in mind that the arid landscapes at Chico Basin Ranch, and in 

general, are used for grazing. Grazing can play an important role in how the landscape responds 

to water shortage. The effect of grazing on these ecosystems has had irreversible consequences 

on arid ecosystems in numerical models; however, it has not been studied enough empirically at 

a local scale to make conclusions of its effect on the stability of actual landscapes. Grazing 

management, especially during years of drought, could play a significant role in maintaining the 

resiliency of heterogeneous arid ecosystems (Reitkerk et. al, 1997). The timing and intensity of 

grazing at Chico Basin Ranch could be used as a management tool to help make an ecosystem 

more resilient from a rancher’s perspective. In a spatially explicit mathematical model, decreased 

grazing could decrease pattern formation (Vega and Montaña, 2011), the link between grazing 

and pattern formation is currently poorly understood. Further local studies on how grazing 

impacts patterns and water-use efficiency could increase the understanding of specific vegetation 

patterns. Local study areas have unique factors that can influence the resiliency of a landscape, 

like the plant physiology or topography of the studied landscape. It is these discoveries from 

localized studies that further the understanding of spatial vegetation patterns. 
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Figures 
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Figure 1. The 1000x2000 m AOI at the Chico Basin Ranch, CO for the years 2019 (a) and 1999 

(b). There are also 1x2 km study plots for the years 1999, 2003, 2015, and 2017. Darker colors 

indicate higher density of vegetation. 

 

  
 

  
 

 

Figure 2.  Google Earth images in 2019 of the banded vegetation patterns present at the 1x2 km 

study plot at the Chico Basin Ranch, Colorado. Each image is 100x100 m. 
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Figure 3. Climate data provided by Colorado Climate Center from 1949-2021. a) Maxima annual 

temperatures in C° b) minima annual temperatures in C° c) annual precipitation measured in 

inches d) annual snowfall. Each data contains annual averages from daily measurements. 

 

       a.                                                                     b. 

 
       c.                      d. 
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e.      

 
 

Figure 4. Simulated data from the theory R studio code. a) a simulated propagating N-S wave 

that repeats with a frequency of 3 and amplitude of 2; b) a simulated complex wave pattern that 

combines three propagating waves. One wave is the N-S wave from a) combined with E-W and 

diagonal waves; c) the periodogram for the complex wave pattern; d) the theta spectrum matrix; 

e) the radial spectrum matrix. 

 

 

 

 

 
Figure 5. Exploration of using the wavelength of 4 or 5 as the statistically significant cutoff for 

banded vegetation patterns at Chico Basin Ranch. R4 and R5 are the overall percent of the AOI 

with significant banded vegetation patterns from the radial spectrum analysis, whereas W4 and 

W5 are the overall percent of dominant waves in the AOI. 
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       a.                                                                     b. 

 

    c.                                                                      d. 

 
Figure 6.  Maps of radial spectrum analysis results of the 1000x2000 m AOI in 1999 & 2019. a) 

and b) show the tiles in black with statistically significant banded vegetation patterns with a 

wavelength >4 in 1999 vs. 2019. c) and d) show the tiles at a gradient with vegetation patterning. 

The darkest tiles have the longest wavelengths. The white tiles have a dominant wavenumber of 

1, which indicates that the dominant wave repeated itself once in the tile and hence the pattern is 

clearly aperiodic.  
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Figure 7. Percentage of statistically significant banded vegetation patterning (R4) and dominant 

wavelengths (W4) with a wavelength >4 in the AOI from 1999 to 2019.  

 

 
Figure 8. Orientation of the statistically significant banded vegetation patterns and dominant 

wavelengths from 1999 to 2019. 
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Figure 9. The slope orientation of the AOI shown in a white.- black gradient. White shows 

higher points which become darker as they slope downward.  
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	The site analyzed for specific vegetation patterns is found on the border between El Paso County and Pueblo County in Colorado at Chico Basin Ranch. The El Paso County region gets approximately 10-15 inches of precipitation annually (CO Airport). Ther...

