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Abstract 

Landscape memory, the set of processes conferring resistance of disturbed areas to further 

disturbance, is critical for our understanding of ecosystem dynamics at large scales. Although 

evidence from diverse disciplines suggests that the conditions at the time of disturbance as well 

as the history of past disturbances are central to landscape memory, there have been few attempts 

to explore their relative contribution in systems in which ecological and geomorphic processes 

strongly interact. Among these systems, mountains disturbed by landslides stand out due to their 

regional and global importance. In mountainous regions, topographic and morphological 

attributes are known to contribute to landscape memory. However, vegetation attributes also 

influence geomorphic conditions in these systems, and in this way may play a role in forming 

patterns of landslide patterns as well. In this study I use degree of landslide overlap in 

combination with bioclimatic and topographic variables to explore landscape memory using a 

species distribution model (SDM) approach. Focusing on the Sierra de Las Minas of Guatemala, 

I created landslide inventories using remotely sensed data, then use these to identify overlapping 

and recovered landslide areas and model their relationship with bioclimatic and topographic 

variables. Irrespective of year, landslide occurrence was explained by three bioclimatic (positive 

relationship with isothermality, temperature seasonality, and precipitation during the wettest 

month of the year) and three terrain (negative relationship with aspect and curvature, and 

positive relationship with slope) variables. Overall, I observed little overlap among landslide 

populations. The number and type of variables explaining landslide overlapping and non-

overlapping areas varied by period of observation but in general varied in significance far more 

than variables explaining initial occurrences. The implications of my results are three-fold. First, 

the retention of three bioclimatic variables in the models suggests that climate can alone, or 

through its effect on vegetation, influence the occurrence of landslides as well as their recovery. 

Second, landscape memory seems to play an important role in preventing reoccurrence as shown 

by the study area’s great potential for recovery after disturbance. Lastly, increased precipitation 

and more extreme temperatures may increase landslide burden in the future.  

 

Keywords: Landslides, landscape memory, bioclimatic variables, Sierras de Las Minas, climate change 
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Introduction  

 The organization and structure of ecosystems across the globe is mediated by patterns of 

disturbance (Johnstone et al., 2016; Rietkerk et al., 2004). Large-scale disturbance events are 

necessary occurrences to shape patterns that preserve habitat heterogeneity and species diversity 

within ecosystems (Schouten et al., 2009; Rietkerk et al., 2004). These large disturbance events 

are in turn regulated by mechanisms generated from past disturbance legacies (Johnstone et al., 

2016). The frequency and intensity of disturbance has important impacts on the fate of these 

systems, potentially leading to catastrophic ecosystem shifts under changing conditions (Rietkerk 

et al., 2004). Unusual conditions resulting in excessive disturbance can pose risks not only to 

ecosystem health, but also to human lives and infrastructure (Westen & Terlien, 1996). In humid, 

tropical, and mountainous landscapes, landslides are the primary mode of disturbance, and their 

frequency is expected to increase as factors tied to climate change grow more erratic (Rietkerk et 

al., 2004; Gariano & Guzzetti, 2016).  While the factors controlling landslide occurrence are 

fairly well understood, those affecting the probability of landslide reoccurrence, in particular the 

interaction of abiotic and biotic factors, require further attention in order to understand the 

trajectory of ecosystems. 

 Past research, mostly in the field of geomorphology, has drastically expanded our 

understanding of the role of abiotic factors on landslide frequency. Morphological and 

topographical elements of mountain landscapes such as slope and bedding structure impact the 

frequency, magnitude, and even shape of future landslide events (Guzzetti et al., 2008; Samia et 

al., 2017; Parker et al., 2015). Landslides also regulate the geomorphic conditions on slopes by 

removing topsoil and in some cases underlying bedrock, which can alter landslide frequency and 

shape and thus determine the types of landslides that are likely to occur. In certain conditions, 



 

 

4 

landslides increase the likelihood of further disturbance at the sites in which they occur by 

disrupting the structure of landslide-prone slopes (Samia et al., 2017). Landslides have also been 

shown to serve as stabilizing factors for hillslopes, decreasing the probability of further site-

specific landslide events by removing deeply destabilized areas which are prone to slippage 

(Parker et al., 2015). The regeneration of vegetation on recent scars can induce shallow topsoil-

level slides, on or in the proximity of the past disturbance (Shimokawa, 1984). Moreover, 

evidence suggests that initial landslides control the shape and positioning of overlapping 

landslides reoccurring within a decade (Samia et al., 2017). Clearly, the process of landslide 

recovery is highly influential in creating future landslide regime patterns.  

 Disturbance events are essential aspects of vegetative succession; regular landslides maintain 

cycles of vegetative renewal and create biotic diversity by increasing abiotic heterogeneity 

(Walker et al., 1996). Vegetation development occurs rapidly post-landslide (Lin et al., 2006), 

and this is known to impact slope stability through root development, reinforcing soil and 

anchoring to bedrock (Kuriakose & van Beek, 2011; Shimokawa, 1984). Topography also 

influences vegetation patterns through its effect on the distribution of sunlight, water, and 

nutrients (Solon et al., 2007; Yang et al., 2020). Landslide occurrence and regularity are 

dependent on a multitude of factors which are heavily interwoven, yet the specific role of biotic 

factors remains largely understudied (Guzzetti et al., 2008; Restrepo et al., 2009; Solon et al., 

2007). Including the influence of vegetative patterns is vital in order to understand landslide 

frequency holistically and create stronger models to predict landslide occurrence (Carrara et al., 

2000; Restrepo et al., 2009).  

 The occurrence of a landslide in a given area is likely to affect the probability that a landslide 

might occur again in the following years. Landscape memory, the ability of ecological processes 



 

 

5 

to interact with and influence one another over time, is speculated to deter further landslides in 

areas of recent occurrence (Peterson, 2002; Shimokawa, 1984). Memory influences the patterns 

of occurrence and recovery in ecosystems; when memory is strong, landslides and other 

disturbance events serve to maintain landscapes rather than act as a destructive force (Peterson, 

2002). Landscape memory is affected by both the topographic characteristics of a given area as 

well as the bioclimatic conditions, but their relative effects on memory are unclear. Furthermore, 

landscape memory can be disrupted when landslides diverge from regular recovery schemes, for 

example when climate events unusual for the region occur. Therefore, understanding the effects 

of abiotic and biotic factors on landscape memory is important to understanding how climate 

change will affect the resilience of tropical mountainous ecosystems. 

 If vegetative factors affect the geomorphic properties which induce landslide occurrence, 

climate-mediated changes to vegetation communities across the globe will certainly disrupt 

landscape memory (Raetzo et al. 1997; Gariano & Guzzetti, 2016). Extreme changes in climatic 

factors, such as increasingly variable precipitation (Kirschbaum et al., 2020) and temperature 

(Bathiany et al., 2018) are projected to impact tropical regions. While a large number of studies 

have focused on the relationship between singular abiotic factors (mainly precipitation) and 

landslide occurrence (Chen et al., 2020; Kirschbaum et al., 2020), many bioclimatic variables 

remain excluded from this type of investigation. In expectation of potentially destabilizing 

climatic shifts, it is important to focus heavily on the relationship between bioclimatic factors 

and landslide occurrence.  

 In areas where they occur, landslides result in instantaneous changes. On one hand, they 

create opportunities for plant establishment and renew cycles of vegetative succession, as well as 

deposit patches of nutrient-rich soil in scar zones (Restrepo et al., 2009; Guariguata, 1990; Elias 
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& Dias, 2009). On the other hand, landslides destroy existing plant and soil communities, disrupt 

associated organisms, and pose risks for human infrastructure (Kirschbaum et al., 2020; Walker 

et al., 1996). In recent decades, hazard mapping has become a common practice for predicting 

the potential impacts of landslides in order to properly mediate their negative impacts on human 

lives and infrastructure, but deficiencies in our understanding in the biotic effects of landslide 

occurrence limit the effectiveness of these models (Westen & Terlien, 1996). The inclusion of 

bioclimatic data in hazard assessment is a necessary step in order to account for the direct (ex. 

precipitation) and indirect (effects on vegetation, etc.) effects of climatic conditions. 

 In this study, I investigated the effects of 19 bioclimatic and 4 topographic factors on 

landslide occurrence within 43,934 hectares of the Sierras de las Minas of eastern Guatemala. I 

hypothesized that a combination of bioclimatic and topographic factors would influence the 

likelihood of landslide occurrence. Additionally, I mapped landslides at three different time 

points within a 15-year period in order to examine the influence of bioclimatic and topographic 

factors on landscape memory, hypothesizing that the majority of landslide-impacted areas would 

recover in subsequent time periods. My aims were 2-fold: to determine the main predictive 

variables affecting the likelihood of a landslide, and the variables most affecting landscape 

memory (or the likelihood a landslide would not reoccur in the same location within 10 years). 

This study hopes to further our understanding of landslide risk factors as well as landscape 

resilience in a tropical mountainous environment.  
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Methods 

Study Area 

 The Sierra de las Minas (SLM) of Guatemala is a 135 km by 30 km mountain range that runs 

east to west. The range connected to the Montañas del Mico and the Sierras de Chuacus, the 

latter of which is connected by a small ridge separating the Rio Negro and Rio Motagua 

drainages (Campbell, 1982). The mountain range drains to the Rio Polochic and Rio Chixoy 

watersheds to the north, and the Rio Motagua watershed to the south (Holder, 2006).  

 The SLM displays a great diversity of climate and vegetative conditions (Campbell, 1982). 

Tropical, dry forests occupy the southern slopes of the SLM between 300 – 1500 m and are 

replaced by dry pine and oak forests at elevations of 1500-2000 m. At elevations over 2000 m 

cloud forests develop due to substantially more moisture (Holder, 2006; Campbell, 1982). The 

height of the range causes the interception of prevailing winds, leading to greater rainfall on 

northern, wind-prone slopes (McAdams et al., 2015). Due to this, the northern slopes of the SLM 

are different in climate and structure than southern ones, and drainages to the north remove 

greater amounts of water and sediment from the region (McAdams et al., 2015). 

 The cloud forests of the SLM receive greater annual rainfall, 5000 mm in parts of the highest 

regions, than the Motagua valley below, which receives less than 500 mm annually (Holder, 

2006). A significant amount of moisture received in cloud forests is sourced from fog 

precipitation, which is dependent on factors such as canopy structure, and vegetative orientation 

and surfaces (Holder, 2006; Brown et al., 1996). Therefore, removal of forest cover affects water 

availability by decreasing fog precipitation (Holder, 2006).  
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Figure 1. Location of the Study Area (left). Landslide distribution in region of study (right).   

General approach 

 To examine the patterns of recovery creating landscape memory in the Sierras de las Minas, I 

combined landslide mapping and spatial analysis to determine significant influences of 

bioclimatic and topographic variables in landslide occurrence and overlap. This entailed a two-

step process; first, a series of shapefiles representing landslide-impacted areas were composed to 

determine the relationship of landslide occurrence and recovery in the Sierras de las Minas. In 

order to examine differences between causality of singular landslide occurrence and 

reoccurrence, the relationship between predictors in both cases was analyzed using a species 

distribution model. 
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Figure 2. ERDAS Imagine Objective image processing. Stages involved in the creation of polygons from satellite 

imagery of the study area. 

 

Landslide Inventories 

Feature Extraction - ERDAS Imagine Objective was used to map landslides from satellite 

imagery of the SDM. These images were obtained from the Fundacion Defensores para la 

Naturaleza and orthorectified at the Large-scale Ecology Lab of the University of Puerto Rico at 

Rio Piedras. Objective was given an input of a raster image and identified visual cues, such as 

texture, color, and shape, to output a vector shapefile representing features of interest. This 

process involved machine learning components as well as automated steps created to filter pixels 
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in raster layers and polygons in vector layers (Fig. 2). Before beginning the extractions, a test 

phase was initiated to determine the optimal sets of parameters for extracting landslides from the 

Sierras de las Minas images. The extractions followed an 8-step process (Fig. 2) converting 

groups of pixels representing landslide scars to singular vector objects.  

 The first step in feature extraction is to train Objective’s pixel-classifying machine learning 

algorithm to properly identify pixels belonging to a class of interest. User input was given in the 

form of representative polygons, drawn within features as interest as well as polygons indicating 

background area. In order to maximize the consistency and replicability of the extractions, I first 

created a shapefile for each image in ArcGIS, referred to as “AOI” for Area of Interest, 

containing the designated polygons. These files were converted to .aoi files in ERDAS and were 

used as a file input during pixel processing. 

 The user-input pixel cues are used to sort all pixels of the chosen image based on their 

similarity to pixels in the AOI, eventually resulting in the Pixel Probability Layer (Fig. 2a). 

Taking the training signature as an input, Raster Pixel Processing (Fig. 2b) identifies attributes of 

pixels within polygons of desired features as well as polygons indicating background area. Using 

this information, Raster Object Creators form groups of pixels with like metrics (Fig. 2c). 

Typically, pixels are segmented into clumps of similarity determined by a threshold input by the 

user. These clumps divide all of the image’s pixels into raster objects with a probability metric. 

At this point, the segmented raster objects can be filtered from background objects by their 

attributes. ERDAS Imagine Objective offers a multitude of operators to filter potential features 

more accurately, such as a probability filter, clump size, and focal filters while objects are still in 

raster form (Fig. 2d). After this filtering, the raster object layer exported in the previous step is 
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converted into a vector object layer (Fig. 2e), where they can be cleaned and further filtered by 

Vector Object Operators (Fig. 2f).  

Data Cleaning – The images that I used had different quality of coloration, tone, and brightness 

that together with the spectral similarities exhibited by some objects (landslides, rivers, roads, 

agricultural fields, and buildings) resulted in incorrect identifications. I cleaned and edited the 

vector layers using the editing tools of ArcGIS Pro. Features were systematically inspected and 

modified, split apart from or merged together with other polygons, or deleted to ensure only 

features of interest remained. Polygons representing rivers and roads are important to the 

analysis as well and I allowed them to remain, labeling them to differentiate from landslides. 

Using a character type column in the attribute table of the dissolve layer called “class”, I labeled 

them as “riv” for river or “road” in order to differentiate them from landslides. Additionally, I 

added a classification “unkn” for unknown for polygons which needed further vetting during the 

review process. After the completion of this cleaning process, a reviewer gave feedback on the 

quality of editing. For the purposes of current analysis, a version of the shapefiles with rivers and 

roads removed was also created and saved. 

 

Figure 3. Example of intersect and symmetric difference functions on ArcGIS. The leftmost figure shows two 

overlaid landslides from different years. The central figure shows the result of the intersect function, collecting the 

overlapping area of the overlaid landslides. The symmetric difference function, shown in the rightmost figure, 

collects area unique to two different years, essentially all area where landslides do not overlap, representing 

recovery. Area of the vector polygons resulting from the function in use is darkened. 

 

 

Two Overlapping 

Landslides 

Overlap 
(Intersect) 

Recovery 
(Symmetric Difference) 
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Spatial analysis  

In order to investigate the strength of landscape memory patterns, I conducted a spatial analysis 

aimed at determining areas in which landslides did and did not reoccur. Towards this end I used 

the intersect and symmetric difference functions to identify areas of overlap and recovery 

respectively (Fig. 3). For each set of adjacent periods, the shapefiles of corresponding areas were 

overlaid in ArcGIS yielding 4 additional shapefiles, two presenting the relationship between the 

1991 and 1998 periods, and 2 presenting the relationship between the 1998 and 2006 periods 

(Fig. 4). The symmetric difference function highlighted areas of recovery, where landslides were 

not detected for the second year. The intersect function highlighted areas of overlap, where 

landslides were detected in both years. 

.  

 
Figure 4. Landslide occurrence relationships conferring recovery and overlap. Instances of reoccurrence in 

neighboring periods, captured by the intersect function, confer the inability of landscapes to recover after initial 

disturbance, and signify the absence of memory.  

 

Modeling landscape “memory” 

I applied a Species Distribution Modeling approach to investigate the spatial distribution of 

landslides (Naimi & Araújo, 2016), including generating a generalized linear model with input 
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presence/absence points (Bourne et al., n.d.). This entailed preparing the previously generated 

shapefiles for analysis, obtaining and formatting predictor data in raster form, creating locational 

occurrence points and synthesized absence points to represent area impacted and unimpacted be 

landslides, and applying a general linearized model to the data. I conducted analysis on the level 

of significance and direction of influence exerted by the chosen predictors on landslide 

occurrence in the study area using R’s “dismo” and “usdm” packages. 

Data preparation - Because the satellite images used to extract landslides differed slightly in 

area from year to year, it was necessary to standardize the size of the 2261-ii quadrant across all 

years and shapefiles. To exclude areas that might be lacking from any of the years, the 

overlapping area of all the 2261-ii images used for extraction was taken and turned into a vector 

polygon known as the “mask”. All shapefiles used in analysis were cropped to be the shape of 

this polygon, excluding any points that fell outside the boundary.  

Predictor Data - Bioclimatic and topographic data for analysis of landslide spatial distribution, 

referred to here as “predictors”, was formatted into raster layers to be used in R (Table 1). 

Bioclimatic data was obtained from worldclim.org in raster form (Fick & Hijmans, 2017). Each 

bioclimatic layer used was cropped to the size of the study area using the mask used for data 

preparation. Data on the 4 topographic predictors and potential evapo-transpiration was obtained 

from ArcGIS using the DEM. The raster toolset within geoprocessing tools was used to create 

new raster files representing aspect, slope, curvature, and elevation. These factors were 

quantified using degree of decline in the case of slope and curvature, and in the case of aspect, a 

number from 0-360 represented the cardinal direction of the slope face (lowest values 

corresponding to northeast to east, and highest values west to northwest). All of these 
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topographic layers were cropped using the mask like the bioclimatic predictors. I used ArcGIS to 

extract bioclimatic and topographic data as a raster layer.  

 
Table 1. Raster data used as predictors during landslide distribution analysis. The 4 topographic variables, 19 

bioclimatic variables, and potential evapo-transpiration chosen to be analyzed as predictors using a generalized 

linear model.  

 

 

 

Presence/Absence data points – The landslides from the three years, as well as the intersect and 

symmetric difference polygon shape files were converted into point shape files using the 

“polygons to points” function. In addition, I randomly generated absence points, as analysis of 

 Predictor Code 

 

Topographic 

Variables 

Aspect - 

Elevation - 

Slope - 

Curvature - 

 

 

Bioclimatic 

Variables 

Potential Evapo-Transpiration PET 

Annual Mean Temperature Bio1 

Mean Diurnal Range  Bio2 

Isothermality Bio3 

Temperature Seasonality Bio4 

Maximum temperature of warmest month Bio5 

Minimum temperature of warmest month Bio6 

Temperature Annual Range Bio7 

Mean temperature of wettest quarter Bio8 

Mean temperature of driest quarter Bio9 

Mean temperature of warmest quarter Bio10 

Mean temperature of coldest quarter Bio11 

Annual precipitation Bio12 

Precipitation of wettest month Bio13 

Precipitation of driest month Bio14 

Precipitation seasonality Bio15 

Precipitation of wettest quarter Bio16 

Precipitation of driest quarter Bio17 

Precipitation of warmest quarter Bio18 

Precipitation of coldest quarter Bio19 
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species distribution analysis using presence-only models has been shown to exhibit greater bias 

than presence-absence models. A binary “occurrence” attribute was added to all points, presence 

points having a value of 1 and absence points having a value of 0. 

Modeling the Spatial Distribution of Landslide and Memory Processes – A collinearity test was 

used to narrow down the number of applied variables from the set of predictors by calculating 

the variance inflation factors. This was conducted using the vifcor and vifstep functions in the 

“usdm” package from R’s; model (Naimi et al., 2014). I used Generalized Linear Models with 

the binomial link to examine relationships between the presence/absence point distribution and 

bioclimatic and topographic variables using the dismo and sdm packages (Naimi & Araújo, 

2016).  

 

Results 

Yearly Landslide Occurrences  

The landslide inventories yielded 972, 539, and 1,987 landslides in years 1991, 1998, and 2006 

respectively (Fig. 5a). The number of landslides found in the inventories was significantly higher 

in 2006 than the other 2 years (Fig. 5a). However, the 2006 areas were on average significantly 

smaller in size, while 1991 and 1998 demonstrated landslides of similar average size (Fig. 5b). 

Despite the high number of occurrences, 2006 demonstrated by far the least area impacted by 

landslides, and landslides in 1991 impacted the greatest overall area (Fig. 5c).  
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(a)  

(b)  

(c)  

 
Figure 5. Landslides identified in 1991, 1998, and 2006. (a) The number of landslides discovered in each individual 

year (b) The average size of landslides for each year (c) The summed area of all landslides per individual year, 

representing total area impacted by landslides. 
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Instances of Recovery and Overlap 

 I analyzed two time periods of 7 and 8 years respectively to identify recovered and 

overlapping areas of landslide occurrence. This analysis overlaid the results from two years at 

the beginning and end of the period and extracted all impacted area unique to one year or the 

other, signifying recovery, and areas of overlap. For both 1991-1998 and 1998-2006, there were 

few instances of overlap (Fig. 6a). The average size of recovery areas was larger than that of 

overlap areas within a given time period (Fig. 6b). The average size of overlap areas was less 

than half of the smallest average size of either individual year, indicating that typically 

reoccurrences did not fully eclipse previous scars (Fig. 5b & 6b).  

 Using the overlap calculations, the proportion of area recovered for the first years of the two 

periods (1991 and 1998) was determined. For both years, the vast majority of land impacted in 

the first year of the time period recovered in the last year, with only small portions demonstrating 

landslide reoccurrence (Fig. 7a). The area of overlap instances remained under 10% for both time 

periods (Fig. 7b). 
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(a)  

(b)  
 

Figure 6. Areas of recovery and overlap identified between 1991-1998 and 1998-2006. (a) The number of instances 

of recovery or overlap discovered between the first and last year of the period. Instances were calculated from 

overlaying individual year landslides and capturing unique and shared area in ArcGIS and represent segments of 

landslides from the two years. (b) The average size of recovery or overlap areas for the given period. 
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(a)  

(b)  

 
Figure 7. Area recovered from first year (a) The proportion of area from the first time period year (1991 for the 

1991-1998 period and 1998 for the 1998-2006 period) that recovered to overlap area (b) The percentage of area 

recovered from the first year of the period.  

 

Identifying significant predictors 

 Six out of the 24 predictors were retained after conducting the collinearity tests: 3 bioclimatic 

(isothermality, temperature seasonality, and precipitation during the wettest month of the year), 

and 3 topographic (aspect, curvature, and slope). The collinearity test removed predictors which 

correlated with other predictors, i.e. those on which landslides would appear dependent due to 

their correlation with another significant variable (Naimi et al., 2014). All of the retained 
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variables significantly influenced landslide occurrence across all years investigated (Table 2a & 

b). Overall, landslide recovery and overlap shared the same set of significant predictors as the 

individual occurrences, but significance varied (Table 2a). 

 In the individual year models, greater curvature and aspect decrease the likelihood of 

landslide occurrence, while greater slope, isothermality, temperature seasonality, and 

precipitation during the wettest month increase the likelihood of landslide occurrence (Table 2). 

These results varied in magnitude of significance but were consistent in direction of influence 

across all years.  

Table 2a. Significance level of predictors. The topographic and bioclimatic variables found to be significant to 

landslide occurrence as well as recovery and overlap in the study area.  Non-significant relationships were left blank. 

 Topographic Bioclimatic  

  aspect curvature slope bio31 bio42 bio133 

1991 year 0.005 8.5 e-9 0.027 4.4 e-10 0.066 0.044 

1998 year 7.8 e-3 0.046  0.051 3.0 e-10 0.001 < 2 e-16 

2006 year 2.9 e-8 3.4 e-15 4.0 e-7  < 2 e-16 2.0 e-4 < 2 e-16 

1991-1998 recovered 
 

2.4 e-9   < 2 e-16 3.4 e-5 < 2 e-16 

1998-2006 recovered 4.7 e-7 8.2 e-13 1.8 e-6 < 2 e-16 1.2 e-6 < 2 e-16 

1991-1998 overlap   
 

0.004     0.017 

1998-2006 overlap 8.9 e-9 
 

0.007 5.8 e-8   1.0 e-7 

1 isothermality, 2 temperature seasonality, 3 precipitation during wettest month  

 

Table 2b. Direction of influence of predictors on landslide occurrence, recovery, and overlap. Negativity of p-

values indicates that an increase in the variable correlated with decreased landslide likelihood, while positive signs 

indicate that an increase in the indicated variable correlated with increased landslide likelihood. Insignificant 

relationships for the given distribution are blank. 

 Topographic  Bioclimatic  

  aspect curvature slope  bio31 bio42 bio133 

1991 year - - + + + + 

1998 year - - + + + + 

2006 year - - + + + + 

1991-1998 recovered 
 

- 
 

+ + + 

1998-2006 recovered - - + + + + 

1991-1998 overlap 
  

+ 
  

+ 

1998-2006 overlap - 
 

+ + 
 

+ 

1isothermality, 2temperature seasonality, 3 precipitation during wettest month  
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 Recovered areas from both time periods exhibited significant dependence on curvature, 

isothermality, temperature seasonality, and precipitation during the wettest month. The 1991-

1998 period was not significantly influenced by the topographic variables’ aspect or slope but 

responded to decreased curvature (Table 2b). The 1998-2006 period was strongly dependent on 

all retained variables, similar to the individual year models (Table 2a). Comparison between the 

two periods suggests that high curvature will decrease the likelihood of landslide reoccurrence, 

while higher isothermality, temperature seasonality, and precipitation during the wettest month 

increase the likelihood of landslide reoccurrence.  

 Both overlap analyses exhibited significant reliance on slope and precipitation during the 

wettest month but differed on the other variables. This suggests that areas with greater slope and 

exposure to increased precipitation during the wettest month of the year are more likely to 

experience reoccurring landslides, whereas other variables are less consistent in their effects on 

landslide reoccurrence.  

 

Discussion  

 My goals of this study were to investigate the dependence of landslide patterns (both initial 

occurrences and recovery) on topographic and bioclimatic variables and to examine the recovery 

and overlap dynamics of disturbed areas in the Sierras de Las Minas. My hypotheses were that 

the landscape in question would show dependence on factors from both categories, and that the 

majority of impacted area would recover in the subsequent time period. The results yielded two 

conclusive points. First, instances of overlap and recovery revealed a significantly greater 

proportion of landslides recovered from the first to second period in both multiyear analyses, in 

line with my hypothesis and demonstrating the strength of landscape memory within the study 
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area. Second, the species distribution approach pinpointed 6 predictors of landslide occurrence in 

the study area, three of them bioclimatic, the same groups for both individual landslide events 

and patches of recovery and overlap.  

Spatial analysis of recovery and overlap areas -  

 The vast majority of impacted area recovered from the first time period to the second, 

suggesting that potential for recovery is strong in the study region. The lack of overlap suggests 

that landslides in the first year influenced the spatial structure of landslides in the latter year, 

aligning with concepts of landscape memory (Peterson, 2002). Furthermore, the average size of 

overlap areas in both 1991-1998 and 1998-2006 was significantly smaller than that of recovered 

area or new landslides. This could indicate that only small sections of past landslide scars failed 

again in the latter period, aligning with previous studies showing landslides determine the shape 

and position of following events (Samia et al., 2017). Overall, this analysis of landslide 

reoccurrence provides another example of landslide location, size, and shape being heavily 

influenced by past disturbance legacies. 

 The conditions of predictors conferring recovery or overlap varied far more than between the 

individual years, indicating that reoccurrence might not be predicted by consistent variables. 

Overall, the individual year shapefiles demonstrated incredible consistency; all 6 predictors were 

significant in 1991, 1998 and 2006. For the 1991-1998 overlap areas, only slope and 

precipitation during the wettest month were significant, while the 1998-2006 intersect showed 

significance related to these variables in addition to aspect and isothermality. The recovery areas 

for both periods were correlated with more predictors than their respective overlap counterparts, 

but the 1991-1998 recovery demonstrated fewer predictors of significance than the 1998-2006 
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period. Overall, these results suggest that predictors influencing recovery (or lack thereof) are 

inconsistent and may be more reliant on time period than type of relationship to past landslides.  

 Of the variables influencing overlap, only slope and precipitation during the wettest month 

were consistent between the two periods. Notably, temperature seasonality was excluded in 

significance from both. This aligns with past landslide research, which has previously concluded 

that condensed frequency of precipitation prevents full recovery on impacted slopes (Chen et al., 

2020). Theories of ecological change establish that ecosystems primed for shifts in structure and 

function (hence, divergence from memory and increasing landslide overlap) typically require 

singular catastrophic events to trigger these shifts (Rietkerk et al., 2004; Holling, 1996).  

While temperature seasonality may prime landscapes for landslide occurrence, it measures 

variation in temperature over the course of a year and is likely not able to capture the rapid and 

dramatic shifts which would trigger overlap events. The events that trigger landslide occurrence 

are likely random and sporadic, which may explain why overlap areas demonstrated the least 

significant relationships with the topographic and bioclimatic predictors. 

 My analyses of multiyear landslide relationships in the Sierras de las Minas highlights a 

great ability for recovery in the region, however, they assessed these dynamics on a very limited 

time scale. In the future, analyzing reoccurrence dynamics of larger time periods, such as the 15-

year gap between 1991 and 2006, and analyzing recovery at multiple check in points, using all 

three-time markers 1991, 1998, and 2006, would reveal greater detail about the recovery patterns 

of landscapes in the decades after disturbance. Moreover, further investigation would clarify the 

influences of vegetative and biotic aspects as well as time period in landslide reoccurrence.   
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Understanding the role of predictors on landslide distribution -  

 Heightened understanding of all factors involved in the complex causality of landslides is 

important for more accurate assessments of the risk posed by their occurrence, especially in 

expectation of large climatic shifts (Kirschbaum et al., 2020). My results present 6 variables 

influencing both landslide occurrence as well as recovery and overlap to take into account in 

future climate-landslide research: aspect, curvature, slope, isothermality, temperature seasonality 

and precipitation during wettest month of the year. This analysis of the correlations of landslide 

occurrence to bioclimatic factors broadens our ability to assess climatic shifts directly as they 

pertain to landslide occurrence, taking into account both direct and indirect factors.  

 Topographically, decreased aspect and curvature and increasing slope values (i.e., west facing 

rather than east facing) correlate with increased likelihood of landslide occurrence in this area of 

the Sierras de las Minas. These results align with previous geomorphology research indicating 

that slope failure could be tied to underlying bedrock-level weaknesses or other abiotic factors 

(Guzzetti et al., 2008; Parker et al., 2015). However, these slope characteristics could also 

indirectly impact landslide occurrence in the Sierras de las Minas through their control of the 

area’s vegetation. Aspect, slope and curvature can all be tied to vegetation structure and species 

diversity in ecosystems; these factors exert control over organism’s access to resources such as 

water, sunlight, and nutrients (White et al., 2005). It is important to acknowledge that the 

topographic variables included in analysis likely impact landslide occurrence indirectly as well 

through influences on soil and vegetative properties.  

 Areas with increased isothermality and temperature seasonality should be expected to 

experience an increased landslide burden in the future. Isothermality, which quantifies how large 

diurnal temperature oscillations are relative to annual temperature oscillations, and temperature 
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seasonality, which represents how much temperature varies from month to month within a year, 

are both depictions of temperature fluctuation (O’Donnell & Ignizio, 2012). These results have 

dire global implications, as there is substantial evidence to suggest that a primary manifestation 

of climate change in the coming decades will be unpredictable and fluctuating global 

temperatures (Vincze et al., 2017). Moreover, temperature variation is projected to increase 

disproportionately in tropical countries, which would contribute to growing inequities in 

recovery from these disasters (Bathiany et al., 2018). Clearly, increases in both of these metrics 

correlating with landslide occurrence must be taken into account in future global hazard 

assessment. 

 The third significant bioclimatic variable, precipitation during the wettest month, also 

correlated positively with landslide occurrence. This metric quantifies not only precipitation 

amount, but also frequency over a condensed time period. Previous research into landslide-

precipitation relationships suggests that above-average precipitation decreases slope stability, 

therefore increasing landslide likelihood, and these results appeared to align with this (Kristo et 

al., 2017). Evidence suggests that the vegetative responses to precipitation anomalies are highly 

dependent on topographic factors, thus, for the purposes of this study, the influence of 

precipitation during the wettest month on landslide occurrence is likely due to a combination of 

topographic and biotic conditions (White et al., 2005). Precipitation-landslide relationships 

specifically have been pinpointed as an area urgently requiring increased investigation (Chen et 

al., 2020), and the significance of precipitation during the wettest month further emphasizes this 

point. 

 This study presents one of the first attempts to tie landslide occurrence and maintenance of 

landscape memory patterns to bioclimatic attributes, which takes into account the influence of 



 

 

26 

climate patterns as well as resulting biotic conditions like soil and vegetation quality. The results 

highlight the significance of three topographic variables and three bioclimatic variables in 

landslide occurrence, demonstrating that in the tropical region of focus, both biotic and abiotic 

forces influence patterns of landslide occurrence. While these variables act separately, the known 

influences of geomorphology and ecology on each other suggest that they are likely 

compounding in their influence as well. The complexity of landslide occurrence and a 

landscape’s development of resistance to them cannot be explained by geomorphology or 

ecology alone. In the future, more efforts into bridging the gaps between these fields must be 

undertaken to understand the shifts in landslide frequency which will be brought about by the 

changing global climate.  
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